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Breast cancer (BC) is the most common cancer in women worldwide. This

highly heterogeneous disease is molecularly stratified into luminal A, luminal B,

HER2, triple-negative/basal-like, and normal-like subtypes. An important

aspect in BC progression is the activation of inflammatory processes. The

activation of CD8+/Th1, NK, and M1 tumor associated macrophages (TAMs),

leads to tumor destruction. In contrast, an anti-inflammatory response

mediated by CD4+/Th2 and M2 TAMs will favor tumor progression.

Inflammation also stimulates the production of inflammatory mediators like

reactive oxygen species (ROS). In chronic inflammation, ROS activates

oxidative stress and endothelial dysfunction. In cancer, ROS plays a dual role

with anti-tumorigenic and pro-tumorigenic effects in cell signaling pathways

that control proliferation, survival, apoptosis, and inflammation. MicroRNAs

(miRNAs), which are known to be involved in BC progression and inflammation,

can be regulated by ROS. At the same time, miRNAs regulate the expression of

genes modulating oxidative stress. In this review, we will discuss the interplay

between inflammation, ROS, and miRNAs as anticancer and tumor promoter

molecules in BC. A clear understanding of the role of miRNAs in the regulation

of ROS production and inflammation, may lead to new opportunities for

therapy in BC.
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Introduction

In women, breast cancer (BC) is the most diagnosed cancer

with an estimated incidence of 2.3 million new cases (11.7% of

all cancer cases) and it is the leading global cause of cancer since

2020. Although the mortality of BC patients has decreased in the

last decade, it remains the leading cause of cancer death in

women, and it is the fifth leading cause of cancer mortality

worldwide, with around 685,000 deaths per year (1). Most BC

are sporadic (~90%), and their increasing incidence has been

related to the alteration of risk factors such as prolonged

exposure to endogenous estrogens, age, sedentary lifestyle,

alcohol consumption, obesity, exposure to ionizing radiation,

and hormone replacement therapy (especially the combination

of estrogens and progestogens) (2, 3).

The majority of BCs start in the lobes or in the ducts that

connect the lobes to the nipple (4). The mammary epithelial cells

acquire the ability to grow “abnormally” for years while

remaining within the ducts or breast lobes (5). Once leaving

the ducts or lobes, cancerous cells can metastasize through the

blood or lymphatic system to distant organs such as the lungs,

liver, brain or bones. During metastasis, cell migration and

invasion occurs through a cascade of molecular events directed

by genetic mutations and altered gene expression (6).

Inflammation is a mechanism of the immune system that

responds to external or internal stimuli, removes the aggressor,

and restores homeostasis. When chronic inflammation appears,

diseases can develop, including BC (7). BC progression requires

the participation of growth signaling pathways, as well as

supportive signals from immune cells, proinflammatory

cytokines, and growth factors present in an inflammatory

tumor microenvironment (TME) (8–10) are necessary.

Addit ional ly , inflammation is important in cancer

development and metastasis (11). Inflammation also promotes

the production of reactive oxygen species (ROS), which are free

radicals, ions, or molecules with a single unpaired electron (12).

ROS have a dual role, they can act beneficially as signaling

molecules when they are produced at low levels, but when ROS is

elevated, they can induce damage, resulting in genetic instability

and tumorigenesis (13–15). ROS can influence different

processes that induce cancer progression, including BC, in

association with the inflammatory TME (16).

ROS participate in complexes regulatory pathways with

other molecules involved in inflammation and oncological

processes including the microRNA (miRNAs) (17). MiRNAs

are small non-coding RNA molecules that participate in gene

regulation (18). Their mechanism of action depends on the

complementarity of base pairs with the target messenger RNA

(mRNA): if it is total, a degradation of the mRNA occurs; if it is

partial, it causes a decrease in mRNA translation (19). The

deregulation of miRNAs has been reported in multiple types of

cancer, including BC, and has been associated with the
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progression of this disease (20). Interestingly, miRNA

deregulation has a direct connection with ROS regulation, and

ROS levels are also key in the regulation of multiple miRNAs,

highlighting the connection between the regulatory networks of

both molecules in BC (21, 22). A better understanding of the

relationship between both molecules will allow the development

of novel therapeutic approaches.
Breast cancer subtypes

BC is a highly heterogeneous disease with molecular,

biological, and morphological variations, and thus has different

behavior and responses to treatment. BC classification is based

on its histological and molecular features, which can be used for

prognosis or to predict treatment response and overall survival

(23, 24). Histologic classification evaluates different parameters

like tumor cell type, extracellular secretions, structural features,

immunohistochemical profile as well as the pathological growth

pattern and anatomical origin (25, 26). The histological

differentiation is a good prognostic factor and it is used to

make better clinical decisions (27). TNM staging, on the other

hand, uses clinical and pathologic information of tumor size (T),

the status of regional lymph nodes (N), and distant metastases

(M). The staging combines these factors and stratifies the disease

into five stages (0, I, II, III, and IV) (28).

Modern genomic techniques have confirmed an association

between the natural history of BC with a particular gene

expression profile of the tumor (29). This molecular

classification is more effective than the anatomical criteria, and

allows for prognosis and treatment options to be defined

individually (30). Under this classification BC is divided into

five molecular subtypes according to a combination of gene

expression profiles and immunochemistry information: luminal

A, luminal B, human epidermal growth factor receptor 2

(HER2), basal-like BC, and normal-like tumors. This

molecular classification is based on the presence of hormone

receptors and HER2 status (Table 1) (31).

Luminal breast cancers are associated with estrogen receptor

(ER) activation and they are divided into two subgroups

according to the expression of proliferation-related genes (37).

Luminal A is the most common molecular subtype, and it is

considered of low grade, with the best prognosis among all

subtypes. It has positive hormone receptors, like ER and

progesterone receptor (PR), and negative HER2, as well as a

low expression of proliferation-related genes (38, 39). In

contrast, luminal B tumors tend to be of higher grade and

have a worse prognosis, lower expression of ER-related genes,

variable HER2 expression, and high expression of proliferation-

related genes (40). Because of their characteristics, luminal A

tumors show a good response to hormonal therapy, whereas

luminal B tumors may be candidates for chemotherapy because
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of their high proliferation rates (23, 31). The Ki67 index, also

known as a proliferation biomarker, is an independent

prognostic factor in BC and it is used to evaluate the risk of

recurrence and BC survival; higher Ki67 correlates with tumor

grade and poor prognosis (32, 41–43). This marker is also used

to differentiate luminal A from B tumors (44).

ER-negative cancers are also divided into two subgroups:

HER2-enriched and basal-like/triple negative BC. The HER2-

enriched group is distinguished by HER2 overexpression and

genes associated with HER2 signaling (37). These HER2-

overexpressing tumors are generally high-grade, ER-, PR-, and

are clinically aggressive. However, they are very sensitive to anti-

HER2 targeted therapy. Most tumors within this subgroup are

HER2+, but a small number of HER2+ cancers co-express ER

and are classified as luminal B (39, 45).

Basal-like BC is associated with high expression of high-

molecular-weight cytokeratins, P-cadherin, and the epidermal

growth factor receptor in normal myoepithelial and basal

mammary cells (39). This subtype of BC also exhibits

overexpression of genes related with proliferation, but they do

not express ER, PR or HER2. Histologically, they are high grade,

with a high proliferation index, and a triple negative phenotype

(45). BC that carries the BRCA1 mutation mostly belong to the

basal-like subtype. Although, the terms basal-like and triple

negative BC have been used indistinctly, not all triple negative

breast cancers are of the basal-like subtype (23). Triple negative

BC has different molecular features and fluctuating clinical

outcomes and responses to treatment, and have therefore been

divided in 6 subgroups (46–48). The aggressiveness of this

subtype is best exemplified by the fact that the peak risk of

recurrence is between the first and third years after the initial

diagnosis. Most of the deaths occur in the first 5 years following

therapy (49).

Normal-like tumors are characterized by the expression of

genes identical to normal mammary epithelium and shares

similar immunohistochemical status with the luminal A

subtype, which is ER+, PR+, HER2-, and Ki67 low. In
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addition, this type of tumors exhibit high expression of

adipose and myoepithelium-associated genes, and low

expression of luminal genes and clusters with fibroadenoma

and normal breast tissue (5, 37). However, the existence of this

BC subtype is controversial because the normal epithelial cell is

“contaminated” with low content of malignant cells (50). In

addition, the gene expression pattern of the normal breast is

typified by the high expression of genes of basal epithelial and

adipose cells, and the low expression of genes, characteristic of

luminal epithelial cells (37).

In addition to the five BC subtypes, there is a rare and very

aggressive type of BC known as inflammatory breast cancer

(IBC) (51). The term inflammatory is not due to the

participation of inflammatory signaling pathways (52) but

for its clinical characteristics, such as the inflamed

appearance of the skin. IBC is characterized by a low

hormone receptor expression and is associated with a more

aggressive clinical course and decreased survival (53). The

aggressiveness of this disease is attributed to the alteration in

key signaling pathways leading to a rapid growth and early

metastasis, as well as the development of tumor emboli, which

invade and block local lymphatic vessels, provoking tissue

damage and immune infiltration, and also generating tumor

growth (54). The clinical characteristics of IBC are diffuse

induration of the skin with an erysipeloid edge, and most of

the times without a dominant tumor mass (55). This behavior

occurs because groups of cells are infiltrated in the stroma and

they are grouped together forming clusters (56), which have

characteristics of progenitor cells with CD44+ CD24−,

ALDH1+, or CD133+ profiles (57).

Together, both histological and molecular systems are

complementary to each other and, in combination with the

TNM system, play an important role in BC diagnosis, prognosis,

and therapy (23). In the next sections we will discuss the

involvement of inflammatory process in the progress of BC

and how this inflammation is correlated with the ROS and

miRNAs production.
TABLE 1 Breast Cancer Molecular Subtypes.

Subtype IHC Phenotype Prognosis Characteristics References

Luminal A ER+, PR ≥ 20%, HER2-, Ki67 low Good Most common subtype
Lower-grade tumor
Diagnosed at early stages

(31–33)

Luminal B ER+, PR < 20%, HER2+/-, Ki67 high Intermediate Higher grade tumor (31–33)

HER2 ER-, PR-, HER2+, Ki67 high Poor Less common subtype
Higher grade tumor
Highly aggressive

(31–34)

Basal like ER-, PR-, HER2-, Ki67 high Poor Most aggressive subtype
High invasiveness
High metastatic potential

(31–33, 35)

Normal-like ER+, PR+, HER2-, Ki67 low Intermediate Resembling the normal breast profiling (36)
fr
ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; Ki67, proliferation index.
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Breast cancer as an
inflammatory process

Inflammation is a conserved mechanism that protects from

pathogens, repairs injured tissues, and eliminates damaged cells,

leading to the homeostasis of the organisms (58). Acute

inflammatory processes should be carefully regulated to prevent

excessive tissue damage (58, 59). When acute inflammation is not

resolved, it becomes chronic, causing the destruction of tissues and

the disturbance of the homeostasis, leading to clinical consequences

(60). Chronic inflammation is associated with the risk of developing

different types of cancer, including BC (61). BC generally arise in an

inflammatory environment, characterized by chronic inflammation

accompanied by the presence of immune cells, proinflammatory

cytokines, growth factors, and mediator proteins (8, 9).

The tumor microenvironment (TME) consists of different

types of cells, including cancer cells, stromal cells, immune cells,

and the extracellular matrix. The interaction among components

of the TME makes it a complex system that facilitates

tumorigenesis and metastasis (62). The most common

immune cells found in the TME are monocytes that

differentiate to tumor-associated macrophages (TAMs). TAMs

have the ability to promote tumor growth and they are present

during angiogenesis, invasion and metastasis; high presence of

TAMs generally correlates with poor prognosis (63, 64). TAMs

show strong plasticity, and they can polarize into two different

populations, M1 and M2, in response to the stimuli of the

microenvironment (65).

M1 macrophages are polarized by cytokines like tumor

necrosis factor-alpha (TNF-a), interferon-gamma (IFN-g), IL-
1, IL-6, and IL-17, and they can produce and secrete high levels

of pro-inflammatory cytokines such as IL-1a, IL-1b, IL-6, IL-12,
IL-23, and cyclooxygenase-2 (COX-2). These macrophages elicit

anti-tumor activity, mediate ROS-induced damage, and impair

tissue regeneration and wound healing (66–68). M2

macrophages are polarized by anti-inflammatory cytokines

including IL-4, IL-10, and IL-13 by the activation of signal

transducer and activator of transcription 6 (STAT6) through

the IL-4 receptor alpha (IL-4Ra); or by the activation of signal

transducer and activator of transcription 3 (STAT3) through the

IL-10 receptor (IL-10R) (69). M2 macrophages exhibit an anti-

inflammatory profile, producing low levels of IL-12, high levels

of IL-10, and transforming growth factor-beta (TGF-b). These
macrophages have pro-angiogenic properties and potent

phagocytosis capacity that promote tissue repair and wound

healing (65, 69). M2 macrophages participate also in tumor

progression, immunoregulation, and angiogenesis (70–72), as

they secrete factors to produce an immunosuppressive TME. It is

known that BC tumors possesses a high density of M2

macrophages that are associated with poor patient

prognosis (73).
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In addition to the M1/M2 macrophage polarization,

Malyshev et al. showed that there is a third phenotype of

macrophages, known as the M3 phenotype or the switching

phenotype (74). They observed an imbalance in the M1/M2

alveolar macrophage phenotype, suggesting the formation of M3

phenotype. These M3 macrophages are found in lung-related

conditions including bronchial asthma and chronic obstructive

pulmonary disease (COPD), and during the administration of

anti-inflammatory treatments like inhaled glucocorticosteroids

(74–77). This M3 phenotype is characterized by the upregulation

of anti-inflammatory cytokines in response to the programming

factor (RF)-M1 resulting in the reprogramming to the M2

phenotype (M1/M2 phenotype). Opposite, the upregulation of

pro-inflammatory cytokines in response to RF-M2 induces the

reprogramming to the M1 phenotype (M2/M1 phenotype) (74).

There are few reports studying the M3 macrophage population.

Jackaman et al. found a mixed of IL-10+TNF-a+CD206-

CX3CR1+ M1/M2 (M3) macrophage subset dominating the

mesothelioma microenvironment. This observation, support

the hypothesis about the transition of M1 cells to M3 cells

during tumor proliferation (78). Kalish et al. reported that the

M3 phenotype exhibited an antiproliferative antitumor effect in

vitro, and prolonged the survival time of mice with Ehrlich

ascites carcinoma (79). Nevertheless, more studies are needed to

fully characterize and understand the activity of the

M3 macrophages.

An immune cell population present also in the TME are the

neutrophils. These cells constitute the first line of defense against

microbial pathogens infection and tissue damage (80). In the

context of TME, neutrophils are known as tumor-associated

neutrophils (TANs). Depending on the stage of development of

the tumor or on the tumor type, TANs could induce tumor-

suppressive (N1) or tumor-promoting (N2) phenotypes (81, 82).

In early stages of the tumor, neutrophils are recruited to the TME

through the release of cytokines and ROS by tumor and stromal

cells (83), promoting apoptosis. However, during tumor

progression, neutrophils could promote angiogenesis and

invasion, by modifying the extracellular matrix (ECM). TANs

exerted these effects by releasing factors like proteases, reactive

nitrogen species (RNS) (84), MMP9, ROS, and growth factors (i.e.

VEGF) (81, 85, 86). It is reported that the chemokine receptor

CXCR2 and their ligands CXCL1-3 and CXCL5-8 are in charge to

attract neutrophils to the tumor and develop an inflammatory

response (87). CXCR2 chemokines are produced by tumor cells,

immune cells, and cancer-associated fibroblasts (CAFs) (88). It has

been shown that when neutrophils are co-cultured with human BC

cells, they released oncostatin M (OSM), a member of the IL-6

superfamily, promoting tumor progression, angiogenesis, and

metastasis through the expression of VEGF (89). Also, the IL-17-

CXCR2 axis facilitates the recruitment of neutrophils to the tumor

site, promoting BC progression (90).
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Another cells found in the TME are myeloid-derived

suppressor cells (MDSCs), a heterogeneous group of

monocytic and polymorphonuclear immature myeloid cells

that are produced under inflammation (91). MDSCs

participate in premetastatic niche formation and promote

tumor cell metastasis and angiogenesis by secreting TGF-b,
VEGF, and MMP9 (92, 93). MDSCs can also inhibit immune

function to accelerate tumor progression (92, 93), increase

tumor cell stemness and angiogenesis, as well as promoting

EMT through IL-6 secretion (94). In cancer patients, the

expansion of MDSCs promotes cell growth and metastasis,

and decrease the immunotherapy effectiveness (91). It has

been reported that high levels of MDSCs in BC correlates with

advanced stages of the disease and increased rates of recurrence

and metastasis (95). It has been observed that in the lung tissues

of BC patients, CCL2 can recruit MDSCs to promote BC

metastasis (96).

T cells are also found in the TME, and they are classified into

CD8+ cytotoxic T cells and CD4+ helper T cells, including Th1,

Th2, Th17, T regulatory cells, as well as natural killer T cells.

Importantly, T cells have tumor-suppressive and tumor-

promoting capabilities (97, 98). In addition, the gd T cells are

also found in the TME, they are known as nonconventional

lymphocytes and characterized by the expression of specific

receptor of the Vg and Vd chains (99). The presence of gd T

cells in the TME is associated with poor prognosis in different

types of cancer, including BC. Chabab et al. observed that in

human BC tumors, gd T cells were present in the late stages of

the disease (100). Around ~20% of the gd T cells expressed

CD37, and exhibited immunosuppressive functions through the

expression of IL-8, IL-10, and adenosine (100).

CAFs are also part of the BC stromal compartment and are

recruited and activated by different mediators, including TGF-b,
platelet-derived growth factor (PDGF), fibroblast growth factor

2 (FGF-2), and ROS (101). CAFs are able to secrete proteases,

inflammatory molecules and growth factors. These proteases

and inflammatory molecules increase the ability of CAFs to

migrate and remodel the ECM, and recruit other inflammatory

cells at neoplastic sites (102, 103). The growth factors also

stimulate cancer cells to produce and secrete TFG-b, MMP9

and MMP13 which contribute to the proliferation and

angiogenesis of the tumor (104). In BC, high levels of MMP9

are associated with cancer development and tumor progression,

while in TNBC MMP9 promotes angiogenesis and metastasis

(105, 106).

The TME also includes cancer-associated adipocytes

(CAAs). CAAs are smaller than normal adipocytes, and also

differs in metabolic activity and adipokine expression (107).

CAAs secrete adipokines, inflammatory chemokines, and

interleukins and are implicated in tumor progression,

metastasis, and therapy resistance (108). For instance, it has

been shown that high secretion of leptin by CAAs promote

cell proliferation and angiogenesis in BC by the upregulation
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of the enzyme lysyl hydroxylase (109). Leptin in CAAs also

activates ER pathways, JAK/STAT3, PI3K/AKT and SRC-1

signaling pathways and increases cyclin D1 and vascular

endothelial growth factor (VEGF)/VEGFR expression

(108 , 109 ) . Inc rea sed l ev e l s o f STAT3 and JAK

phosphorylation in CAAs may led to the production of IL-

6, which promotes cancer cell survival, immune suppression,

and drug resistance (110).

Mediators of the immune response and inflammatory

mediators such as ROS, cytokines, chemokines, prostaglandins,

and growth factors can regulate cancer progression (111), and

participate in all the stages of carcinogenesis, including

initiation, promotion, cell proliferation, angiogenesis, and

metastasis (11, 112, 113). TGF-b is a cytokine that also

promotes metastasis in BC and it is crucial during epithelial-

mesenchymal transition (EMT), invasion, and progression of BC

(114). TNF-a is known as a multifunctional cytokine that

contributes to cancer development and also participates in

different signaling pathways connected to inflammation,

proliferation, survival, invasion, and migration in BC (115).

The effects of TNF-a are mediated through its receptors,

TNFR1 and TNFR2 (116). The binding of TNF-a to its

receptors activates the p42/p48 MAPK, PI3K/AKT and p38/

MAPK pathways which activate the expression of proliferation-

related genes mediated by NF-kB, STAT3, and AP-1

transcription factors (117). Resistin, another inflammatory

cytokine, is released in the inflammatory TME, promote

tumor cell growth and aggressiveness, and it is elevated in BC

patients (118, 119). High levels of resistin positively correlated

with breast tumor size and stage, lymph node metastasis, and

estrogen receptor status, and negatively correlated with the

overall survival in BC patients (120).

Some ILs as IL-1, IL-6, IL-8, IL-11, and IL-23 also

promote an inflammatory microenvironment, and some of

them are involved in tumor progression (121). IL-6, a

pleiotropic cytokine that regulates multiple biological

activities is the most studied cytokine in the pathogenesis of

BC (122). It is speculated that IL-6 can inhibit apoptosis by

regulating the expression of antiapoptotic proteins, such as B-

cell lymphoma-extra-large (BCL-XL) and B-cell lymphoma 2

(BCL-2) (123). IL-6 also promotes cell survival, immune

suppression, and drug resistance through STAT3 dependent

pathway and JAK phosphorylation (123, 124). The JAK/

STAT3 signaling pathway is induced by the overexpression

of IL-6 released from TAMs, causing the translocation of

phospho-STAT3 into the nucleus and transactivation of

prote ins , inducing the processes of prol i fera t ion ,

differentiation, and survival (125, 126). Another cytokine

involved in inflammation and cancer progression is IL-17.

This cytokine protects the body against infections. IL-17

promotes inflammation by inducing inflammatory

mediators such as IL-6, CXCL1 and G-CSF (127), recruiting

dysfunctional myeloid cells and establishing a suppressive
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and proangiogenic immune response in the TME (128).

Dysregulation of IL-17 production or in its signaling

pathway causes an unresolved inflammation, resulting in

tissue damage. The chronic activation of IL-17 generates a

pro tumor microenvironment, since IL-17 induces

inflammatory mediators to promote tumor progression (128).

Other mediators of inflammation in the TME are the

chemokines and their receptors. These molecules are

implicated in diverse processes, including wound healing,

angiogenesis, inflammatory diseases, tumor growth, and

metastasis (129, 130). The chemokine CCL20 and its

receptor CCR6 promotes cancer progression by increasing

the proliferation and migration of cancer cells (131). CCL20

has been associated with poor prognosis in BC patients, Lee et

al. reported that patients with high expression of CCL20

showed significantly lower overall survival and metastasis-

free survival, in addition to increase cell invasion and

secretion of MMP2 and MMP9 in TNBC cells (132). The

chemokine CXCL8 and their chemokine receptors CXCR1/2

are also fundamental in the activation and trafficking of

inflammatory mediators, and tumor progression as well as

metastasis (133). It has been reported that in BC the

chemokine CXCL8 induces EMT (134), and participates in

angiogenesis, cell invasion, and migration of TNBC cells

(135). The chemokine receptors CXCR2, CXCR3, CXCR4,

CCR6, and CCR7 and their cognate ligands are associated to

BC metastasis (130, 136, 137).

In addition to cytokines and chemokines, lipid mediators,

derived from polyunsaturated fatty acids (i.e. arachidonic

acid, eicosapentaenoic acid, and docosahexaenoic acid) that

are synthesized during normal cell homeostasis, they are also

over-produced under stress conditions, and contribute to the

inflammat ion and tumor progres s ion (138 , 139) .

Prostaglandins are derived from arachidonic acid and are

catalyzed by cyclooxygenases (COX) (139). Evidence

indicates that prostaglandin E2 (PGE2), the most abundant

prostaglandin, participates in several carcinogenesis-related

processes including cell growth, apoptosis escape, EMT, and

angiogenesis (140, 141). PGE2 is able to bind to four G-

protein-coupled EP receptors, EP1-EP4. EP4 is frequently

upregulated in cancer cells where it promotes proliferation,

migration, invasion, and metastasis (142). In murine

pulmonary endothelial cells , PGE2 enhanced tumor

metastasis by promoting release of VEGF through the EP2

receptor pathway (143). EP4 stimulation increased

proliferation, invasion, and metastasis of SUM149 IBC

tumor cells, and was correlated with aggressive BC subtypes

(144, 145).

Besides the role in TME, inflammation also promotes the

overproduction of ROS which contribute to BC progression. The

interactions between inflammation and ROS in the context of

BC is discuss in the next section.
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Interplay between inflammation and
ROS production in breast cancer

ROS are free radicals, ions or molecules with a single

unpaired electron (12); these oxygen-containing molecules are

small, short-lived and highly reactive (146). There are more than

20 types of ROS classified into two groups, free oxygen radicals

and non-radical ROS (147, 148). The most studied ROS

associated with cancer are superoxide anions and hydroxyl

radicals of the free oxygen radical group, and hydrogen

peroxide of the non-radical ROS group (146).

Intracel lular ROS are mainly originated by the

mitochondria’s electron transport chain. The endoplasmic

reticulum, lysosomes, and peroxisomes also produce

considerable amounts of ROS (149). ROS have a dual role; at

low levels, ROS are signaling molecules in different physiological

events including cell growth and survival, apoptosis, and

immune response (13, 14). When ROS levels are elevated, for

example during a chronic inflammatory event, they induce

damage to the DNA, proteins, and lipids. DNA damage results

in genetic instability, tumorigenesis and aging (147).

During an inflammatory process associated with the

initiation and progression of BC, macrophages and mast cells

of the TME produce inflammatory mediators that increase

vascular permeability, allowing the migration of leukocytes to

the site of damage (150). ROS participate in this process by

regulating the expression of molecules such as intercellular

adhesion molecule 1 (ICAM-1), vascular cell adhesion

molecule 1 (VCAM-1), P- and E-selectin that are expressed in

the endothelial surface and interact with leukocytes, favoring

their migration (151). Other molecules that induce cell

migration and adhesion are cytokines such as TNF, platelet-

derived growth factor, angiopoietin-1, and VEGF. The binding

of these chemoattractants and growth factors to cell surface

receptors triggers nicotinamide adenine dinucleotide phosphate

(NADPH) oxidases to form ROS (152, 153). Additionally, ROS

can induce the activation and synthesis of factors responsible of

the inflammatory response including hypoxia-inducible factor-1

alpha (HIF-1a), b-catenin/Wnt, activator protein 1, NF-kB,

peroxisome proliferator-activated receptor gamma, growth

factors, and pro-inflammatory cytokines (154–157).

ROS overproduction plays also important role in EMT. During

EMT, epithelial cells lose their junctions and their polarity, a

cytoskeleton reorganization occurs, and a reprograming of gene

expression that promote mesenchymal properties including cell

motility and invasive phenotypes (158, 159). The TGF-b signaling

pathway play an important role in EMT and higher levels of TGF-

b1 and TGF-b receptor type II (TbRII) have been observed in BC

cells. The pathway through which TGF-b drives EMT and cellular

migration in breast epithelial normal and tumor cells partially rely

on the NADPH oxidase 4 (NOX4) (160, 161), an enzyme, that is a

major source of intracellular ROS (162). Zhang et al. reported that
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in the BC cells 4T1, TGF-b induced ROS production and enhanced

cell migration (160). These TGF-b-associated effects were mediated

by NOX4 because an NOX4 chemical inhibitor and RNAi-

mediated NOX4 knockdown significantly decreased TGF-b-
dependent cell migration (160). Tobar et al. co-cultured RMF-EG

mammary stromal cells and MCF-7 cells to observe the migratory

ability of the breast cancer cells. Pre-treatment of RMF-EG cells

with TGF-b1 enhanced the migratory ability by elevating NOX4

expression and intracellular ROS production. These effects were

abolished by knocking down NOX4 in RMF-EG cells with small

interfering RNA (siRNA) (163). Other reports indicate that TGF-b1
regulates uPA (Urokinase type Plasminogen Activator) and matrix

metalloproteinase 9 (MMP-9) using ROS-dependent mechanisms

(164, 165). Additionally, in MCF-7 cells ROS increased tumor

migration by inducing MMPs-mediated hypoxia and cathepsin

expression (166, 167).

In general, the high levels of ROS, generated by increased

mitochondrial metabolic and energetic activity, by alterations in

the electron transport chain, by HIF-1a expression, and/or

during a chronic inflammation (168), are responsible for

increasing the activation of the PI3K/AKT and MAPK/ERK

signaling pathway and cell proliferation (147). Incubation of

MDA-MB-231 BC cells with deferoxamine (DFO) increased

ROS levels, activated the ERK signaling pathway, increased

HIF-1a expression, and promoted cell migration and invasion

of these cells (169). A study by Han et al. found that high levels of

epidermal growth factor (EGF) promoted the production of

hydrogen peroxide (H2O2), and activated p70S6K1 via the PI3K/

AKT. This signaling pathway promoted also the VEGF and HIF-

1a production in MCF-7 cells (170). In another report, copper,

which in excess is a potent oxidant causing the production of

ROS in cells (171, 172), through the EGFR/ERK/c-Fos pathway,

increased the expression of VEGF, HIF-1a, and G-protein

estrogen receptor (GPER) in the SKBR3 BC cells (173, 174).

Also, in MCF-7 cells ROS activated the PI3K/AKT signaling

pathway and increased the expression of HIF-1a and

angiogenesis (175). Together, ROS stimulate growth factors,

cytokines, and molecules such as HIF-1a and VEGF, which

induce migration and proliferation of BC cells (176–178). These

ROS-dependent signaling pathways activate the PI3K/AKT/

mTOR pathway, increasing VEGF production by HIF-1a
dependent and independent mechanisms.

Opposite, ROS are able to induce apoptosis by destabilizing

the mitochondrial membrane and opening the mitochondrial

permeability transition pore. These events alter the electron

transport chain and releases cytochrome-c that, in conjunction

with apoptotic peptidase activating factor 1 and procaspase-9

forms apoptosomes. Apoptosomes activate caspase-9, and then

caspase-3 which executes the last steps of the apoptosis cascade

in the nucleus (179–182). As apoptosis is a desirable mechanism

to eliminate undesirable cells, the generation of ROS could be

beneficial to eradicate cancer cells in tumors (183–185). Some

anticancer agents, such as the natural polyphenol resveratrol,
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promotes apoptosis of MCF-7 cells through the accumulation of

H2O2 in the mitochondria (186).

Together, ROS have a central role in the growth and

proliferation of cancerous cells as well as in the TME as

mediators of the oxidative stress conditions, and in the

inflammatory responses. ROS are not the only molecules

involved in these meaningful processes as miRNAs are also

able to regulate ROS production. In the next section, we will

discuss the interconnection between miRNAs in ROS

production during BC progression.
Interplay between miRNAs and ROS
in breast cancer

Deregulation of miRNAs in breast cancer

Although only 2% of the human genome is composed of

protein coding genes, more than 90% of the DNA is transcribed

into RNA (187). RNA molecules that are not translated into

proteins are called non-coding RNAs (ncRNAs), whose

biological and regulatory functions are still under investigation

(188, 189).The first report that ncRNA participate in the

regulation of gene expression occurred in 1984 by Mizuno et

al. who observed that the Escherichia coli micF gene has its own

promoter and encodes a small ncRNA that can inhibit

translation of ompF mRNA by base pairing (190, 191). In the

subsequent years it became evident that ncRNAs are a key piece

in the regulation of gene expression.

Depending on their function, ncRNAs are classified into two

major groups (192).The first group are the housekeeping ncRNAs,

which regulate essential cellular functions and includes ribosomal

RNA (rRNA), transfer RNA (tRNA), small nuclear RNA

(snRNA), small nucleolar RNA (snorRNA), and telomerase

RNA (TERC) (193). The second group are the regulatory

ncRNAs, which regulate gene expression at virtually every level

(194). Depending on their size, regulatory ncRNAs are

subclassified into small ncRNAs (sncRNAs) which are less than

200 nt in length, and long ncRNAs (lncRNAs) withmore than 200

nt of length (193). Regulatory sncRNAs include, tRNA-Derived

Fragments (tRE), halves tRNA (tiRNA), siRNA, piwi-interacting

RNA (piRNA), enhancer RNA (eRNA), circular RNA (circRNA),

Y RNA, and miRNAs. MiRNAs are the most studied sncRNAs

due their critical role in the regulation of gene expression (188).

MiRNAs are small non-coding RNAs of about 22

nucleotides in length that regulate gene expression at the

posttranscriptional level (18). Most miRNAs are transcribed by

RNA polymerase II/III to generate a primary transcript (pri-

miRNA) which is processed by microprocessor complex formed

by Drosha-DiGeorge syndrome critical region gene 8 (DGCR8)

to produce an RNA stem-loop pre-miRNA of ~80 nucleotides in

length. Pre-miRNAs are transported into the cytoplasm by

RanGTP/exportin 5 (XPO5), where Dicer together with the
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transactivation response RNA binding protein (TRBP) generate

a mature miRNA duplex. The duplex is loaded into Argonaute

(AGO) proteins to form the RNA-induced silencing complex

(RISC). RISC promotes miRNA molecules to bind their target

mRNA. The ability to regulate gene expression depends on their

degree of complementarity between the miRNA and the 3’UTR

region of the mRNA target. A total complementary between

mRNA and miRNA lets to RNA degradation but, incomplete

complementarity causes a partial repression of translation (19).

Deregulation of miRNAs is a phenomenon observed in most

cancers, including BC, and has been linked with all steps of

carcinogenesis and drug resistance (20). Many deregulated

miRNAs have been proposed as diagnostic or prognostic

markers and/or as targets for BC therapy (20). In cancerous

cells, upregulated miRNAs are known as oncomiRs and

generally reduce the expression of genes with tumor

suppressor capabilities. Opposite, downregulated miRNAs are

known as tumor suppressor miRNAs and due to their absence,

their target genes are upregulate acting as oncogenes (19). For

instance, miR-145 promotes TNF-a-induced apoptosis in triple

negative BC by facilitating the formation of RIP1-FADD/

caspase-8 complex (195). On the other hand, miR-146b

inhibits apoptosis in BC cells by inhibiting STAT3 and

reducing IL-6 production in a NF-kB dependent manner

(196). Moreover, TGF-b can cause an increase in the

expression of miR-106b, which promotes tumor growth and

metastasis in BC (197).

As it was above mentioned, inflammation plays a

fundamental role in BC progression (198). However, the role

of miRNAs in this process is still not fully understood. A decade

ago, O’Neill et al. described that immune cell populations

expressed miRNAs that act on target genes involved in the

regulation of the inflammatory process. Such miRNAs acts on

mRNA of inflammatory-related-molecules, including: (i)

receptors such as Toll-like receptor 4 (TLR4) (miR-223, let-7i,

let-7e), TLR3 (miR-223), TLR2 (miR-105), (ii) signaling

molecules such as myeloid differentiation primary-response

protein 88 (miR-155), MYD88 adaptor-like protein (miR-145),

IL-1R-associated kinase 1 and 2 (miR-146), TNFR-associated

factor 6 (miR-146), (iii) transcription factors such as nuclear

factor-kB1 (miR-9), forkhead box P3 (miR-155), p300 (miR-

132), (iv) cytokines such as IL-6 (let-7), TNF (miR-16, miR-155,

miR-125b, miR-579, miR-369-3), IL-10 (miR-106, miR-466l),

IL-12p35 (miR-21), and (v) regulator proteins such as

acetylcholinesterase (miR-132), programmed cell death 4

(miR-21), Src homology 2 (SH2) domain-containing inositol-

5ʹ-phosphatase 1 (miR-155), and suppressor of cytokine

signaling 1 (miR-155) (199, 200). Later, it was recognized that

there is a feedback between miRNAs and the immune system to

regulate the inflammatory responses and to protect the host

from inflammation (201).

Depending on the type and differentiation stage of cells and

tissues, a particular miRNA is expressed at different magnitudes.
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Also, a miRNA, could be regulated through different

mechanisms in normal vs. malignant cells. The innate immune

system has the ability to regulate the expression of multiple

miRNAs (202). During an inflammatory response, various

proinflammatory, signaling pathways, and transcription factors

are activated. For example, activation of NF-kB in macrophages,

DCs, and THP-1 cells, upregulates miR-21, miR-146a, and miR-

155 (203–205). Enzymes related to inflammatory processes

including adenosine deaminase RNA Specific (ADAR1) and

Polyribonucleotide Nucleotidyltransferase 1 (PNPT1) are

involved in the processing of pri-miRNAs (202).

In some populations of the innate immune system, miRNAs

play important roles. Diverse technologies have been used for

the analysis of miRNAs and their relationship with the immune

system. For instance, Ishii et al. used a NanoString miRNA array

to measure the miRNA expression levels in Gr-1+CD11b+

human myeloid cells and found that miR-130a and miR-145

can reprogram tumor-associated myeloid cells by modifying the

cytokine milieu and the metastatic microenvironment. These

two miRNAs regulate TGF-b receptor II production that results

in an enhanced antitumor immune response (206). Chiodoni et

al. used Bead array technology (Illumina), to assess whether

circulating miRNAs from bone marrow samples were involved

in the communication between the nascent cancer and the bone

marrow. They identified 80 miRNAs differentially expressed

between NeuT mice and the control group. Some of these

miRNAs could be responsible for transcriptional alterations in

the bone marrow that favor an environment of immuno

suppression during cancer development. These results provide

evidence that deregulated miRNAs alters the immune system in

response to the carcinogenesis process (207). Qing et al. found

that Kaposi’s sarcoma-associated herpesvirus encodes two

miRNAs: miR-K12-3 and miR-K12-7. These two miRNAs

bind to the 3´UTR of the basic region/leucine zipper motif

transcription factor C/EBP and regulate its expression.

Upregulation of C/EBP increased IL-6 and IL-10 expression in

infected macrophages which resulted in suppression of

antitumor immune responses, promotion of tumor cell

growth, suppression the T cells activation, and increased

angiogenesis (208).

Another effect of miRNAs on the immune response is their

regulatory effect on IL-17. Seif et al. found that overexpression of

miR-490-5p and miR-490-3p in peripheral blood mononuclear

cells (PBMC) and plasma from BC patients led to the production

of Th17 lymphocytes and IL-17-producing regulatory T cells

(Tregs). This immune response reduced the levels of CD3d, IL-2,

IL-2 receptor chain alpha, forkhead box O1 (FOXO1), and

nuclear factor of activated T cells 5 (NFAT5); a micro

environment that supports tumor progression (209). Soheilifar

et al. reported that overexpression of miR-182-5p and miR-182-

3p suppresses the FOXO1, NFATs, and IL-2/IL-2RA signaling

pathways. On the other hand, these two miRNAs increased the

expression of FOXP3, TGF-b, and IL-17 in tumor tissues
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engender IL-17-producing Tregs that exert immunosuppressive

functions in BC (210).

An effect of miRNAs on some inflammatory mediators such

as PGE2 has been reported (211). Kim et al. found that miR-155

is involved in the metabolism of prostaglandins, as this miRNA

up-regulates PGE2-producing enzymes (PTGE S/PTGES2) and

down-regulates PGD2-producing enzymes (PTGDS). The

correlation between high levels of miR-155 and overexpression

of PGE2/prostaglandin D2 (PGD2), confirm the importance of

this miRNA in the regulation of inflammation during

carcinogenesis (211). COX-2 overexpression has been also

related to the expression of miRNAs such as miR-526b and

miR-655 in an MCF-7-COX2 BC cell line (212, 213).

Overexpression of both miRNAs induced stem-like cell

phenotypes, and stimulated angiogenesis (212, 214).

Furthermore, Hunter et al. reported that the overexpression of

miR-526b and miR-655 promoted the expression of angiogenic

markers such as VEGF and EP4 receptors (215, 216).

As mentioned above, multiple cytokines and chemokines

(TNF-a, TGF-b, granulocyte-macrophage colony-stimulating

factor (GM-CSF)), as well as transcription factors (AP-1, NF-

kB, STAT3, HIF-1a), participate in inflammatory responses

during cancer progression. MiRNAs posttranscriptionally

regulate the expression of those molecules. For example, miR-

421 (targets: FXR, DPC4/SMAD4, ATM), miR-503 (target:

CCND1), miR-24-3p (targets: p27, p16), miR-29a (targets:

PTEN, GSK3b, TET1) and miR-451 (targets: MIF, YWHAZ)

play a critical role in the proliferation, migration, invasion, and

metastasis of BC. Additionally, miRNAs have a direct effect on

ROS regulation, as will be seen in the next section (217–219).
MiRNAs alter ROS production in
breast cancer

Deregulation of miRNAs contributes to the production of

ROS and therefore to BC progression. For example, Moi et al.

reported that the nuclear transcription factor erythroid-

derived factor 2-like 2 (Nrf2) and its Kelch-like inhibitor

ECH-associated protein 1 (Keap1) (220) are regulators of the

oxidative stress responses (221, 222). Under basal conditions

of oxidative stress, Nrf2 is sequestered by Keap1 and directed

to the proteasome (223). However, if ROS levels increase the

Nrf2/Keap1 complex separate and Nrf2 is transferred to the

nucleus, where it promotes the expression of encoding

antioxidative-related genes such as proteins involved in

redox balancing factors, detoxifying enzymes, stress

response proteins and metabolic enzymes (223). This

mechanism keeps cancer cells from entering apoptosis and

favors tumorigenesis (224, 225). Interestingly, Singh et al.

reported that Nrf2 is downregulated by miR-93 (226). The

overexpression of miR-93 in breast epithelial cells decreases
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apoptosis and increased colony formation, mammosphere

formation, cell migration, and DNA damage. Opposite

effects were observed after miR-93 reduction with vitamin

C, an agent that reduce the intracellular levels of ROS (226).

Yang et al. found a negative relationship between the

expression levels of miR-28 and Nrf2. MiR-28 regulate the

expression of Nrf2 in a Keap1- independent manner (227).

Eades et al. reported that miR-200a binds to KEAP1 mRNA,

which increase the expression of Nrf2 in BC (228). Yi et al.

reported that miR-101 inhibits Nrf2 expression and

suppressed the proliferation of BC cells, making them more

sensitive to oxidative stress (229). Overexpression of miR-153

reduced Nrf2, inhibited apoptosis and increased colony

formation in BC cells (230). The Table 2 summarizes the

reported miRNAs that regulate genes involved in the redox

signaling pathway in BC (Table 2) (228).

MiRNAs also regulate diverse mitochondrial genes that

encode proteins involved in cellular redox homeostasis (see

Table 2). Singh et al. overexpressed miR-195 in MCF-7 and

MDA-MB-231 BC and performed a gene expression profile.

They observed mitochondrial dysfunction due to alterations in

fatty acid metabolism or xenobiotic metabolism (236). There

was also a reduced expression of various miR-195 target genes

including ACACA, FASN, HMGCR, and CYP27B1 (236).

Additionally, they observed a reduction in cell proliferation,

invasion, and migration, a reduction in mesenchymal markers,

and an increasing in epithelial markers (236). Lou et al. found

that both miR-485-3p and miR-485-5p act on peroxisome

proliferator-activated receptor-gamma coactivator-1 alpha

(PGC-1a), a key element in regulation of cellular energy

metabolism (237). The absence of this miRNA increased BC

migration, invasion, and metastasis (237). Eastlack et al. found

that increasing the miR-27b expression inhibited pyruvate

dehydrogenase protein X (PDHX) in BC, which leads to

altered levels of pyruvate, lactate, and citrate. Increased levels

of miR-27a also reduced mitochondrial oxidation and promoted

extracellular acidification and cell proliferation (238). More

recently, Peng et al. reported that the overexpression of miR-

3677 induced proliferation, migration, and metastasis in BC. In

this setting, miR-3677 downregulates the expression of

transducin-like enhancer of Split3 (TLE3), a transcriptional

co-repressor involved in cell proliferation, metabolism

regulation, and tumorigenesis (239). This observation suggest

that miR-3677 acts as oncomiR in BC by increasing ROS levels

(239). On the other hand, during oxidative stress conditions,

miR-4485 could be translocated into the mitochondria where it

binds to 16S rRNA, leading to an accumulation of ROS and

mitochondrial dysfunction. In the mitochondria, miR-4485

regulated the activity of mitochondrial complex I, altered ATP

production, activated caspase-3/7, and induced apoptosis.

Because miR-4485 is downregulated in BC, its overexpression

has been associated with suppression of tumorigenesis (240).
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Many other miRNAs can alter the oxidative stress conditions

inside cells. Song et al. found that miR-509 overexpression inhibits

proliferation, migration, and angiogenesis in BC cells by

downregulating superoxide dismutase 2 (SOD2), a central protein

involved in ROS production (248). MiR-500a-5p overexpressed

under conditions of oxidative stress, downregulates thioredoxin

reductase 1 (TXNRD1) and nuclear factor erythroid 2-like 2

(NFE2L2), two proteins involved in stress responses, whose

reduction is related to poor prognosis in BC (249). Transfection

of MCF-7 cells with a miR-139-5p mimic followed by radiation

increased ROS production and induced apoptosis in BC due to its

action on methionine adenosyltransferase 2A (MAT2A). On the

other hand, mice treated with a miR-139-5p mimic, completely

eliminated the implanted tumor and they remained tumor-

free (250).
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Shin et al. found that overexpression of miR-526b and miR-

655 in MCF-7 cells increased the expression of TXNRD1, and

promoted ROS production, for this reason, it could be involved

in the tumor growth and metastasis in BC (251). MiR-526b

targets TCF21 whereas miR-655 targets PBRM1. Both, TCF21

and PBRM1 are negative regulators of TXNRD1, since they

inhibit the TXNRD1 expression (Table 2). Furthermore, MCF-7

cells treatment with H2O2 promoted the overexpression of these

two miRNAs, ratifying that oxidative stress are able to induce the

expression of miRNAs (251).

Together, miRNAs are important regulators of ROS

and BC progression. The close relationship between miRNAs

and ROS is essential to maintain cellular homeostasis.

Alterations in miRNA and/or ROS levels could promote BC

progression (Figure 1).
TABLE 2 miRNAs involved in ROS regulation in Breast Cancer.

Pathway MiRNA Action Effect Reference

Nrf2/Keap1 miR-93 Nrf2 downregulation Decreases apoptosis, promotes colony and mammosphere formation,
increases cell migration and DNA damage

(226)

miR-28 Nrf2 downregulation Increases colony formation (227)

miR-200a Keap 1 downregulation (228)

miR-101 Nrf2 downregulation Suppresses cell proliferation (229)

miR-153 Nrf2 downregulation Decreases apoptosis and increases colony formation (230)

NF-kB miR-520/373 NF-kB, TGF-b Tumor suppression (231)

miR-31 PKCϵ Sensitizes to apoptosis (232)

miR-30c-2-3p TNFR/NF-kB Reduce proliferación e invasion (233)

miR-1246 PKA/PP2A NF-kB pro-inflammatory signaling (234)

miR-221/222 PTEN Promote stem-like properties and tumor growth (235)

Mitochondria and
metabolism

miR-195 Acts on ACACA, FASN,
HMGCR, CYP27B1

Decreases proliferation, invasion, and migration (236)

miR-485-3p
miR-485-5p

Act on peroxisome proliferator-
activated receptor-gamma
Coactivator-1 alpha
(PGC-1a)

Inhibits migration, invasion, and metastasis (237)

miR-27b Suppress PDHX Promotes cell proliferation (238)

miR-3677 TLE3 downregulation Induces proliferation, migration, and metastasis (239)

miR-4485 Acts on 16S Rrna ROS accumulation (240)

miR-342-3p MCT1 Disrupt energetic fluxes (241)

miR-155/miR-143 C/EBPb HKII expression (242)

miR-204-5p PIK3CB Regulates growth, metastasis, and immune microenvironment
remodeling

(243)

Hypoxia miR-153 HIF-1a Inhibits migration, proliferation, and angiogenesis (244)

miR-191 TGF-b More aggressive tumor (245)

miR-18a HIF-1a Reduces metastasis (246)

miR-497 HIF-1a, VEGF Reduces tumor growth and angiogenesis (247)

Other miR-509 Inhibits SOD2 Inhibits proliferation, migration, and angiogenesis (248)

miR-500a-5p TXNRD1 and NFE2L
downregulation

Promotes the progression of BC (249)

miR-139-5p Decreases MAT2A Synergy with radiotherapy, increases ROS production (250)

miR-526b
miR-655

TCF21 and PBRM1 TXNRD1 upregulation (251)
fro
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ROS alter miRNAs in breast cancer

Excess of ROS production alters the levels and function of

virtually all biomolecules in cells, including miRNAs (22).

Early evidence showed alterations in miRNA expression in

response to radiation or H2O2 in cultured normal human

fibroblasts (252). This effect was prevented using cysteine,

which acts as an scavenger of free radicals (252). Oxidative

stress can induce or decrease the expression of miRNAs

through different mechanisms including the alteration of

the biogenesis process, deregulation of transcription factors,

or inducing epigenetic alterations (253) (Figure 2). For

instance, ROS acts on heme groups linked to the heme-

binding motif of DGCR8, causing a conformational change

that suppresses pri-miRNA processing activity (254–256).

Another protein downregulated by ROS is Dicer, which is

overexpressed by the action of Nrf2 and had a direct effect on

the synthesis of mature miRNAs (257). Let-7, a miRNA

overexpressed under oxidative stress conditions, has the

ability to suppress the action of Dicer, which is one of its

target genes (258). Moreover, it has been reported that aging

and ROS alter Dicer expression in cerebromicrovascular

endothelial cells. Exposition of these cells to H2O2 reduced

Dicer expression and downregulate miRNAs synthesis in

around 89% when analyzing the miRNAs expression levels

by RT-qPCR (259). Dicer could also works as a negative

regulator of ROS production, a mechanism used to maintain

redox ba lance (260) . On the other hand , human

microvascular endothelial cells with Dicer knockdown

exhibited increased levels of HMG-Box Transcription

Factor 1 (HBP1). HBP1 acts on p47phox, a subunit of

NADPH oxidase, causing a decrease in ROS production and

affecting angiogenesis in endothelial cells (260).
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Interestingly, ROS are also capable of modifying mature-

miRNAs. For example, under oxidative stress conditions, miR-

184 suffers an oxidation process that allows it to interact with the

3’UTR region of anti-apoptotic proteins such as BCL-XL and B-

cell lymphoma-w (BCL-W). Under normal conditions, genes

encoding these proteins are not targets of miR-184 (261).

The expression of miRNAs is regulated by transcription

factors such as NF-kB, cellular myelocytomatosis oncogene

(c-Myc), AP-1, and HIF-1a, among others. The expression of

many of these transcription factors is at the same time altered

under oxidative stress conditions (254). For instance, reduced

levels of miR-148a and miR-152 caused an increase in the

expression of NF-kB (262). By a feedback loop, increased

levels of NF-kB increased the levels of those miRNAs which

could promote the growth and angiogenesis in BC (262). A

CuO nanowire fabricated with folic acid (CuO-Nw-FA)

caused a reduction in the NF-kB levels that reduced the

expression of miR-425 and caused the overexpression of

PTEN, a miR-425 target gene (263).

Another oxidative stress-related protein involved in the

regulation of miRNAs expression is the endogenous protein

kallistatin. Kallistatin promotes the expression of genes with

antioxidant activity by at least two reported ways (264). First,

kallistatin reduces the expression of TGF-b, through its active

site and promotes the synthesis of endothelial nitric oxide

synthase (eNOS), reducing oxidative stress, a powerful inducer

of EMT process (264). Equally, TGF-b decreases the levels of

miR-21, a well-known oncomiRNA, that targets PTEN,

promoting chemoresistance and invasion (264, 265). Second,

kallistatin through its active site stimulated the synthesis of

eNOS/Sirt1/FoxO1, a pathway essential to regulate the

oxidative stress conditions inside cells (264). Chao et al. found

that kallistatin also stimulates the expression of miR-34a and
FIGURE 1

Effect of ROS in the miRNAs production. ROS can affect the production of miRNAs in various ways: modifying the miRNA biogenesis through
the action on DGCR8 and DICER, altering the expression of transcription factors responsible for regulating their expression, or causing
epigenetic alterations. Blue lines represent activation, red lines inhibition, and green lines bidirectional regulation.
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p53, both inhibits the miR-21/AKT/BCL-2 pathway, leading to

apoptosis in BC cells (266).

In addition to the effect of ROS on miRNA biogenesis,

miRNAs are regulated by ROS at the epigenetic level (254).

Some of the epigenetic alterations contributing to the miRNA

dysregulation in cancer include DNA methylation and histone

modifications (acetylation, methylation, and phosphorylation)

(267). DNA methyltransferases (DNMTs) and histone

deacetylases (HDACS) are two of the major enzymes

epigenetically modifying DNA and histones, respectively (254).

Han et al. measured the expression of miRNAs in cell lines that

were knockout for DNMT1 and DNMT2 and found that the

expression of about 10% of miRNAs are dependent on the DNA

methylation status (268). Methylation of CpG regions is also

important in the regulation of the expression of miRNAs, where

the participation of DNMT3A and DNMT3B has been seen, by

not allowing the expression of some regions of the genome (269).

Oxidative stress may lead to HDACs degradation, causing

changes in the miRNAs expression pattern (270, 271).

Oxidative stress caused by glucose deprivation in mouse cells

(B/CMBA.Ov) inhibited HDAC2 and induced the acetylation of

the promoter region of miR-466h-5p and increasing its

expression. These cells exhibited apoptotic features, because

miR-466h-5p reduced the expression of some target genes

with anti-apoptotic activity such as bcl212, dad1, smo, birc6

and stat5a (270, 272).

To summarize, there is an intricate interconnection between

miRNAs and ROS as together they form complex bidirectional

regulatory pathways that must be properly regulated to maintain

cell homeostasis. Alterations in these pathways can lead to the

progression of BC.
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Opportunities for therapy

Due to themultiple feedback loops between ROS, miRNAs, and

inflammation in the progression and tumor maintenance of BC

cells, both ROS and miRNAs have been proposed as targets for

therapy (273). First, several miRNAs posttranscriptionally regulate

genes associated with ROS production and inflammation. Thus, by

regulating certain miRNAs we could reduce ROS and inflammation

(274). Second, increased ROS levels could beneficial effects by

activating apoptosis in response to chemical drugs or ionized

radiation (275). In this line, ROS activates p53 and p38 MAPK

making cancer cells more susceptible to treatment (275). Therefore,

the use of drugs that promote the controlled formation of ROS

could increase the efficacy of conventional therapies such as

chemotherapy and radiotherapy (276).

A study of Temiz et al. reported that it is possible to decrease

the expression of Chaperonin Containing TCP1 Subunit 3

(CCT3, protein essential in the folding of proteins involved in

cell division, proliferation, and apoptosis) by transfecting

mimics of miR-24-3p, miR-128-3p, and miR-149-5p in the BC

cell line CRL-2329. The mimics promoted apoptosis by causing

an imbalance in the intracellular ROS levels (277). Recently,

Shang et al. transfected MDA-MB-231 cells with nanoparticles

composed of chlorin e6 (Ce6)-anti-miR-21, Ce6-anti-miR-155

and zeolitic imidazolate framework-90 (ZIF-90) and observed a

reduction of both miR-21 and miR-155, whereas the

photosensitizer Ce6 induced the formation of ROS (278).

The development of resistance to chemotherapy is quite

common in BC, and miRNAs are involved in this process. For

example, the overexpression of miR-302b reduces cell viability

and cell proliferation, making BC cells more sensitive to
frontiersin.org
FIGURE 2

Interplay between inflammation, ROS, and miRNAs in BC. To prevent the development/progression of BC, acute inflammation must be resolved.
ROS and miRNAs play a key role in this inflammatory mechanism. Instead, during tumor development and tumor maintenance, chronic
inflammation occurs. In this process, several inflammatory mediators are generated that deregulate ROS and miRNAs. Furthermore, the
production of ROS and miRNAs are interconnected each other and with the inflammatory mediators during all steps of the carcinogenesis
process in BC. Blue lines represent activation, red lines inhibition, green lines bidirectional regulation, and orange lines overexpression.
(oncomiRs: oncogenic miRNAs, tsmiRs: tumor suppressor miRNAs).

https://doi.org/10.3389/fonc.2022.980694
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Villarreal-Garcı́a et al. 10.3389/fonc.2022.980694
cisplatin. This miRNA regulates E2F transcription factor 1

(E2F1), a controller of the G1/S transition (279). Also, miR-

125b regulates the resistance to doxorubicin by decreasing the

mitochondrial membrane potential (MMP), downregulating the

HS-1-associated protein X-1 (HAX-1), and releasing ROS from

the mitochondria into the cytoplasm (280). On the other hand,

overexpression of miR-24 induces resistance to cisplatin by

regulating BCL2 like 11 (BimL), a pro-apoptotic factor in BC

cells (281). In addition, miR-24 binds to the mRNA of FIH1 and

reduce its expression. Reduction of FIH1 increased the

expression of HIF-1a, growth of breast cancer stem cells, and

promoted the chemotherapy resistance (281). MiR-668 is

overexpressed in BC cells that are resistant to radiotherapy.

This miRNA acts on IkBa, promoting the activation of NF-kB

(282). The expression of miR-223 in conjunction with TNF-

related apoptosis-inducing ligand (TRAIL) in the MDA-MB-231

cell line caused an increase in ROS levels due to its action on the

proto-oncogene HAX-1, making the cells more sensitive to

doxorubicin and cisplatin (283). Yadav et al. found that the

overexpression of miR-5096 downregulates the Solute Carrier

Family Seven Number 11 (SLC7A11), a protein related to

reducing ROS levels, in the MDA-MB-231 cell line, suggesting

that miR-5096 has tumor suppressive roles (284). Wu et al.

performed RNA and miRNAs sequencing studies with RNA

extracted of healthy and tumor tissues of the breast, and by using

bioinformatics found 219 miRNAs related to the ferroptosis, an

iron-dependent cell death mechanism, characterized by the

intracellular accumulation of ROS (285). All of these miRNAs

could be used as targets for BC therapy. Reduced levels of these

miRNAs will increase their targets genes, will reduce the ROS

production, and will reduce the inflammation associated with

BC progression.
Conclusion

The production and regulation of ROS and miRNAs are

interconnected each other, both being key regulators of

inflammatory processes. Deregulation of these pathways

promotes carcinogenesis in most cancer types, including BC.

When conditions for oxidative stress exist, ROS overproduction

can disturb the levels of various miRNAs. At the same time,

deregulated miRNAs will alter ROS production. Alterations in

cell homeostasis triggered by inflammatory processes facilitate

the progression of BC by inducing processes such as migration,

invasion, angiogenesis, drug resistance and/or inhibition of

apoptosis. Better knowledge of the mechanisms involved in the
Frontiers in Oncology 13
regulation of these molecules it will allow to explore new

approaches in the treatment of BC.
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