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Abstract

The rapid growth of high-throughput single-cell and single-nucleus RNA-sequencing (sc/snRNA-

seq) technologies has produced a wealth of data over the past few years. The size, volume, and 

distinctive characteristics of these data necessitate the development of new computational methods 

to accurately and efficiently quantify sc/snRNA-seq data into count matrices that constitute 

the input to downstream analyses. We introduce the alevin-fry framework for quantifying 

sc/snRNA-seq data. In addition to being faster and more memory frugal than other accurate 

quantification approaches, alevin-fry ameliorates the memory scalability and false-positive 
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expression issues that are exhibited by other lightweight tools. We demonstrate how alevin-fry 

can be effectively used to quantify sc/snRNA-seq data, and also how the spliced and unspliced 

molecule quantification required as input for RNA velocity analyses can be seamlessly extracted 

from the same preprocessed data used to generate regular gene expression count matrices.

1. Introduction

Both the number and scale of single-cell RNA-seq (scRNA-seq) experiments have been 

growing rapidly in recent years (1). The data generated by various scRNA-seq technologies 

have distinct characteristics preventing them from being processed by the otherwise mature 

and widely-used tools developed for bulk RNA-seq data (2–4). While Cell Ranger exists 

as a commercial solution for preprocessing data generated using popular 10x Genomics 

technologies, it is both computationally and memory intensive, and since version 3, has 

been developed as a closed-source product, limiting the transparency of the methods 

it implements. Further, it does not have built-in support for technologies beyond those 

developed by 10x Genomics. Therefore, to address the computational challenges that arise in 

the processing of high-throughput scRNA-seq data, numerous new approaches for efficient 

preprocessing have been developed.

Srivastava et al. (5) introduced alevin, which focused on improving the computational 

efficiency of tagged-end scRNA-seq quantification and also introduced a novel approach 

for resolving gene-multimapping UMIs. Likewise, the raindrop tool (6) pairs a custom 

lightweight mapping approach with a reduced index to count UMIs mapping to genes, 

providing a fast counting approach. Melsted et al. (7) introduced the kallisto|bustools 

pipeline for processing scRNA-seq data; the approach focuses on modularity and speed, 

using pseudoalignment (3) to the transcriptome to produce intermediate BUS files (8) that 

are subsequently manipulated using bustools commands.

Most recently, Kaminow et al. (9) introduced STARsolo, a preprocessing method built 

directly atop the STAR aligner upon which Cell Ranger also relies. STARsolo focuses on 

being a fast and easy-to-use solution for processing single-cell and single-nucleus RNA-seq 

(snRNA-seq) data that can be tuned to mimic Cell Ranger, while being much faster 

and more memory frugal. However, since it performs spliced alignment to the genome, 

STARsolo is more memory and time-intensive than pseudoalignment to the transcriptome 

(at least for scRNA-seq data).

In this work, we present alevin-fry, a configurable framework for the processing 

of tagged-end scRNA-seq and snRNA-seq data. Alevin-fry has been designed as the 

successor to alevin. It subsumes the core features of alevin, while also providing 

important new capabilities and considerably improving the performance profile, and we 

anticipate that new method development and feature additions will take place primarily 

within the alevin-fry codebase. Alevin-fry can preprocess scRNA-seq data more 

quickly than the next-fastest method, kallisto|bustools, while also vastly reducing 

the considerable number of spuriously expressed genes predicted under pseudoalignment-to-

transcriptome approaches (9). Simultaneously, alevin-fry exhibits similar accuracy to 
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STARsolo while processing data appreciably faster and requiring less memory. On snRNA-

seq data, where intronic sequences are often included for quantification, alevin-fry 

and STARsolo are both faster and use less memory than kallisto|bustools. In fact, 

alevin-fry can process snRNA-seq data with the same speed and memory efficiency 

with which it processes scRNA-seq data, substantially outperforming both STARsolo and 

kallisto|bustools. Alevin-fry is an accurate, computationally efficient, and easy-to-

use tool that presents a unified framework for preprocessing sc/snRNA-seq data for gene 

expression or RNA velocity analysis, making it an appealing choice for processing the 

diverse and growing array of experiments being performed.

2. Results

We demonstrate the performance and accuracy of alevin-fry in a variety of different 

use cases, and compare its computational resource usage as well as the quality of its 

results to those provided by the other recently-introduced tools STARsolo and kallisto|

bustools. We examine results on simulated data (Section 2.2), on a scRNA-seq dataset 

where the effect of alignment pipelines has previously been explored (Section 2.3), in the 

context of preparing count matrices for an RNA velocity analysis (Section 2.4), for the 

processing of a snRNA-seq dataset (Section 2.5), and finally we investigate the overall 

runtime and peak memory usage characteristics on this broad array of datasets (Section 2.6).

2.1. Overview of alevin-fry.

Alevin-fry is a configurable framework for the processing of (sc/snRNA-seq) data (see 

Fig. 1), supporting many tagged-end sc/snRNA-seq protocols. After preparing a reference 

with respect to which quantification should occur, it makes use of salmon (4) for barcode 

and UMI parsing and mapping of fragments to the reference index. Accepting as input 

this mapping information, alevin-fry generates a permit-list for cellular barcodes (CBs) 

that will be quantified in subsequent steps. Using a multi-threaded approach, it filters and 

collates the mapping records for permitted CBs to produce a representation optimized for 

quantification. During quantification, alevin-fry processes the mapping records assigned 

to the permitted CBs in parallel, and applies one of the available (user-specified) UMI 

resolution algorithms to estimate a count for each gene within each quantified cell. This 

result in a gene-by-cell count matrix which can be used for numerous downstream analyses.

2.2. Simulated data.

We first evaluated the different methods on data from a non-parametric simulation first 

introduced by Kaminow et al. (9). Details about the simulation are provided in Section 

4.7. Table 1 displays the results of different methods as evaluated under various metrics 

on the set intersection of the cells quantified by all methods, where STARsolo was run 

to perform Cell Ranger-like barcode filtering. Though Cell Ranger was not included 

in this comparison, we expect it to perform very similarly to STARsolo under default 

parameter settings, as reported by Kaminow et al. (9). The definitions of these metrics 

are given in Supplementary Section S8. While no method yields the best performance 

universally, there are some clear trends that can be observed. First, as noted by Kaminow 

et al. (9), the methods that perform mapping (either pseudoalignment or pseudoalignment 
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with structural constraints) directly to the spliced transcriptome alone performed worse than 

the other approaches — often considerably — under most metrics (the sole exception being 

the mean per-cell relative false-negative rate). Specifically, these approaches exhibited a 

markedly reduced cell-level Spearman correlation with the truth, as well as largely inflated 

relative false-positive expression (27–32%) and increased mean absolute relative deviations 

(MARD). Among the two evaluated approaches that map only to the spliced transcriptome, 

alevin-fry (in sketch mode) performed better than kallisto|bustools. On the other 

hand, the methods that map to expanded references, either the whole genome in the case 

of STARsolo or the splici reference (see Section 4.7 and Supplementary Section S2) in the 

case of alevin-fry, all generally performed well under the various metrics. STARsolo 

exhibited the highest cell-level Spearman correlation, as well as the smallest relative false-

positive and relative false-negative rate, while alevin-fry exhibited the lowest MARD 

(both when run in sketch mode and when using selective-alignment).

To explore the false-positive expression estimates in more detail, we plotted the frequency 

distribution of the number of cells in which each gene appears, where genes are sorted in 

descending order, independently per method (see Figure 2a). We observed that STARsolo 

and both variants of alevin-fry that make use of the splici index followed a very similar 

frequency distribution, and that this was distinct from the frequency distribution followed by 

kallisto|bustools and alevin-fry when mapping only to the spliced transcriptome. 

This suggests that mapping to the spliced transcriptome alone not only results in hundreds of 

spuriously expressed genes per cell, but many of these genes themselves are inferred to be 

expressed across hundreds of cells.

Though there were differences under all metrics reported by the methods mapping to 

the expanded reference, the magnitude of these differences was generally small, and, 

in particular, was much smaller than the difference between any of these methods and 

those methods that map only to the spliced transcriptome. Moreover, we observed that, 

holding the other variables fixed, selective-alignment yielded a small but consistent accuracy 

improvement over pseudoalignment with structural constraints. Presumably, this resulted 

largely from the ability of selective-alignment to discard fragments arising from outside 

of the spliced or unspliced transcriptome that would otherwise be spuriously assigned to 

some target. Nonetheless, we observed that pairing the expanded (splici) reference with 

an appropriate UMI resolution strategy that is aware of both spliced and unspliced gene 

variants allowed for the use of sketch mode (pseudoalignment with structural constraints) 

in a manner that corrected the high number of false-positive expression predictions that were 

otherwise observed when mapping only to the spliced transcriptome.

2.3. Analysis of a zebrafish pineal gland dataset.

To explore the performance of alevin-fry in an experimental sample where the alignment 

pipeline has previously been shown to have an impact on downstream analysis, we 

reanalyzed an existing Danio rerio (zebrafish) pineal gland dataset (10, 11).

Shainer and Stemmer (11) reported that for this data, kallisto| bustools’s 

quantifications enable the FindClusters function of Seurat (12) to recover two distinct 
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cone photoreceptor (cPhR) clusters — the cPhR expressing the red cone opsin (red+ cells) 

and the cPhR expressing parietopsin (PT+ cells). Conversely, when using the quantifications 

from Cell Ranger, the red+ and PT+ cPhR clusters are collapsed into a single cPhR 
cluster that expresses the main marker genes for both cPhR clusters. Given that the red+ 
and PT+ cells are two distinct types that represent mutually exclusive neuronal fates of 

photoreceptors in this tissue (13), one would likely view the separate clusters as an important 

biological signal.

To further investigate the differences demonstrated in Shainer and Stemmer (11) under 

a different set of preprocessing tools, we processed this data with STARsolo (with UMI 

resolution strategies described in Section 4.6), kallisto|bustools, and alevin-fry 

using USA-mode and the splici reference. To normalize across the cell filtering methods, we 

ran all tools to produce unfiltered quantifications, then filtered the resulting count matrices 

using the DropletUtils (14) R package. We also evaluated the clustering results of all 

methods on only the subset of cellular barcodes discovered by alevin-fry’s knee-finding 

method.

We first reproduced the analysis performed by Shainer and Stemmer (11), including the 

additional methods considered in this study. We estimated the high-quality cells using 

DropletUtils and created Seurat objects on the filtered count matrices (details in 

Section 4.6) to find cell clusters (Supplementary Figs. S5.1 and S5.2). As previously 

reported (11), we found that kallisto|bustools exhibited two distinct cPhR clusters. 

Likewise, we found that STARsolo, using the default 1MM UMI resolution strategy, did 

not separate these cPhR clusters (as expected, since the default STARsolo parameters are 

designed to mimic Cell Ranger (9)). Alevin-fry, which was not considered in the 

original manuscript, yielded quantifications that resulted in two separate cPhR clusters. 

In accordance with previous results (11), we found that under the kallisto|bustools 

quantifications, col14a1b, a collagen gene, was detected as the strongest differentially 

expressed gene (DEG) between the two cPhR clusters. This gene was not detected at any 

appreciable level among any of the cells by STARsolo or alevin-fry after the prescribed 

filtering was applied, despite the fact that the alevin-fry quantifications still resulted in 

two cPhR clusters. This led us to investigate the differences that might be causing the 

clustering of the STARsolo counts to yield a single cPhR cluster while both alevin-fry 

and kallisto|bustools counts yield two cPhR clusters for these cells.

We investigated the effect of changing the default UMI resolution strategy applied by 

STARsolo. When using both the 1MMDir and exact UMI resolution strategies, the 

STARsolo counts yielded two cPhR clusters. In this data, the UMI resolution strategy 

seemed to be an important factor for the signal separating these clusters to be detected by 

Seurat’s clustering algorithm. Notably, even when distinct clusters were not found, the 

t-SNE embedding computed from STARsolo counts placed subsets of the cPhRs in different 

positions in the embedding, and the subsets at these different positions expressed, disjointly, 

the marker genes for the red+ and PT+ cells; the clusters were just not separated by the 

clustering algorithm, as shown in Supplementary Figs. S5.2e and S5.2f.
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Next, we investigated the effect of filtering barcodes using the emptyDrops function of 

DropletUtils, rather than the barcode frequency inflection point (details in Section 4.6). 

When applying this filtering, none of the tested methods yielded two cPhR clusters at 

either of the tested resolution parameters (Supplementary Figs. S5.3 and S5.4). Again, while 

Seurat did not separate these red+ and PT+ cells, an inspection of the placement of the 

corresponding cells in the respective t-SNE embeddings, and the genes that they expressed, 

suggested that a signal distinguishing these cells was present in all tested methods.

Additionally, we evaluated the clustering results for the different quantification methods 

restricting the set of barcodes to those selected by alevin-fry’s knee-distance filtering 

procedure (details in Section 4.6). Under this filtering approach, all of the tested methods 

discovered two cPhR clusters at the 0.9 and 1.2 resolution parameters (Supplementary Figs. 

S5.5 and S5.6). This was true even for STARsolo’s quantification results when using the 

1MM UMI resolution strategy.

Taken together, these results suggest that the main factors in the separation of these clusters 

during processing are a combination of (1) the specific filtering parameters used to retain 

cell barcodes, (2) the UMI deduplication strategy and (3) specific thresholds selected for 

feature detection and filtering. These results are investigated further in Supplementary 

Section S6. Overall, we observed a general tendency for more strict filtering to elucidate 

a signal between these clusters that can be detected by Seurat’s clustering algorithm. The 

signal itself, in terms of the biologically-relevant opn1lw1 (15) and parietopsin (16) marker 

genes, was quite strong in the quantifications produced by all of the tested methods, if 

explicitly sought out. This suggests that the specific clustering algorithm used may affect the 

ability to automatically separate these distinct clusters of cells. We have not investigated this 

here, but it may be an interesting direction for further work.

Finally, we explored the strong DEG marker signal of the col14a1b gene found between 

the two cPhR clusters in the kallisto|bustools quantifications, which is absent from 

the filtered counts of STARsolo and alevin-fry. To the best of our knowledge, there is 

no immediate biological mechanism that would lead this gene to be a differential marker 

between red+ and PT+ cells. We performed a detailed, read-level analysis on the expression 

of this gene to explore the causes of this quantification difference. While this analysis was 

computationally-intensive, and therefore not feasible at scale across experiments or as a 

standard part of preprocessing pipelines, it helped elucidate the mechanism at work and why 

such differences might manifest.

We ran kallisto (3) in bulk mode to isolate the reads that were mapped to the constituent 

transcripts of col14a1b. We extracted these reads and attempted to align them to the 

corresponding transcripts. We found that they almost universally produced poor quality 

alignments, where the only long contiguous matches between the read and the transcript 

were stretches of low-complexity sequence close to the indexed k-mer length.

We ran BLAST (17) to query these reads against the NCBI nucleotide database to 

investigate their potential origins. For reads we examined, the top BLAST hits contained 

the pde6hb (phosphodiesterase 6H, cGMP-specific, cone, gamma, paralog b) gene, which 
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has biologically plausible expression in this dataset. However, this gene does not appear in 

the Ensembl 101 D. rerio annotation used in this section or the original analysis (11). Thus, 

in this case, both STARsolo and alevin-fry avoided seemingly misattributing the large 

number of reads actually arising from pde6hb to other genes within the annotation, while 

kallisto|bustools attributed many of these reads to col14a1b, for which there does not 

appear to be any evidence of expression.

The spurious expression of genes when quantifying with a pseudoalignment-to-

transcriptome based approach has been previously reported by Kaminow et al. (9), and 

has been reported to result in the estimated expression of biologically implausible genes 

(18). In this dataset, it resulted in the expression of a gene that is detected as the strongest 

marker between these clusters of interest under kallisto|bustools quantifications, and 

that is almost certainly a spurious result that derived from the use of pseudoalignment-to-

transcriptome with no filtering of mapping results. Generally, such occurrences may not be 

particularly rare, and caution should be applied when interpreting metrics like total gene 

detection, or median gene or UMI count, particularly among methods that employ different 

fragment mapping approaches, as larger values of such quantities may indicate reduced 

precision and not just increased sensitivity.

2.4. RNA Velocity in a mouse pancreas experiment.

The USA-mode of alevin-fry generates unspliced (U), spliced(S) and ambiguous (A) 

counts for each gene within each cell. Those counts can be used to estimate single-cell RNA 

velocity (19), which represents cellular transcriptional kinetics of cells that are sequenced in 

scRNA-seq. In a Mus musculus (mouse) pancreas dataset, the ratio of U:S:A is 0.125 : 

0.806 : 0.069. As RNA velocity estimators (19, 20) most often take only spliced and 

unspliced counts as the input, the ambiguous counts need either to be discarded or to 

be apportioned toward spliced and unspliced counts. We tested seven different strategies 

for handling these ambiguous counts and observed that assigning the ambiguous count 

differently led to distinct velocity and latent time estimates (Supplementary Section S7). 

Here, we discuss the result of assigning all ambiguous counts as spliced counts, since this 

coincides with the reasonable prior belief that most reads in this type of experiment should 

arise from spliced transcripts (see Section 4.8 for details). By doing so, the ratio of U:S is 

then 0.125 : 0.875. The streamlines in the velocity graph (Fig. 2b) portray the cycling 

nature of the Ductal cells and endocrine progenitors, the cellular development process of 

endocrine progenitors (indicated by the concentration of the transcription factor Ngn3), and 

the differentiation process of endocrine cells, which ends with Beta cells at the latest time 

point, as described by Bergen et al. (20).

Setting the corresponding RNA velocity-related flags for STARsolo (--soloFeatures 

Gene Velocyto) and for kallisto|bustools (--workflow lamanno), returns the 

counts required by the RNA velocity pipelines. The resulting U:S:A ratio of STARsolo 

counts was 0.122 : 0.834 : 0.044, and the resulting U:S ratio of kallisto|

bustools counts was 0.181 : 0.819 (kallisto|bustools does not report ambiguous 

counts). Although the ratios were similar across the results of all methods, the velocity 

and the latent time estimation were distinct. In the velocity graph produced by kallisto|
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bustools counts (Supplementary Fig. S7.5a), for example, the streamlines formed a back-

flow, and the arrows pointed from the differentiated cells (Epsilon, Beta, and Alpha cells) 

back towards the pre-endocrine cell cluster, corresponding to the results reported in Soneson 

et al. (21). The velocity graph derived from STARsolo counts, after assigning ambiguous 

counts to spliced (Supplementary Fig. S7.3b), avoided such back-flow, but did not reveal the 

cycling population of Ductal cells, and some streamlines over the Beta cell cluster pointed in 

the opposite direction, against other streamlines over the same cell population.

Additionally, while the latent time assignments computed by scVelo when using the 

alevin-fry (Supplementary Fig. S7.2b) and STARsolo (Supplementary Fig. S7.4c) counts 

matched the streamlines in their respective velocity graph and those provided in the scVelo 

tutorial, the latent time assignment derived from the kallisto|bustools counts were 

discordant with those of the other methods as well as with the directions of velocity arrows 

leading from the Ductal cell cluster and pre-endocrine cell cluster to the differentiated 

cells. Specifically, when utilizing kallisto|bustools counts, the latent time estimated by 

scVelo (Supplementary Fig. S7.5b) originated in the cluster of Beta cells, and concorded 

with the velocity arrows leaving this cluster, but ran opposite to the main flow from the 

Ductal, Ngn3 and Pre-endocrine clusters into the differentiated cell clusters.

In summary, comparing the velocity graphs generated by all three methods on the 

endocrine pancreas dataset, the velocity streamlines and latent time assignments derived 

from alevin-fry counts well delineated the cellular development process of pancreatic 

endocrinogenesis, and those derived from STARsolo recapitulated most of the expected 

biology, but differed in some details, while the results derived from the kallisto|

bustools counts only recapitulated parts of the expected biology.

2.5. Processing of a mouse placenta snRNA-seq dataset.

Like scRNA-seq, snRNA-seq technology is increasingly used to explore many types of 

biological questions, particularly in situations where full-cell scRNA-seq would be difficult 

or dissociation unlikely to succeed. In this section, we analyzed a snRNA-seq dataset from 

the mouse placenta (22). The details for processing the dataset can be found in Section 4.9 

and Supplementary Section S9.

Among the 10, 483 high-quality cells in the quantifications processed by alevin-fry, a 

total of 17 clusters were found with a clustering resolution parameter of 0.6. To assign cell 

types for each cluster, a preprocessed Seurat object (Supplementary Section S9) was used 

as the reference for cell-type classification using Seurat’s anchor transfer functionality. 

In this Seurat object, cells were classified as belonging to 5 major cell types: blood 

cells, decidual stroma, endothelial, fetal mesenchyme, and trophoblast. Those cell types 

correspond to the basic structure of the placenta, which consists of the maternal decidua, the 

junctional zone, and the labyrinth zone (22, 23).

By transferring the cell type annotations from the reference Seurat object to the alevin-

fry result, all five clusters were detected, and the t-SNE embedding of the alevin-

fry counts was similar to that of the reference object (Fig. 2c). This process was 
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also performed for the result of STARsolo (Supplementary Fig. S9.2b) and kallisto|

bustools (Supplementary Fig. S9.2c), and the five essential cell types were also detected. 

In conclusion, all three methods were able to retain the most significant biological signals 

captured in the snRNA-seq experiment, and subsequently produced similar cell type 

assignments and t-SNE embeddings.

Subsequently, the 7, 027 nuclei that were assigned as trophoblast in the alevin-fry 

result were selected to analyze refined trophoblast subclusters. As some cell types had only 

a few corresponding nuclei, we set the clustering resolution very high (as 2.5) to detect 

the detailed clustering assignments; 27 clusters were found. Referring to anchors from the 

reference result (22), which defined 13 cell types, 12 of them (all but SynTII precursor) were 

assigned to these 27 clusters. After applying the same procedure, the 6, 837 trophoblast 

nuclei assigned under the kallisto|bustools counts resulted in the discovery of 11 cell 

types (all but SynTII precursor and SynTI precursor) and the 6, 631 trophoblast nuclei 

assigned under the STARsolo counts resulted in 10 cell types being found, all but SynTI 
precursor, LaTP and JZP1. The reference labels not assigned across methods generally had 

low barcode counts in the reference dataset. Just as with the cluster analysis explored in 

Section 2.3, the “absence” of a cluster depends on the details of the filtering approach, 

intermediate processing, and clustering parameters, and so the lack of a distinct cluster 

annotated via reference transfer does not necessarily indicate that the relevant biological 

signal was not present in the counts produced by a method.

In summary, all tools demonstrated robust recapitulation of the major expected biological 

signals from this snRNA-seq experiment, with alevin-fry recovering slightly more 

known cell types when sub-clustering trophoblast nuclei.

2.6. Speed and memory usage.

Finally, we assessed the speed and memory requirements of the three tools tested in this 

manuscript across the datasets explored in the previous sections as well as using the 

PBMC10k dataset (24) with the latest 10x reference annotation. We exclude Cell Ranger 

from this analysis, as it has previously been demonstrated that STARsolo can produce 

results that are almost identical to those of Cell Ranger, but that it is much faster and 

requires less RAM (9) ( see Section 4.10).

Among the methods tested, alevin-fry, when using sketch mode, was the fastest 

(Fig. 2d). When processing scRNA-seq data and indexing only the spliced transcriptome, 

kallisto|bustools was the second-fastest tool. When both alevin-fry and 

kallisto|bustools are configured to use the spliced transcriptome alone as the 

mapping target, alevin-fry exhibited the lowest memory usage, followed by kallisto|

bustools. The speed of STARsolo matched that of kallisto|bustools as the number of 

threads was increased (often at around 16 to 20 threads depending on the specific details of 

the hardware configuration being used), but, by virtue of aligning against the entire genome, 

it consumed more memory when performing a standard (spliced) scRNA-seq analysis. As 

expected, when alevin-fry was configured to use the splici reference rather than just the 

spliced transcriptome, there was a moderate increase in the memory usage (e.g. to ∼ 10 GB 
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in dense mode and ∼ 6.5 GB in sparse mode for the most recent 10x Genomics annotation 

of the Homo sapiens (human) transcriptome). The runtime saw little effect when mapping 

against the splici reference compared to the spliced transcriptome, and there also appeared to 

be little consistent difference in the mapping speed of alevin-fry when using the sparse 

rather than the dense index. Thus, while mapping against the splici reference required more 

memory, it had little effect on the runtime and yielded markedly more accurate counts, as it 

avoided the pitfalls of pseudoalignment-to-transcriptome described by Kaminow et al. (9).

When processing snRNA-seq data, alevin-fry was the fastest and most memory-frugal 

method (Fig. 2d and 2e). Since STARsolo and alevin-fry indices already contained the 

relevant intronic sequence, their index size did not grow when processing snRNA-seq 

samples or preparing RNA velocity inputs. However, when processing snRNA-seq data, 

there was a notable performance inversion between STARsolo and kallisto|bustools. 

The size of the kallisto|bustools index grew much larger than those of the other tools, 

and the speed decreased substantially. Thus, depending upon the specific organism and 

annotation complexity, when processing snRNA-seq samples, STARsolo was the second-

fastest and second-most memory-frugal tool (even when using its dense suffix array index). 

On the dataset examined here, compared to alevin-fry (sparse, unfiltered), STARsolo 

took ∼ 2.6 times as long and used ∼ 6.3 times as much memory while kallisto|

bustools took ∼ 4.1 times as long and used ∼ 13.1 times as much memory.

In summary, alevin-fry was the fastest method, on average completing in under half 

the time required by the next fastest method. It also exhibited tightly-controlled peak 

memory requirements, with processing using the sparse index completing in less than 8 

GB of memory for all the different organisms and datasets processed in this paper. Among 

STARsolo and kallisto|bustools, which method was faster or which required less 

memory depended on the specific type of data being processed and the details of the 

reference being used.

3. Discussion

We have introduced alevin-fry as an accurate, computationally efficient, and lightweight 

framework for the processing of both single-cell and single-nucleus RNA-seq data. 

Compared to both STARsolo and kallisto|bustools, alevin-fry is consistently the 

fastest of these tools and can process datasets, on average, in less than half the time taken 

by the other tools. At the same time, when taking advantage of its sparse index, alevin-fry 

can process both single-cell and snRNA-seq data using less than 8 GB of RAM. The splici 
reference, that we propose to use for all types of quantifications covered here, allows the 

application of a fast mapping method (pseudoalignment (3) with structural constraints) while 

largely avoiding the estimation of spurious gene expression that is observed when such 

approaches are applied only to the spliced transcriptome (9). This allows alevin-fry to 

quantify expression with considerably increased precision compared to other lightweight 

tools, while using appreciably less memory than STARsolo.

Moreover, coupling the splici reference with a UMI resolution method that is aware of the 

splicing status of different indexed targets, we introduce USA-mode quantification. This 
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unifies scRNA-seq, snRNA-seq and RNA velocity preprocessing using alevin-fry. At 

the same time, alevin-fry is highly configurable, providing flexibility to users at many 

stages of the preprocessing pipeline. For example, at the expense of a higher runtime 

(though not substantially increased peak memory usage), even more precise quantifications 

can be obtained by performing selective-alignment (25) instead of pseudoalignment (3) 

with structural constraints. Similarly, multiple options are provided for barcode (i.e., cell) 

permit-list generation and UMI resolution. Alevin-fry can also be used for processing 

other types of experiments, such as spatial scRNA-seq data and feature barcoded scRNA-seq 

data, and we are maintaining a growing suite of tutorials at https://combine-lab.github.io/

alevin-fry-tutorials/.

As sc/snRNA-seq technologies continue to rapidly develop, improving methods used to 

analyze the resulting data will require ongoing benchmarking of methods to identify the 

strengths of existing techniques and areas for improvement in future approaches. For 

example, a recent study by You et al. (26) evaluated many different pipelines for the 

preprocessing of UMI-based scRNA-seq data. Concordant with the current paper, You et 

al. (26) found alevin-fry’s performance to be excellent, both computationally and in 

terms of the accuracy and robustness of the resulting counts. However, they report that 

alevin-fry — at least when using pseudoalignment with structural constraints — and 

kallisto|bustools demonstrate a left-skew in the count distribution of pseudogenes 

and therefore may underestimate the abundance of transcripts labeled with this biotype. 

Studies such as these will help guide improvements to existing tools and the development of 

improved methods. Similarly, broad evaluations should be carried out for the quantification 

of snRNA-seq data and the evaluation of spliced and unspliced count estimates for purposes 

such as RNA velocity inference. Likewise, in addition to evaluating tools across various 

experimental samples, it will be useful for future studies to incorporate simulated data into 

their analysis (9). However, the current paucity of sequence-level simulators for UMI and 

droplet-based technologies (27) makes the extensive use of simulated data challenging.

While alevin-fry provides an efficient and flexible framework for processing many types 

of sc/snRNA-seq data, some current implementation limitations, and benchmarking studies 

such as that performed by You et al. (26), motivate future work. For example, the existing 

mapping and UMI resolution algorithms are likely not well-suited to long-read scRNA-seq 

data, though we would like to support such protocols in the future. Additionally, it will be 

useful to investigate what other reference sequences can be incorporated into the index, and 

what modifications to the mapping and UMI-assignment algorithms can be made to further 

improve quantification accuracy and robustness, specifically among challenging transcript 

biotypes such as pseudogenes. Finally, we believe there is likely room to improve UMI 

resolution methodologies further, to infer more accurate cell-level molecule counts by, for 

example, modeling biases in the data, accounting for the likelihood with which different 

complex UMI and gene-mapping scenarios may arise, and by sharing information across 

similar cells within a sample or even across distinct data modalities.

We believe that alevin-fry strikes a remarkable balance between the often-competing 

criteria of accuracy, performance, and flexibility, and that these characteristics make it 
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an appealing choice for preprocessing the rapidly-growing collection of high-throughput 

sc/snRNA-seq data.

4. Methods

Alevin-fry is a configurable framework for the processing of single-cell and single-

nucleus RNA-sequencing sc/snRNA-seq data. It makes use of salmon (1) for basic barcode 

and UMI parsing and the mapping of the reads to the constructed reference index. The 

output of salmon, when configured to produce output for alevin-fry, is a RAD (Reduced 

Alignment Data) format file, which is a chunk-based, binary file optimized for machine 

parsing, that encodes the relevant information necessary for subsequent (post-mapping) 

processing of the data (Supplementary Section S1). Alevin-fry consumes the salmon 

output directory — containing the RAD file and other relevant meta-information about 

the sample — and processes the data in a number of steps. The main processing steps 

correspond to permit-list generation, RAD file collation, and finally, quantification of the 

collated RAD file. We describe the options provided by alevin-fry and further details of 

these specific steps below.

4.1. Constructing a reference index.

The alevin-fry workflow quantifies scRNA-seq data based on a reference index created 

by salmon. Here, discuss two types of reference sequences that can be used to construct 

such an index, and describe the relative advantages and disadvantages of these options. 

Regardless of the reference over which one decides to build an index, salmon makes use of 

the pufferfish (2) index, and a dense or sparse index variant can be constructed.

First, at least for the processing of scRNA-seq (not snRNA-seq) data, one might consider 

building a reference index over the spliced transcriptome. The main benefits of this approach 

are that it is simple, and the resulting index tends to be very small. For example, when 

using the spliced transcriptome extracted from the latest 10x Genomics version of GRCh38, 

the (dense) reference index is only ∼ 700 MB, and the entire mapping and quantification 

procedure can be performed in ∼ 3 GB of RAM.

However, while the frugal resource use of an index restricted to only the spliced 

transcriptome is appealing, it comes with potential drawbacks. The most significant 

drawback, perhaps, is that it results in substantial false-positive rates (i.e., spuriously 

detected genes) (3). One likely mechanism is that in typical scRNA-seq experiments, some 

fraction of reads (in cases, up to ∼ 25%) derive from intronic or intergenic sequences rather 

than from exons (3). When these true sequences of origin are absent from the index, reads 

deriving from them may sometimes be spuriously assigned to a spliced transcript that shares 

some local sequence similarity with the true locus of origin. The degree to which such 

spurious assignment occurs also depends on the specifics of the algorithm used for mapping; 

for example, the problem is most pronounced when using pseudoalignment (4), followed by 

pseudoalignment with structural constraints, and is somewhat (but not fully) mitigated when 

using selective-alignment (3).
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One alternative is to map to the genome directly, as is done by Cell Ranger and 

STARsolo. This allows consideration of all genomic loci when determining the appropriate 

mapping location for a read, and results in the elimination of the false positives that are 

induced by forcing reads to map only against the annotated transcriptome. While building 

such an index is quite comprehensive, the associated costs are that the index is inevitably 

larger, and the common alignment approaches for scRNA-seq data (both Cell Ranger 

and STARsolo are based on STAR (5) as their underlying aligner) require considerably 

more RAM during alignment. Further, these approaches require solving the spliced (rather 

than contiguous) alignment problem; while good solutions (like STAR and HISAT2 (6)) 

exist, this problem is more computationally intensive and lightweight approaches like quasi-

mapping (7) and pseudoalignment (4) have not yet been adapted to the problem of spliced 

mapping.

We propose here an alternative middle ground, which is to align against a reference 

that indexes both the spliced transcriptome and the set of (collapsed) intron sequences 

that are likely to generate reads in a typical sc/snRNA-seq experiment. We employ a 

reference preparation algorithm to produce what we refer to as a splici (spliced + intronic) 

reference, representing a slight modification of references previously used for RNA velocity 

preprocessing (8, 9). Further details explaining how this reference is constructed are 

provided in Supplementary Section S2, and we have developed an R package, named roe, 

to automate this construction process. Unlike the spliced transcriptome alone, this index 

contains the intronic sequences that are likely to give rise to a non-trivial fraction of reads 

in a scRNA-seq experiment, and including these sequences allows one to properly resolve 

read origin and avoid the spurious mapping associated with mapping against the spliced 

transcriptome alone, similar to what is accomplished by decoy sequences in bulk RNA-seq 

quantification (10) (though different in execution, as the quantification method itself, and not 

just the mapping algorithm, is aware of these sequences). On the other hand, by indexing 

the spliced transcriptome and introns (with flanking sequence) directly, this reference 

does not require spliced alignment, and is therefore amenable to both fast contiguous 

alignment algorithms like selective-alignment (10) as well as lightweight approaches like 

pseudoalignment (4). Throughout this manuscript, we append the mitochondrial genes to the 

splici reference (see Supplementary Table 1). We also set the flank length as the read length 

minus 5, though the quantification results appear very robust to the specific flank length 

chosen (Supplementary Section S3). While the size of this reference is considerably larger 

than the spliced transcriptome alone, it is still smaller than the genome. For the index used 

by alevin-fry, a dense index for a recent human reference constructed in such a manner 

requires ∼ 10 GB of RAM for mapping, while the sparse index requires only ∼ 6.5 GB. We 

demonstrate below how mapping against this index addresses the shortcomings of mapping 

against just the spliced transcriptome, while retaining modest memory requirements.

4.2. Fragment mapping.

As with constructing a reference against which to map reads, multiple choices can be 

made as to exactly how fragments should be mapped to the reference. In alevin-fry 

there are two main options available, selective-alignment (10), and pseudoalignment (4) 

with structural constraints. The mapping of reads is performed using the salmon alevin 
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command with the --rad or --sketch flags, which instructs the program to produce 

a RAD file and other auxiliary files for subsequent processing with alevin-fry, rather 

than to quantify the data directly with alevin (11). Broadly, among the two mapping 

approaches, selective-alignment is more accurate but more computationally intensive. 

Fragments are mapped against the index using maximal exact matches between reads 

and indexed unitigs (uniMEMs) as seeds, which are then chained to determine a putative 

mapping score. Low-scoring putative mappings are discarded, and high-scoring mappings 

are validated using alignment scoring via dynamic programming, based on the banded, 

parallel implementation of minimap2 (12). All best-scoring alignments that are above a user-

defined threshold are reported as valid alignments for the fragment. The explicit alignment 

scoring avoids the reporting of mappings where the locus having the best set of seed matches 

is not the locus having the best alignment. Likewise the discarding of alignments below the 

user-defined threshold ensures that fragments arising from some other origin that have no 

high-quality alignment in the indexed reference will not be reported and processed as valid 

mappings.

On the other hand, pseudoalignment with structural constraints, exposed via the --sketch 

flag, is very fast, but it does not validate mapping locations via alignment scoring. This 

approach first uses a custom implementation of pseudoalignment (4) to determine which 

k-mers from the fragment match different targets. Subsequently, the implied mappings 

are subjected to filtering by structural constraints requiring that the matches supporting 

the pseudoalignment are in a consistent orientation, are co-linear with respect to the read 

and the reference, and that the stretch (maximum distance between any pair of k-mers 

comprising the mapping) is not too large. While using a splici reference largely eliminates 

the problem of false-positive expression that has previously been reported (3) when using 

pseudoalignment-to-transcriptome approaches, enabling accurate quantification using this 

rapid approach, there are still some false-positive mappings that can only be properly 

eliminated with alignment scoring (i.e., using selective-alignment).

4.3. Permit-list generation.

After the reads have been mapped to the target index, either using selective-alignment or 

pseudoalignment with structural constraints, the resulting RAD file is inspected to determine 

the set of cellular barcodes (CBs) that should be used for quantification. In scRNA-seq 

experiments, cell capture is imperfect, and thus some fraction of barcodes may correspond to 

droplets that failed to properly capture a cell (13). In this case, the fragments associated with 

these barcodes usually exhibit many fewer distinct Unique Molecular Identifiers (UMIs) 

mapped to target sequences in the index than barcodes corresponding to properly captured 

cells. Likewise, errors that occur during PCR amplification and sequencing can “corrupt” 

the sequence of a cellular barcode, so that the barcode observed in the sequenced fragment 

is different from that which was originally attached to the underlying molecule prior to 

sequencing.

Alevin-fry’s generate-permit-list command works to determine the set of CBs 

that will eventually be quantified, as well as to perform correction of likely-corrupted 

barcodes to the “true” barcode from which they derived. It exposes a number of different 
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strategies to determine the set of CBs that should be quantified. The currently supported 

strategies are --force-cells, --expect-cells, --knee-distance, --unfiltered-

pl and --valid-bc. A description of all available methods is provided in the alevin-fry 

documentation (https://alevin-fry.readthedocs.io/en/latest/generate_permit_list.html). Here 

we briefly describe the --knee-distance and --unfiltered-pl strategies, since they are 

likely to be the most commonly employed by users of alevin-fry. This step is also used 

to apply orientation filtering to the mapped records. So, for example, in protocols where 

all fragments are expected to map to the reference in the forward orientation, fragments 

(and their associated barcodes) are only considered valid if at least one forward strand 

mapping exists. Finally, while alevin-fry does keep track of the number of unmapped 

reads corresponding to each barcode for quality control reporting purposes, only the mapped 

reads displaying each barcode are considered for the purposes of generating the permit-list.

Knee distance permit-list generation.—The knee distance filtering implemented in 

alevin-fry is a modified implementation of the strategy that is provided in the UMI-

tools (14) software. It is an iterative knee-finding strategy that attempts to automatically 

determine the number of barcodes corresponding to high-quality cells by examining the 

frequency histogram of observed barcodes. Briefly, this method first counts the number of 

reads associated with each barcode, and then sorts the barcodes in descending order by 

their associated read count. It then constructs the cumulative distribution function (CDF) 

from this sorted list of frequencies. Finally, it applies an iterative algorithm to attempt 

to determine the optimal number of barcodes to include by looking for a “knee” in the 

CDF graph. The algorithm considers each barcode in the CDF where its x-coordinate is 

this barcode’s rank divided by the total number of barcodes (i.e., its normalized rank) 

and the y-coordinate is the (normalized) cumulative frequency achieved at this barcode. 

It then computes the distance of this barcode from the baseline (defined by the start and 

end of the CDF). The initial knee is predicted as the point that has the maximum distance 

from the baseline. The algorithm is iterative, because experiments with many low-quality 

barcodes may predict too many valid barcodes using this method. Thus, the algorithm is run 

repeatedly, each time considering a prefix of the CDF from index 0 through the previous 

knee’s index times 5. Once two subsequent iterations of the algorithm return the same knee 

point, the algorithm terminates. Once the set of “permitted” barcodes has been determined 

by this method, the reads that have barcodes not within this set are corrected against it by 

checking if they are within one edit of some barcode in the list; if so, they are attributed to 

that barcode.

Correcting to an unfiltered permit-list.—Some technologies, like 10x Chromium, 

provide a set of specific known and experiment-independent barcodes that will be a superset 

of the barcodes that should be observed in any given sample. This list of “possible” barcodes 

can be treated as a set of barcodes against which the observed barcodes can be corrected. 

The --unfiltered-pl option accepts as an argument a list of possible barcodes for the 

sample. When using this argument, the user may also pass the --min-reads argument 

to determine the minimum frequency with which a barcode must be seen in order to be 

retained. The algorithm used in this mode passes over the input records (mapped reads) 

and counts how many times each of the barcodes in the unfiltered permit-list occurs 
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exactly. Any barcode occurring at least min-reads times will be considered as a present 

cell. Subsequently, all barcodes that did not match a present cell will be searched (at an edit 

distance of up to 1) against the barcodes determined to correspond to present cells. If an 

initially non-matching barcode has a unique neighbor among the barcodes for present cells, 

it will be corrected to that barcode, but if it has no 1-edit neighbor, or if it has two or more 

1-edit neighbors among that list (i.e., its correction would be ambiguous), then the record 

is discarded. Of course, unfiltered count matrices constructed in this manner will contain 

many barcodes not corresponding to properly captured cells, and should be subjected to 

subsequent filtering prior to analysis.

In all cases, the result of the generate-permit-list step of alevin-fry is the creation of 

a correction map that specifies which barcodes are to be quantified, and how barcodes are to 

be corrected against this quantified set, as well as a census of the number of observed and 

valid fragments corresponding to each corrected barcode. The census information is used 

in the subsequent collation step to enable an efficient partitioning strategy for collating the 

records by corrected barcodes.

4.4. Collation of RAD files.

Once the permit-list and correction map have been generated, the initial RAD file must 

be collated by the corrected cellular barcodes; this is done using alevin-fry’s collate 

command. In this phase, all fragments to be quantified are grouped together such that those 

sharing the same barcodes appear contiguously in the file. This step of processing serves 

an analogous purpose as the sorting of BUS (15) files as done in kallisto|bustools 

(9). However, there are a few technical differences that relate to the way in which 

alevin-fry processes the collated RAD files and to the way in which RAD files are 

structured differently from BUS files.

First, the collate command, unlike sorting, does not induce a total order on the resulting 

records. Specifically, while records that pass filtering and have the same corrected barcode 

are guaranteed to occur contiguously within the resulting collated file, there is no specific 

or meaningful order between the segments of the file corresponding to individual corrected 

barcodes. Further, within the set of records corresponding to a corrected barcode, there is 

no ordering or collation among the UMIs. This is due, in part, to the fact that all records 

sharing the same corrected barcode will be present in memory at the same time during 

the quantification phase, as well as the fact that certain UMI resolution strategies apply 

edit-distance collapsing for which UMI collation is insufficient. This means that, in the 

general case, collation can potentially be implemented in a more computationally efficient 

manner than sorting, though in practice, multi-threaded sorting of fixed-sized records is 

very efficient. Eliminating the requirement of having sorted records also means that the 

collated records corresponding to each barcode can appear at whichever location in the 

collated output file is desired. This admits extra flexibility in how collation is performed. 

Specifically, corrected barcodes are assigned to roughly appear in order of descending 

frequency in the output collated RAD file. This means that the largest (and potentially 

slowest to process) cells will appear near the beginning of the collated RAD file. Since 

quantification itself is multi-threaded, this allows more efficient pipelining of quantification 
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among multiple threads. Since threading granularity happens at the level of individual cells 

(i.e., the records for the same cell will never be quantified by multiple threads at the same 

time), placing the largest cells early in the quantification phase means that one is unlikely to 

encounter a situation where large and complex cells are encountered late in processing and 

many threads remain work starved while processing for the large cell completes.

The collation strategy implemented in alevin-fry is a two-pass approach. First, each 

corrected barcode is assigned a bucket index; the input RAD file is parsed (in parallel by 

many worker threads), and each record is written to the bucket it is assigned based on 

its corrected barcode. This ensures that all records sharing the same corrected barcode are 

routed to the same bucket. Further, the bucket sizes are limited by a user-defined maximum 

record count to ensure that individual buckets can be fully loaded into memory while 

retaining an overall small memory profile. In a second pass, each bucket is read into memory 

and its records are locally collated. This is done by constructing an in-memory hash map 

mapping each corrected barcode in this bucket to the vector of records sharing this barcode. 

Subsequently, each locally collated chunk is appended to the output collated RAD file (and 

optionally compressed if the user passes the --compress flag). In the resulting RAD file, 

the number of chunks is equal to the number of cells to be quantified (i.e., the number 

of corrected barcodes), and all of the records sharing the same corrected barcode appear 

consecutively in the file.

4.5. Quantification.

With the collated RAD file prepared, alevin-fry is able to quantify the count for each 

gene within each cell separately and in parallel via the quant command. As with the 

mapping and permit-list generation phase, a number of different UMI resolution strategies 

are implemented in alevin-fry. Here, we briefly describe those strategies — cr-like 

and cr-like-em — that currently support the unspliced, spliced and ambiguous (USA) 

quantification mode that is used throughout this manuscript. All results presented in this 

manuscript were computed using the cr-like UMI resolution strategy. As opposed to 

splice unaware quantification (which alevin-fry also supports), the USA quantification 

mode produces a count for each splicing status of each gene within each quantified cell. 

Additional resolution strategies are described in Supplementary Section S4.

The quantification for each cell is carried out independently and in parallel, so we explain 

the procedure, without loss of generality, for the records corresponding to an individual cell. 

First, read records are collated (in memory) by their corresponding UMI. For each UMI, the 

set of transcripts to which the read maps are projected onto the corresponding set of genes. 

This process is aided by the use of a three-element transcript to gene map. Each entry in 

the map contains the name of an individual target sequence from the splici reference, the 

corresponding gene to which this target belongs, and a splicing status, recorded as ‘S’ if 

the target derives from a spliced transcript and ‘U’ if it derives from intronic (unspliced) 

sequence. Each gene is assigned a pair of globally unique identifiers, one corresponding 

to all “spliced” variants of the gene and the other to the “unspliced” (intronic) sequences 

for the gene. The gene-level identifiers corresponding to a given record are sorted and 

deduplicated. All records corresponding to the current UMI are iterated in the same fashion, 
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and a count is kept of how many times the UMI is associated with a read that maps to each 

gene identifier (with “spliced” and “unspliced” identifiers treated as distinct).

After all occurrences of the UMI are observed, the UMI is assigned to the gene with the 

largest frequency. If there is no unique gene with the highest frequency of occurrence, 

then the UMI is discarded if the cr-like resolution strategy is being used. On the other 

hand, if the cr-like-em resolution strategy is being used, a gene-level equivalence class is 

formed from all gene identifiers having the highest frequency of mapping for this UMI. Each 

identifier in the label of the equivalence class comprises a gene and a splicing status. The 

status is ‘U’ if only the unspliced identifier of this gene is among the most frequent mapping 

targets for this UMI, it is ‘S’ if only the spliced identifier is among the most frequent, 

and if both the unspliced and spliced identifiers of this gene are among the most frequent 

mapping targets for this UMI, then the status is ‘A’ (ambiguous). The UMI is attributed to 

this equivalence class, and an expectation maximization (EM) algorithm, like that employed 

in alevin (11), is subsequently used to probabilistically allocate counts to specific gene and 

splicing status pairs in the resulting count vector for this cell.

Under both of these resolution strategies, the resulting count matrix contains a count not just 

for each gene within each cell, but the count is further distributed over each gene’s splicing 

status (confidently assigned to spliced molecules from the gene, confidently assigned to 

unspliced molecules from the gene, or ambiguous in splicing status). Depending upon 

the type of data analysis being performed, this count matrix can then be used to directly 

extract the counts of interest. For example, if performing a “standard” single-cell gene 

expression analysis, one can extract the spliced and ambiguous counts for each gene in 

each cell and sum them together to produce the equivalent of a standard count matrix. If 

performing quantification on a single-nucleus RNA-seq sample, the counts from all splicing 

categories can be summed to produce the total UMI count attributed to each gene. For 

a RNA velocity analysis, the spliced and unspliced counts can be separated into distinct 

matrices and provided to a downstream RNA velocity computation tool (16, 17).

These resolution strategies thus provide a convenient solution for quantification of gene 

expression in a variety of different single-cell settings. The same processing approach can be 

used for the quantification of gene expression in single-cell experiments, or in single-nucleus 

experiments, or even to provide the input for RNA velocity analysis. At the same time, 

explicitly accounting for the unexpected origin of reads (e.g., from intronic sequence in 

single-cell experiments) can also greatly mitigate spurious detection of genes exhibited 

by methods that restrict mapping or alignment to only the spliced transcriptome. This is 

possible as these resolution strategies implemented by alevin-fry are designed to infer 

both the gene and splicing status of the underlying fragments, but leave the determination of 

how to combine or aggregate UMIs arising from different splicing statuses to downstream 

analysis. We provide the function loadFry in the Fishpond (18) R package for flexibly 

processing alevin-fry’s result.

Finally, a number of additional and even more sophisticated resolution methods (namely 

parsimony and parsimony-em) are present in alevin-fry but not yet exposed under 

USA-mode. These implement variants on the original UMI resolution algorithm introduced 
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by Srivastava et al. (11) that applies a parsimony condition to approximately determine the 

minimal set of transcripts that could give rise to the observed set of UMIs. These alternative 

methods are further described in Supplementary Section S4. We are currently working on 

adapting these algorithms so that they can also be meaningfully applied in alevin-fry’s 

USA mode.

4.6. Additional preprocessing and filtering details for a zebrafish pineal gland 
experiment.

Different UMI resolution modes of STARsolo.—In Section 2.3 we explored the effect 

of making use of different UMI resolution modes that are exposed by STARsolo. Here, 

we briefly enumerate the modes we evaluated, and summarize their behavior. The default 

UMI resolution approach of STARsolo is 1MM. This applies an iterative collapse of barcodes 

mapping to the same gene and separated by a single mismatch; this approach is designed to 

replicate the behavior of Cell Ranger. The second UMI resolution strategy we evaluated 

is labeled by STARsolo as 1MMDir. This strategy is based on the directional algorithm 

introduced by Smith et al. (14). It builds a directed graph that takes into account both the 

mismatch distance between barcodes mapping to the same gene, as well as the relative 

frequency of these barcodes, and then applies a greedy algorithm to resolve the vertices 

in the graph into a set of inferred, distinct, UMIs in the original sample prior to PCR 

amplification and sequencing. Finally, we evaluated the exact UMI deduplication strategy, 

which only deduplicates UMIs that map to the same gene and that have identical UMI 

sequences. While the first of these strategies is designed to replicate the behavior of Cell 

Ranger, the latter two are not available in Cell Ranger, and therefore are not considered 

by Shainer and Stemmer (19).

Cell and feature filtering to reproduce Shainer and Stemmer (19).—In order 

to estimate the high-confidence cells from empty droplets, the barcodeRank function of 

DropletUtils (13) was applied on the count matrices with a lower bound set to 500 to 

determine the inflection point on the UMI count of barcodes. Barcodes that have a UMI 

count below the inflection point were regarded as empty droplets, and were filtered from the 

count matrices. The filtered count matrices were then used to create a Seurat object using 

the CreateSeuratObject function with thresholds min.cells = 3 and min.feature 

= 200. These thresholds were used throughout the subsequent analyses for the zebrafish 

dataset.

Cell and feature filtering using emptyDrops.—The emptyDrops function in the 

DropletUtils (13) R package implements a procedure explicitly designed to model the 

ambient background distribution of expression and select, with some user-selected false 

discovery rate (FDR), the barcodes corresponding to high-quality cells. To select cells under 

this filtering scheme, we filtered the barcodes using emptyDrops with the default parameter 

setting. Using these cells, we created a Seurat object using the CreateSeuratObject 

with min.cells = 3 and min.feature = 200. Given this Seurat object, the 

subsequent filtering, clustering and marker detection procedures applied were the same as 

above, replicating the procedure of the Shainer and Stemmer (19) analysis.

He et al. Page 19

Nat Methods. Author manuscript; available in PMC 2022 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cell and feature filtering using alevin-fry knee filtering.—To apply cell barcode 

filtering using the knee-distance approach of alevin-fry, we first quantified the data with 

alevin-fry, using the knee-distance method to determine the permit-list. Subsequently, 

the unfiltered count matrices for each method were subset to include only the barcodes 

appearing in this permit-list. This filtering strategy is more conservative than those examined 

above (i.e., fewer cells passed filtering). Using these cells, we created a Seurat object using 

the CreateSeuratObject with min.cells = 3 and min.feature = 200. Given this 

Seurat object, the subsequent filtering, clustering and marker detection procedures applied 

were the same as above, replicating the procedure of the Shainer and Stemmer (19) analysis.

4.7. Simulated data.

To compare the performance of different tools in terms of quantification accuracy, we 

selected a non-parametric simulation, which was introduced by Kaminow et al. (3). This 

simulation is seeded with the PBMC5k experiment (20). We used the simulated data in 

which reads derive from across the genome at realistic rates (i.e., from introns, spliced 

transcripts, and intergenic sequences), but without the simulated gene-level multimapping. 

While this simulation does not tie to any parametric model, and therefore is likely to 

produce realistic mapping statistics, it is important to recall the caveat that simulated data 

often fail to recapitulate at least some important aspects of experimental data (10). This 

suggests that the performance on simulated data likely represents, in some sense, the upper 

bound of accuracy achievable by these methods on experimental data, and the degradation 

in performance of different methods may vary as the complexity of the data increases. 

Nonetheless, analyzing the accuracy of these tools under various metrics on this simulated 

data provides an important perspective on some potential strengths and shortcomings of 

different methods in a situation where the ground truth counts are known.

4.8. RNA velocity.

With the development of single-cell RNA-seq technologies, RNA velocity analysis has 

become increasingly popular. Velocyto (16) defines single-cell RNA velocity as the time 

derivative of the gene expression state, which is determined by the ratio of the spliced and 

unspliced molecule counts of each individual gene. By modeling transcriptional dynamics, 

RNA velocity can reveal cellular differentiation dynamics and developmental lineages 

present in a given single-cell experiment. scVelo (17) further enhances RNA velocity 

computation by eliminating the steady-state assumption made by Velocyto, and applying 

an expectation maximization method to solve the differentiation dynamics according to a 

series of master equations. The accurate and robust estimation of RNA velocity remains an 

active and exciting area of research.

To explore preprocessing for RNA velocity analysis, we make use of a mouse pancreatic 

endocrinogenesis dataset introduced by Bastidas-Ponce et al. (21) and used as an example 

dataset in the scVelo python package. This experiment is obtained with the 10x Genomics 

Chromium Single Cell 3’ Reagent Kit v2 and the read length is 151 nt. To utilize the cell 

state annotation information provided in scVelo example dataset, only the 3, 696 cells 

that are included in the scVelo example dataset are included in our analysis. The quantified 
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cells are all from stage E15.5. The processing was performed on raw FASTQ files retrieved 

from the Gene Expression Omnibus (GEO), accession number GSM3852755.

Following the preprocessing steps adopted by scVelo, we downloaded the pre-built mouse 

mm10 v2.1.0 reference from 10x Genomics. To obtain the appropriate input for RNA 

velocity analysis with alevin-fry, we made use of USA-mode quantification, kallisto|

bustools was run via the kb_python tool with the --workflow lamanno option, which 

results in the generation of two separate output matrices corresponding to the spliced and 

the unspliced counts, and STARsolo was run with the --soloFeatures Gene Velocyto 

option.

Depending on the RNA velocity method being used, ambiguous counts (which are output 

separately by STARsolo and alevin-fry) should either be provided explicitly, or allocated 

among the spliced and unspliced counts (or discarded entirely). We tested seven different 

strategies to process the ambiguous counts, which are for each gene within each individual 

cell, (i) discarding the ambiguous count, (ii) regarding the ambiguous count as spliced, (iii) 

regarding the ambiguous count as unspliced, (iv) evenly distributing the ambiguous count to 

spliced and unspliced, (v) dividing the ambiguous count by the ratio of confidently spliced 

count to the confidently unspliced count, (vi) dividing the ambiguous count by the ratio of 

not-unspliced (spliced + ambiguous) to unspliced, and (vii) dividing the ambiguous counts 

by the ratio of spliced to not-spliced(unspliced + ambiguous). We discuss the results of 

approach (ii) in Section 2.4, and provide all other results in Supplementary Section S7.

ScVelo version 0.2.3 is used to analyze RNA velocity under a python 3.8.5 environment. 

Cells whose cell barcode is in the scVelo example dataset are kept for further analysis. 

The pre-defined cell type and UMAP representation of each cell are obtained from the 

scVelo example dataset. The count matrices generated by all three methods are processed 

as described in Bergen et al. (17). Specifically, the count matrices are median normalized, 

only the top 2, 000 variable genes are kept, the first- and second-order moments of the 

normalized spliced and unspliced counts of each gene are calculated, and the reaction rates 

and latent variables are recovered. RNA velocity is estimated using the dynamical mode, 

and the directional flow of the estimated velocity is visualized in the predefined UMAP (22) 

embedding.

4.9. Clustering analysis of snRNA-seq data.

To evaluate the process of quantifying an snRNA-seq dataset using these preprocessing 

tools, we performed a cell type clustering analysis for the E14.5 samples from a snRNA-

seq mouse placenta dataset (23) using Seurat 4.0.1 (24) under an R 4.0.5 environment. 

The nuclei were captured with the Chromium Single Cell 3’ Reagent V3 Kit from 10x 

Genomics, and the read length is 150nt. These raw reads were accessed from GEO under 

accession code GSM4609872. When analyzing single-nucleus RNA-seq data, we sum the 

unspliced (U), spliced (S), and ambiguous (A) counts returned by alevin-fry to get the 

overall count of each gene within each cell. Likewise, kallisto|bustools is run via the 

kb_python tool with the --workflow nucleus option specified, and STARsolo is run 

with the --soloFeatures GeneFull option.
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To compare the results from different quantification tools in the snRNA-seq setting under 

a consistent and robust barcode filtering approach, we implemented the emptyDrops_CR 

functionality of STARsolo in R. The emptyDrops_CR filtering method is, itself, reverse 

engineered from the hybrid filtering strategy of Cell Ranger, which combines filtering 

based on various thresholds with the statistical testing method introduced by Lun et 

al. (13). This functionality is now included in the DropletUtils R package as the 

emptyDropsCellRanger function. This method can help to avoid the large number of 

relatively low-quality barcodes that we observed to pass the filtering of emptyDrops in 

snRNA-seq data. The hybrid method makes use of specific thresholds to control the size of 

the candidate pool of high-quality cells. We applied this function to remove putative empty 

droplets from the results of all tools under the same setting, which is the default setting in 

STARsolo. Only barcodes (cells) with FDR-adjusted p-value less than 0.01 of arising from 

non-empty droplets, with mitochondrial count percentage less than 0.25%, and with 500 − 

4,000 expressed genes, were kept for further clustering analysis.

After filtering empty droplets, the RNA counts of each nucleus were log-normalized. Next, 

the top 2, 000 variable genes were selected and their gene counts were scaled and used 

in the following steps. Then, PCA was performed with these variable genes, and a subset 

of significant PCs was selected using the JackStraw algorithm implemented in Seurat. 

Using these significant PCs, t-SNE dimensionality reduction (25) was performed, the nearest 

neighbor graph was constructed, and clustering was performed. In order to assign a cell type 

to each cluster, the R object provided by Marsh and Blelloch (23) was used as the reference 

to transfer the cell type annotation from the reference samples to the query object according 

to the anchor genes determined by the significant PCs using the FindTransferAnchors 

function of Seurat (see Supplementary Section S9).

The nuclei assigned as trophoblast were then selected to explore the trophoblast subclusters. 

Similar to the previous procedure, clusters were found using a subset of significant PCs 

determined by a JackStraw plot, and cell types were learned from the trophoblast R 

objected provided in the supplementary file of Marsh and Blelloch (23).

4.10. Details of time and memory benchmarking.

All experiments were conducted on a server with an Intel Xeon CPU (E5–2699 v4) with 

44 cores and clocked at 2.20 GHz, 512 GB of memory, and 8 (non-RAID) 3.6 TB Toshiba 

MG03ACA4 HDDs. Samples were processed using a Nextflow (26) workflow. All tools 

tested here provide multi-threaded capabilities and were run with 16 threads. Experiments 

were run using STARsolo version 2.7.9a, salmon v1.5.1, alevin-fry v0.4.0, kb_python 

0.26.0 (with kallisto 0.46.2 and bustools 0.40.0). STARsolo was run with the --

soloFeatures Gene option to process single-cell samples, with the --soloFeatures 

GeneFull option to process single-nucleus samples, and with the --soloFeatures Gene 

Velocyto option to process samples for RNA velocity analysis. STARsolo offers the ability 

to use either a dense or sampled suffix array index. Here, all tests were run using the dense 

suffix array, which provides the fastest runtime but which also requires more memory. If 

memory is at a greater premium, users can instead choose to use the sparse index, which 

reduces the index size by a factor of ∼ 2 but which requires ∼ 1.7 times as long for 

He et al. Page 22

Nat Methods. Author manuscript; available in PMC 2022 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



processing, on average (3). Kallisto|bustools was run using the kb_python wrapper 

with --workflow standard used for single-cell samples, --workflow nucleus used 

for single-nucleus samples and --workflow lamanno used to process samples for RNA 

velocity analysis. Alevin-fry was run in USA-mode on all samples using the --cr-like 

UMI resolution method and the appropriate counts were extracted from the resulting count 

matrix depending upon the sample type. Alevin-fry was tested with both the sparse and 

dense index as well as using both the unfiltered permit-list and filtering of barcodes prior to 

quantification using the knee-distance method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 – 2-column figure. Overview of the alevin-fry pipeline
(operating in unspliced, spliced, ambiguous (USA) quantification mode). The arrows 

highlight the flow of data through the pipeline, whose output is a matrix specifying the 

expected counts of each of the considered splicing states of each gene within each quantified 

cell.
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Fig. 2 – 2-column, 5-panel figure. Comprehensive analysis of the performance pf alevin-fry 
on real and simulated datasets.
(a) The frequency distribution of the presence of genes across all shared cells for STARsolo, 

kallisto|bustools, and alevin-fry (including multiple index types for alevin-

fry) on the simulated data. Different color lines represent the quantification methods. 

Within the variants of alevin-fry, txome stands for transcriptome reference (i.e., 

just indexing the annotated, spliced, transcriptome), and sketch (pseudoalignment with 

structural constraints) and sla (selective-alignment) label the mapping method used to 

obtain the result. Due to the similarity of the distributions, the line of STARsolo is occluded 

by the line of alevin-fry(splici, sla).

(b) A visualization of the velocity estimation derived from alevin-fry counts in a UMAP-

based embedding after assigning all ambiguous counts as spliced; the streamlines represent 

the direction of RNA velocity estimated by scVelo. Points (cells) are colored according to 

the cell type annotation.

(c) The t-SNE embedding plot of an alevin-fry processed mouse placenta snRNA-seq 

dataset. The color of each nucleus represents the inferred cell-type annotation, which was 

learned from a reference dataset.

(d) and (e) are timing and peak memory usage for all tools (run with 16 threads) on the 

different datasets evaluated in this manuscript. The x-axis of (d) and (e) represents the 

evaluated datasets. The y-axis of (d) represents the run time of each tool, measured in 

seconds. The y-axis of (e) denotes the peak memory usage — measured as the maximum 

resident set size (max rss) — during the execution of each tool. Dashed horizontal lines 

in (d) denote 15 minutes, 30 minutes, 60 minutes and 90 minutes, respectively. Dashed 

horizontal lines in (e) denote 4GB, 8GB, 16GB and 32GB, respectively.
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Table 1:

The performance of the examined tools on the simulated data. Each row lists a different quantification 

method being evaluated. Among the variants of alevin-fry, txome stands for mapping against the 

spliced transcriptome reference, splici stands for mapping against the splici reference, and sketch 

(pseudoalignment with structural constraints) and sla (selective-alignment) describe the mapping method. 

Each column lists a metric. They are, from left to right, the mean cell-level Spearman correlation of gene 

abundances, the mean absolute relative deviation (MARD) where NA values are dropped and treated as 

zero, and the mean relative false-positive and false-negative expression per cell. Detailed definitions are in 

Supplementary Section S8. All metrics are measures on the subset of genes and cells defined by all tested 

methods, and are taken with respect to ground-truth abundances.

method mean Sp. corr. MARD (drop NA) MARD (NA=0) mean rFP/cell mean rFN/cell

STARsolo 0.997 0.031 0.002 0.001 0.005

kallisto|bustools 0.864 0.263 0.024 0.328 0.006

alevin-fry (txome, sketch) 0.883 0.226 0.020 0.273 0.006

alevin-fry (splici, sketch) 0.988 0.026 0.002 0.011 0.012

alevin-fry (splici, sla) 0.992 0.019 0.001 0.004 0.011
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