
Inhibitory mechanisms in the prefrontal-cortex differentially mediate 

 Putamen activity during valence-based learning 

 

Tal Finkelman1,2*, Edna Furman-Haran3, Kristoffer C. Aberg1, Rony Paz1†* and Assaf Tal4†* 

1Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel 
2Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel 
3Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel 
4Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel 

† Equal contribution 

Abstract 

Learning from appetitive and aversive stimuli is important for survival. It involves interactions 

between the prefrontal cortex and subcortical structures, with inhibition playing a crucial role. 

However, direct evidence for this in humans is limited. Here, we overcome the difficulty of 

measuring inhibition in the human brain and find that GABA, the main inhibitory 

neurotransmitter, affects how the dACC interacts with subcortical structures during appetitive 

and aversive learning differently. We used 7T magnetic resonance spectroscopy (MRS) to track 

GABA levels in the dACC alongside whole-brain fMRI scans while participants engaged in 

appetitive and aversive learning tasks. During appetitive learning, dACC GABA levels were 

negatively correlated with learning performance and BOLD activity measured from the dACC and 

the Putamen. While under aversive learning, dACC GABA concentration negatively correlated with 

the functional connectivity between the dACC and the Putamen. Our results show that inhibition 

in the dACC mediates appetitive and aversive learning in humans through distinct mechanisms.  
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Introduction 

Learning from appetitive (gain) and aversive (loss) outcomes involves continuously monitoring 

one's knowledge about the environment and employing behavioral adjustments whenever the 

outcomes differ from expectations. It is an essential process for behavioral adaptation to 

environmental changes(1). In humans, the neural representations of both appetitive and aversive 

stimuli converge on the dorsal ACC (dACC) (2–9) but with distinct processes, potentially involving 

separate neural pathways or coding systems (10–13). The existence of different systems for 

appetitive and aversive stimuli coding is further supported by single-neuron recordings from non-

human primates, showing that distinct neuronal populations within the ACC respond separately 

to appetitive and aversive values (14–16). However, the differential neural mechanisms 

underlying these distinct populations are poorly understood. 

Animal studies suggest that inhibition influences learning by regulating synaptic plasticity, 

network dynamics, and the timing of neuronal activity in various brain regions, including the 

prefrontal cortex (17). In rodents, the connectivity between brain regions that respond to both 

gain and loss is regulated by the primary inhibitory neurotransmitter gamma-aminobutyric acid 

(GABA) (18). Another study showed that pharmacologically elevating the levels of GABA in the 

dACC impairs reward-based learning (19).  Evidence in human studies indicates that GABA in the 

dACC is involved in a learning-based decision-making model (20,21). Specifically, it was reported 

that the basal concentration of GABA in the dACC negatively correlates with the integration of 

acquired information and with the brain activation measures from the dACC during reward-

related decision-making tasks (22).  

Based on this literature, we hypothesized that inhibition, particularly GABA, would differentially 

modulate brain activity during appetitive and aversive learning, and that interactions between 

inhibition, brain activity, and behavior (learning performance) should be evident in regions that 

traditionally support learning, such as the dACC, Striatum, Amygdala, and Insula (13,23–26). Direct 

evidence in humans would require measures of both GABA and brain activity during learning. 

Here, we used magnetic resonance spectroscopy (MRS), which allows the non-invasive 

measurement of GABA (27,28), and functional magnetic resonance imaging (fMRI) to measure 

brain activity. 117 participants performed probabilistic learning tasks under gain and loss 

conditions during MRS and fMRI scanning at an ultra-high 7T field strength. The MRS data were 

collected from the dACC using an optimized sequence that reliably separates the concentration 
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of GABA and Glutamate (29), the main excitatory neurotransmitter, which can serve as a marker 

for cellular and neuronal activity (30,31). 

Results 

Game paradigm and learning behavior  

MRS and fMRI were measured during four learning tasks (shown in Fig. 1A). In each task, 

participants had to select one out of two Chinese letters, after which corresponding feedbacks 

were presented. The four tasks differed in their win probabilities and their outcome types. In tasks 

with a 65-35% win probability (GP=65 game), the ‘best’ option provided winning with a 65% 

probability, while the other ‘worst’ option provided winning with a 35% probability. The GP=65 

games are learning games because participants can learn there is a better option. As a control, 

we added an unlearnable condition, GP=50 games, with a winning probability of 50% for both 

options. Under the appetitive condition, winning was to gain money; under the aversive 

condition, winning was not losing money. For more details, see the materials and method section. 

Each game contained 50 trials, along which participants learned to choose to maximize their gains 

and minimize their losses.  

The MRS portion of the task was comprised of eight blocks (Fig. 1B) that were collected in a 

sequence of four game-scans and four rest scans to allow GABA and Glu to return to baseline. 

The fMRI portion consisted of three blocks (one rest, two games) where half of the participants 

(n=53; 26 females) played two Gain games (GP=65-Gain and GP=50-Gain; Gain group), and the 

Figure 1. A)  Behavioral paradigm and scanning protocol. Each trial starts with the presented frames- a waiting screen with 

a cross in the middle, followed by a two-letter frame where the participant has to choose one letter, followed by an another 

waiting frame (inter-stimulus-interval; ISI), and then the participant is presented with the outcome of their choice: 0 or +5 

in the gain condition game and 0 or -5 in the loss condition game. B) The protocol inside the scanner. The MRS and MRI 

games were randomized. Half of the participants started with MRI blocks, and half started with MRS blocks. The numbers 

represent the probability for outcome. 
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other half (n=52; 26 females) played two Loss games (GP=65-Loss and GP=50-Loss; Loss group). 

For the learnable GP=65 games, a learning score was defined as the probability of choosing the 

correct letter in the last 10 trials (i.e., the letter with a 65%-win probability). For the unlearnable 

GP=50 games, one letter was defined as the reference choice to which the learning score was 

referring. 

Participants demonstrated learning and superior performance in the learnable conditions only 

(Fig.2A; PG=65; average learning scores: 0.709±0.002/0.701±0.002 in gain/loss), compared to the 

unlearnable conditions (Fig.2A; PG=50; 0.498±0.002/0.506±0.002 in gain/loss; ANOVA f{1,106}= 

46.8; p-value = 5e-10; Table S1.). This shows successful and similar learning in both gain and loss 

conditions.   

We fitted a classical reinforcement-learning model (32) to the individual behavior for the purpose 

of obtaining the individual, per-trial, value difference coding for our fMRI analysis. The model 

contains a decision weight (β) parameter and separate parameters for positive (α+) and negative 

(α-) learning rates (See methods for more information). The learning scores were similar across 

model-fit and actual behavior for both gain and loss games (Fig. 2A-C; Model learning scores: Gain: 

0.710±0.001; Loss: 0.677±0.001; Actual learning scores: Gain: 0.709±0.002; Loss: 0.701±0.002). 

Similarly, at the individual level, the learning scores of actual data and the model were strongly 

correlated in both gain and loss (Fig. 2E; Pearson correlation p-values: of 7 ∙ 10−9 and 1 ∙ 10−8, 

respectively), confirming that the model captures the variability in individual behavior (Fig. 2D 

depicts single-subject examples in each game condition). We did not find a significant difference 

in learning scores between gain and loss in either actual or modeled data (Fig. 2F, two-tailed t-

tests). There were no interactions between model parameters (beta value and learning rates) and 

no interaction and changes across gain and loss conditions (Fig. 2G-J; repeated measures ANOVA 

test was conducted for each parameter with GP and LG as factors with no significant effects). 
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Figure 2. Behavioral data and model fitting. A) Learning curves for all four conditions. The shaded areas are SEM. B) Mean learning 

scores comparison. Error stands for SEM. C) mean learning score distribution. D) Single subject model fitting example. E-I) Model 

parameters are shown for learning conditions (65-gain and 65-loss). E) Comparison of the calculated learning scores in the original 

data and in the model. F) Learning scores comparison between gain and loss conditions. G) Mean Negative and positive learning 

rates (Alpha-Neg; Alpha-Pos). Error stands for SEM. H) Mean decision weight for expected value (Beta/𝛽𝑄). Error stands for SEM. 

I) Model parameters comparison between gain and loss. J) Model parameters distribution for all game conditions. 
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MRS Data 

We calculated the quality assurance parameters of the MRS signal (Fig. 3). The mean GM, WM, 

and CSF concentrations across subjects were 0.63±0.05, 0.28±0.06, and 0.08±0.03, respectively. 

The mean lipid/NAA ratio was 0.08±0.01, which indicates there are no extraneous lipids 

contaminating the spectra. The mean water FWHM and SNR are 14Hz ± 1Hz and 139±4). Taken 

together, these metrics indicate the spectral quality of the data.  

Figure 3. MRS spectral quality metrics. A) Simulation of basis function correlation with Glu, GABA, and Glu+GABA across 

different TEs (from TE= 1 ms to TE = 250 ms). The simulated metabolites are Asp, Asc, GPC, Cho, PCh, Cr, PCr, GABA, Glc, 

Gln, Glu, mI, Lac, NAA, NAAG, SI, GSH, and Tau. B) Glu and GABA basis function at TE=42ms and TE=80ms. Note the 

separable appearance at TE=80ms. C) Heat map of voxel positioning across all subjects. Voxels that are shared for less 

than 10 participants are filtered out. D) Mean LCModel Fitting across all subjects. E) Gray matter (GM), white matter 

(WM) and cerebrospinal fluid (CSF) distribution across all subject. mean±SD. F) Lipid/NAA ratio histogram across all 

subjects. G) Histogram of water FWHM at rest across all subjects. H) The histogram of SNR at rest was calculated using 

NAA peak across all subjects. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2024. ; https://doi.org/10.1101/2024.07.29.605168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.29.605168
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

GABA differs between gain and loss conditions 

The absolute concentrations of GABA, Glu, and the E/I balance (Glu/GABA) across conditions are 

presented in Table 1. We normalized the concentration during the games by subtracting the initial 

rest for inter-subject correlations. The normalized concentrations are denoted as ∆GABA and ∆Glu 

and ∆E/I balance (Table 2; see Table S2 for other metabolites). Overall, there was an interaction 

between ΔGABA concentrations, the game probability (GP), and the game valence (gain or loss; 

GL): GPxGL interaction: ANOVA f{1,291.3}= 4.8; p-value= 0.03, mixed model (MM) 1 in methods; 

Table S3, Fig. S1). During the loss condition, GABA concentration in the learnable 65-Loss 

scenario was elevated compared to the 65-Gain game (Fig. 4A; two-tailed-t-test p=0.02), and 

marginally elevated compared to the 50-Loss (two-tailed-t-test p=0.08). During the gain condition, 

ΔGABA concentration did not change from the initial rest and was elevated during the unlearnable 

50-gain scenario compared to the 65-gain condition (one-tailed t-test p=0.05). This is in 

accordance with our previous finding (33).  

We note that while ∆Glu consistently displayed an increase during all game scenarios and was 

correlated with ∆GABA (ANOVA f{1,380.4} =47; p-value= 3e-11; Table S3), there were no 

significant interactions or differences across game conditions for ∆Glu for ∆E/I balance (ANOVA 

for ∆Glu or ∆E/I with GP and LG as factors; p>0.1 for all). Therefore, we focus on ∆GABA 

interactions with behavior in this work.  

Table 1. Mean absolute concentration for GABA, Glu, and the E/I balance. The CRLB value refers 
to the accuracy of spectral fitting for the spectra acquired during the games. All errors presented 
are standard errors of the mean. 

Condition GABA Glu E/I balance 

Concentration 

[Mm] 

CRLB (%) Concentration 
[Mm] 

CRLB (%) Ratio Value 

Initial Rest 1.0143±0.02 17.57±0.3 12.667±0.1 3.20±0.04 12.49±0.1 

65-Gain 1.0075±0.02 17.79±0.3 12.798±0.1 3.23±0.05 12.70±0.1 

50-Gain 1.0479±0.02 17.70±0.3 12.881±0.1 3.22±0.05 12.29±0.1 

65-Loss 1.0626±0.02 17.56±0.3 12.814±0.1 3.26±0.04 12.06±0.1 

50-Loss 1.0188±0.02 17.79±0.2 12.824±0.1 3.23±0.04 12.59±0.1 
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Table 2. Mean concentration changes from the initial rest for GABA, Glu, and the E/I balance. 
All errors presented are standard errors of the mean. 

Condition ∆GABA ∆Glu ∆E/I balance 

Concentration [Mm]  

(Game-Initial rest) 

Concentration [Mm] 

(Game-Initial rest) 

Ratio Value 

65-Gain -0.007±0.02 0.14±0.07 0.05±0.06 

50-Gain 0.039±0.02 0.16±0.07 -0.25±0.06 

65-Loss 0.043±0.02 0.17±0.06 -0.28±0.06 

50-Loss 0.014±0.02 0.14±0.06 -0.1±0.06 
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Figure 4. Correlation between ∆GABA, BOLD, and learning scores.  A) ΔGABA mean with SEM and distribution in gain 

and loss. B) Correlation between the learning scores and ΔGABA from the dACC in gain and loss groups. C) Group-level 

activation of the dACC (GL map) and Group-level activation of the dACC within the spectroscopic voxel (ROI-GL map). 

D) BOLD mean Z score with SEM and distribution in gain and loss. E) Correlation between the learning score and the 

BOLD mean Z score from dACC in gain and loss groups. F) Right panel: Group-level activation of the learning correlates 

with BOLD in gain>loss (Learning- GL map). Left panel: Correlation between BOLD mean Z score from dACC-activated 

voxels (Learning- GL map) and ΔGABA from the dACC in gain. G) Correlation between BOLD mean Z score from dACC 

and ΔGABA from the dACC in gain and loss groups. ΔGABA represents GABA change from the initial rest. 
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GABA correlates with learning under the gain condition 

To explore the interplay between GABA levels and learning, we considered the Gain and Loss 

conditions separately (Gain group and Loss group). We tested the relationship between learning 

performance and ΔGABA (MM2 in methods; Table S4-S5) and found an effect in ΔGABA levels 

only within the gain group (Table S4; f{1,47}=4.7; p=0.02). Explicitly, at an individual level, ΔGABA 

levels were negatively correlated with learning performance (Fig. 4B; Gain: p=0.02; Pearson’s r=-

0.33; Loss: p=0.8). 

 

BOLD in the dACC correlates with expected value and individual learning performance  

We calculated the BOLD activity in the dACC using the spectroscopic voxel as a region of interest 

(ROI; ROI-GL map; Supp. Fig. S2). The design matrix used two explanatory variables (EVs): one for 

the decision phase, weighted by ΔQ (representing the expected value difference between 

selected and rejected options), and another for the feedback phase, weighted by PE (prediction 

error). These variables reflect neuronal coding of subjective value difference and prediction error, 

respectively (see material and method section for more details). Z-scored activation maps were 

generated for each EV, representing the activation probability of each voxel. In this work, we 

discuss only the decision phase contrast. To verify that the dACC activation is not dependent on 

our ROI analysis, we conducted a whole-brain analysis using the same parameters and found 

significant activation in the dACC (GL map; Supp. Fig. S3; Table S6). 

BOLD activity in the dACC spectroscopic voxel during the decision phase did not differ across 

learnable game conditions (Fig. 4C, D, t-test p = 0.95; Supp. Fig. S1; Gain-65: 0.60+0.16; Gain-50: 

0.68+0.15; Loss-65: 0.58+0.13; Loss-50: 0.49+0.14; ANOVA test, no effects).  However, only under 

the learnable gain condition (PG-65 gain) the BOLD activity was positively correlated with 

individual learning scores (Fig. 4E; Gain: p = 9e-4, r= 0.44; Loss: p = 0.3, r= 0.1; cross-correlation 

coefficient difference (CCD): p= 0.05). See MM 3 in methods for more details (Table S7-S8; ANOVA 

f{1,47}= 9.1; p-value: 0.004). 

We ran a third, separate group-level analysis (whole-brain) to verify this finding, using the 

individuals' learning scores as a covariate. We found the dACC was significantly active in a 

gain>loss contrast (Learning-GL map; Table S9; Fig. 4F, left panel). This confirms that the dACC 

BOLD is correlated with learning during the gain but not the loss condition. Further, the 
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correlation of this area with GABA showed a negative correlation, similar to our finding using 

the ROI analysis (Fig. 4F, right panel; p = 0.05, r= -0.28). 

Activity in the dACC and Putamen is correlated with GABA during gain learning 

Next, we evaluate the connection between the MRS and fMRI measurements. We applied linear 

regression (MM4 in methods; Table S10-S11) separately to the gain and loss group. We found a 

significant effect of ΔGABA only within the gain group (ANOVA f{1,77.5}= 5.1; p-value: 0.03, Supp. 

Fig. S1), showing a negative correlation between ΔGABA levels and BOLD activity within the dACC 

(ROI-GL). This negative correlation was specific to the learnable gain-65 condition (Fig. 3G, left 

panel: p=0.01, r=-0.36) and was not detected for loss (Fig. 3G, right panel; CCD: p= 0.003), or 

during the unlearnable conditions (Supp. Fig. S1). This provides a strong validation for our 

approach to measuring GABA and BOLD within subjects. 

Subsequently, we examined the interactions between ΔGABA concentrations and the BOLD 

activity in other brain regions that contribute to valence encoding and decision-making processes 

(Table 3). We used the Harvard-Oxford subcortical structure atlas-based masks (M2-7). We found 

that BOLD activity in the left Putamen was negatively correlated with ΔGABA levels in the dACC 

only in the 65-Gain condition (Table 3. M5; p=0.02, r=-0.33; FDR corrected). To verify this finding, 

we tested it with a group-level map-based mask (GL map) and found the same result (Table 3. M9 

Fig. 5A-B; p=0.02, r=-0.33). Additionally, the activity in the left Putamen was positively correlated 

with individual learning scores and only under the 65-Gain condition (Fig. 5A-B; p = 0.02, r= 0.33).  

Moreover, we inspected on the correlation with the Insula, which forms the salience network 

together with dACC (34). We did not find a correlation between ΔGABA in the dACC and the BOLD 

in either the left or right Insula. This was examined on an atlas-based mask (Table 3. M2) and a 

group-level map (Table 3. M10) for presentation purposes (Fig. 5C-D). However, we found a 

significant positive correlation with the learning score under the 65-Gain condition only (p = 0.003, 

r= = 0.40), supporting that the salience network participates in decision-making guided learning.  
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Table 3. All masks from which mean Z-score were extracted. dlPFC- dorsolateral prefrontal 
cortex; OFC- Orbitofrontal cortex; HOSSA-Harvard-Oxford subcortical structure atlas. 

 

 

dACC-Putamen connectivity is correlated with GABA during loss learning 

Beyond direct modulation of activity, inhibitory mechanisms can also modulate information 

transfer between the dACC and other brain regions. To test this hypothesis, we examined the 

relationship between ΔGABA in the dACC and BOLD-based functional connectivity. First, we 

calculated the connectivity during gain and loss between the dACC and several decision-making-

related brain areas (Fig. 6A), as well as other reference areas (Table S12). We found significant 

functional connectivity between the dACC and the Putamen, as well as the dlPFC, nucleus 

accumbens, thalamus, left amygdala, and insula (Bonferroni correction for multiple comparisons). 

As in previous studies, there was strong connectivity between the dACC and the right and left 

insula (35).  

However, and importantly, ΔGABA levels in the dACC were negatively correlated with the strength 

of connectivity between the dACC and the left Putamen only and during the loss-65 condition only 

(Fig. 6B, p = 0.01, r = -0.36; FDR correction to all brain regions listed in Table S12). This implies that 

dACC GABA reduces the dACC-Putamen connectivity during loss.  

Index Mask location threshold Left and right 

(separately) 

Origin 

M1 MRS functional voxel (dACC)   Cluster from ROI GL map 

M2 Insula  5 √ HOSSA 

M3 Caudate 5 √ HOSSA 

M4 Nucleus accumbens  5 √ HOSSA 

M5 Putamen 5 √ HOSSA 

M6 Amygdala 5 √ HOSSA 

M7 OFC 5 √ HOSSA 

M8 dlPFC    √ Cluster from GL map 

M9 Left Putamen    Cluster from GL map 

M10 Left  Insula   Cluster from GL map 
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Figure 5. Learning and ∆GABA correlation in the Putamen and the Insula. A-B) Correlation between BOLD mean 

Z score from the left Putamen cluster of the group analysis and ΔGABA or learning score in gain (A) and loss 

(B) groups. C-D) Correlation between BOLD mean Z score from the left insula cluster of the group analysis and 

ΔGABA or learning score in gain (C) and loss (D) groups.  
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Figure 6. Correlation between connectivity and ∆GABA. A) Connectivity strength distribution for 

the connectivity between the dACC cluster of the ROI group analysis and the listed regions under 

the gain condition. B) Correlation between the left-Putamen-dACC connectivity in z value and 

dACC’s ΔGABA in gain and loss. C) Correlation between the left-insula-dACC connectivity in z value 

and dACC’s ΔGABA in gain and loss.  
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Discussion 

Several studies have suggested that distinct sub-regions within the ACC encode positive and 

negative valences and salience (15,23,36–38). The latter has also been demonstrated in primates, 

which show an anatomical intermixing of gain and loss-related neurons in the ACC, with only a 

minority of neurons showing excitatory signaling for both gain and loss (14,16,39). Similarly, 

evidence from fMRI studies points to distinct inhibitory neuronal mechanisms for appetitive and 

aversive learning in the dACC (11). The current study provides direct evidence that GABA 

concentrations in the dACC differentially mediate aversive- and appetitive-based learning.  Under 

the appetitive condition, GABA concentration did not significantly deviate from the resting 

baseline but was negatively correlated with learning performance. Additionally, GABA 

concentrations were associated with the BOLD signal that encodes values in both the dACC and 

the left Putamen, which showed positive correlations with learning performance in both regions. 

Hence, the higher the inhibition, the lower the activity in the dACC and the left Putamen, and the 

lower the learning score. However, under the aversive condition, GABA significantly increased 

from baseline but remained uncorrelated to behavioral or physiological measures, except for a 

negative correlation with the dACC-Putamen connectivity. These two distinctive patterns in 

appetitive and aversive learning conditions are consistent with the presence of two neuronal 

populations: one that controls appetitive value coding via projection from the dACC to the left 

Putamen and another related to aversive value coding via a different yet-undetermined 

mechanism. Our 10 mL spectroscopic voxel is sufficiently large to encompass a heterogeneous 

population of neurons, and it is reasonable to assume that the distinct increases in inhibition 

during aversive and appetitive reinforcement learning stem from different neuronal populations. 

 

The observed negative correlation between deviations from baseline GABA concentrations 

(ΔGABA) and reward-guided learning scores is consistent with previous MRS literature, which has 

largely demonstrated negative correlations between task-related GABA concentration changes 

and various learning-related performance scores (40–43). One possible explanation for this 

negative correlation could be tied to the association of increased GABA levels in the ACC with 

exploration under reward-related tasks (19,21,44). In our paradigm, the best strategy would be 

to find the better letter by exploring both options and then choosing it repeatedly, so increased 

exploratory behavior might not have been advantageous within our paradigm; it could explain the 

negative correlation we observed.  A study using a similar paradigm to ours and measured rest 
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concentrations of dACC GABA showed a positive correlation between GABA concentration at rest 

and reward-guided task performance (45). We find a comparable correlation between basal GABA 

concentration and learning performance (Fig. S3A). The explanation for the differences in the 

correlations between GABA concentration at rest, and ΔGABA concentration is that participants 

with lower basal concentrations of GABA exhibited higher ∆GABA and better learning 

performance (Fig. S3B). 

∆Glutamate levels consistently increased across all game conditions (Table 2), indicating ongoing 

dACC activity throughout these scenarios, driven by both metabolic (from the citric acid cycle) and 

neurotransmitter dynamics (30,31). This is supported by elevated BOLD measurements and 

heightened lactate levels (Supplementary Table S2) across all game conditions, consistent with 

increased oxidative metabolism (46). These observations parallel earlier research demonstrating 

elevated Glu levels in the ACC during cognitive tasks and studies highlighting correlations between 

Glu dynamics, BOLD response, and task timing (46–50). The observed elevation of GABA might 

also explain elevated Glu, as Glu is a precursor for its synthesis (51); however, in this case, we 

would expect to see differences in ΔGlu between the gain and loss conditions, which we do not. 

Additionally, we did not find a relationship between ΔGlu and BOLD measures during learning, 

suggesting that the increase in ΔGlu is not necessarily related to the measured value coding-

related BOLD changes. Currently, it is hard to conclude whether this finding merits interpretation 

or is due to lower MRS sensitivity and/or volume averaging over functional subnetworks within 

the dACC.  

 

Previous findings and theoretical models suggest that the E/I balance plays a major role in brain 

activity, cognition, and behavior (52–55). We employed a simulated likelihood ratio test (SLRT) to 

compare our mixed models of ∆GABA with identical models featuring ∆E/I balance instead of 

ΔGABA (MM1-4) to examine if the effect we detected is related to GABA or to the E/I balance 

(Table S12). We found that the ∆E/I balance offers a poorer fit to the game conditions and learning 

scores (mixed models 1 and 2). This could be attributed to the metabolic contribution to ΔGlu 

(31), potentially influencing the actual E/I balance value. Alternatively, our findings may indicate 

a distinct role of GABA, separated from the E/I balance context, during the value difference 

encoding phase, particularly in actions guided by learning. 
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We examined GABA and BOLD correlations in brain regions associated with decision-making to 

assess whether inhibiting the dACC modulated their activation (Table 3: M2-M10). We noticed a 

negative correlation between GABA concentrations and BOLD activity in the human left Putamen 

during appetitive – but not aversive – value difference encoding, implying that the increased 

inhibition in this condition suppresses a projection from the dACC to the left Putamen. This 

conclusion is supported by primate studies, which show that the Putamen-caudate complex, 

receiving input from the ACC, plays a role in processing gain-related signals rather than 

loss-related ones (56,57) And mice studies, which show that increased inhibition during appetitive 

tasks might influence neuronal populations that rely on previous information for decision-making 

(19,44). The absence of this relation between the dACC and the putamen under the aversive 

condition is consistent with previous reports that aversive and appetitive learning is driven by 

different neuronal populations  (14–16,58). However, our data is insufficient to explain the 

underlying differential mechanism nor pinpoint additional regions that drive it.  

Next, we examined the functional connectivity between the dACC and decision-making-related 

regions of interest (Table S11). Notably, the salience network exhibited the strongest connectivity 

during both gain and loss, aligning with existing research suggesting its involvement in gathering 

essential information for decision-making processes (59,60). We found that ∆GABA levels in the 

dACC are negatively correlated with the strength of connectivity between the dACC and the 

Putamen during the loss – but not gain – condition. This intriguing finding suggests that one 

possible explanation for the aversive learning-related increase in ΔGABA might originate from a 

neuronal population that hinders the interaction between the dACC and the Putamen.  

 

In this study, we compared MRS data acquired during separate gain and loss 

reinforcement-learning games. However, a paradigm that includes mixed motivation 

components, linking aversive and appetitive stimuli, is recommended to isolate aversive 

motivation mechanisms more effectively (61,62). This suggests that our paradigm may not be 

optimal for detecting such mechanisms and might explain why we did not observe differences in 

BOLD activity or the learning performance between the gain and loss conditions. Additionally, our 

MRS and fMRI data were acquired separately under the assumption that task-induced changes 

are similar in subsequent games. To overcome these limitations, we suggest implementing an 

event-related paradigm combining reward and punishment and using an interleaved MRS-fMRI 

sequence(63–67). Alterations to metabolite transverse relaxation times (T2) due to the crossing 
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of neurotransmitters between intravesicular, intracellular, and extracellular pools might act as a 

confounding factor in our analyses. This could be mitigated in future studies by implementing 

multiparametric fMRS sequences (68–72), which would simultaneously quantify metabolite 

relaxation times and concentrations throughout the rest and all task conditions. 

 

Materials & Methods   

Subjects 

We enlisted 117 healthy volunteers (56 females; mean Age: 27±5 years) without pre-existing 

psychiatric and neurological conditions. All participants provided written informed consent under 

the approval of the Wolfson Medical Center Helsinki Committee (Protocol number: 0084-19-

WOMC). The protocol was further approved by the ethical review board of the Weizmann 

Institute of Science. Five participants were excluded due to excessive movement and one for non-

completion of the task. Among the remaining 111 volunteers, five have missing MRS data, while 

four underwent only MRS acquisition. 105 participants have full data from both fMRI and MRS 

acquisitions. 

Experimental Design 

A decision-making task paradigm (Fig. 1A) was used in this study in four conditions. During each 

task, in every trial, participants selected one out of two Chinese letters, after which corresponding 

feedback was presented. The four tasks differed in their winning probabilities and in their 

outcome types. Each game included 50 trials. In tasks with a 65-35% win probability (GP=65 

game), the ‘best’ option provided winning feedback with a 65% probability, while the other 

‘worst’ option provided winning/losing feedback with a 35% probability. The GP=65 games are 

called learning games as participants can learn there is a better option. As a control, an 

unlearnable condition was included, GP=50 game, where winning feedback was presented with 

50% probabilities for both options. Under the appetitive condition, winning was gaining money; 

under the aversive condition, winning was not losing money. In summary, there were two Gain 

games (GP=65-Gain, GP=50-Gain) and two Loss games (GP=65-Loss, GP=50-Loss). Participants 

were told to maximize their scores. The game presentation was implemented in MATLAB 

(R2021b) using the Psychophysics Toolbox (73,74). All participants had a training session before 

entering the scanner. 
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The MRS scan was comprised of eight blocks (Fig. 1B) that were collected in a sequence of four 

game-scans and four rest-scans in the following order: baseline (rest, 5min), game 1 (5min), rest 

(3min), game 2 (5min), rest (3min), game 3 (5min), rest (3min), game 4 (5min). The type of game 

presented was randomized. The rest of the scans were interspersed between game scans to allow 

GABA and Glu to return to baseline. 

The fMRI scan consisted of two blocks (two games- 10 minutes each) where half of the 

participants (n=53; 26 females) played two Gain games (GP=65-Gain and GP=50-Gain), and the 

other half (n=52; 26 females) played two Loss games (GP=65-Loss and GP=50-Loss). The beginning 

of each game was synchronized to the beginning of the first TR, using a trigger command. The 

inter-stimulus interval (ISI) and inter-trial interval (ITI) are defined as a random exponential 

distribution around 4.5sec and 6sec with a minimum value of 2.5sec and 4sec for the fMRI games, 

and 2.5sec with a minimum value of 0.5sec and 1sec for the MRS games, to keep the game length 

at 5 minutes. For the learnable GP=65 games, a learning score was defined as the probability of 

choosing the correct letter in the last 10 trials (i.e., the letter with a 65%-win probability). For the 

unlearnable GP=50 games, one letter was defined as the reference choice to which the learning 

score was referring. 

Behavioral modeling  

We used a common Q-learning model that was previously shown to be a good model for our kind 

of task (32). In this model, the expected value 𝑄𝑖(𝑡) of the selected letter i in trial t was updated 

by the mismatch between the expected value and the actual outcome R(t), i.e., the prediction 

error- 𝛿𝑄(𝑡), scaled by a learning rate α. Separate learning rates were defined for positive 

prediction error (α𝑃𝐸+) or negative prediction error (α𝑃𝐸−): 

𝑄𝑖(𝑡 + 1) = 𝑄𝑖(𝑡) + α𝑃𝐸+ ∗ 𝛿𝑄(𝑡), 𝑖𝑓 𝛿𝑄(𝑡) > 0      (1) 

𝑄𝑖(𝑡 + 1) = 𝑄𝑖(𝑡) + α𝑃𝐸− ∗ 𝛿𝑄(𝑡), 𝑖𝑓 𝛿𝑄(𝑡) < 0     (2) 

The probability p of selecting a particular letter i depends in trial t on its utility, u𝑖 (SoftMax choice-

probability): 

𝑝𝑖(𝑡) =
𝑒𝑢𝑖(𝑡)

∑ 𝑒
𝑢𝑗(𝑡)

𝑗

          (3) 

Here, u𝑖 is defined as the sum of parameters that may contribute to a decision scaled by their 

respective decision weights. For example, the decision weight β𝑄 determined to what extent 
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decisions are decided by expected values, such that large and small values of β𝑄 Indicated that 

decisions are more and less influenced by expected values, respectively: 

𝑝𝑖(𝑡) =
𝑒

𝑄𝑖(𝑡)∗β𝑄

∑ 𝑒
𝑄𝑗(𝑡)∗β𝑄

𝑗

         (4) 

In order to compare between the games, we modeled each game separately for each subject. 

MR Protocol 

The scans took place using a 7T Terra scanner (Siemens Healthineers, Erlangen, Germany) and a 

commercial single-channel transmit/32-channel receive head coil (NOVA Medical Inc., 

Wilmington, MA, USA), reaching a maximum B1+ amplitude of 25 µT. 

A T1 weighted image acquired with MP2RAGE (Magnetization Prepared 2 Rapid Acquisition 

Gradient Echoes; TR/TE/TI1/TI2=4460/2.19/1000/3200 ms, α1=4°/α2=4°, 1 mm3 isotropic voxels, 

TA=6:56 min). An initial localizer and gradient echo field map were acquired for automated B0 

shimming (Scan parameters for B0 mapping: TR/TE1/TE2=232/3.06/4.08 ms, α=25°, 40 2.5 mm 

axial slices, 2.0x2.0mm2 in-plane resolution, TA=0:31 min) before MP2RAGE.  

A multiband T2*-weighted gradient echo-EPI sequence developed at Minnesota, was used for 

fMRI data collection with the following parameters: TE=22.22ms, TR=1000ms, flip angle=45°, slice 

thickness of 1.6mm, no interslice gap, in-plane resolution 1.6 × 1.6 mm2, 130-time points, dwell 

time of 0.32sec. A multi-band factor of 5 (slice direction), parallel imaging (GRAPPA) factor of 2 

(phase direction), phase partial Fourier-7/8. Four dummy scans, followed by a higher resolution 

volume collection for registration improvement, were executed prior to the EPI acquisition 

(75,76). 

MRS data were acquired using an optimized sLASER sequence (TR/TE=7000/80 ms), which can 

detect both GABA and Glu with high precision due to a minimal spectral correlation (Fig. 3A) and 

a pseudo singlet appearance (Fig. 3B) (29). A 25X40X10 mm3 voxel was manually placed on the 

dACC (Fig. 3C) using anatomical markers. The maximal amplitude is set to 25 mT/m, dwell time of 

0.25 ms, spectral BW of 4000 Hz, and 1024 data points.  

MRS Analysis 

VDI libraries were utilized for all preprocessing steps (77). This encompassed coil combination, 

alignment, and phase correction through a well-established iterative algorithm (78). 

To segment the T1-weighted anatomical images into gray matter (GM), white matter (WM), and 

cerebrospinal fluid (CSF) images, SPM12 from the Welcome Center for Human Neuroimaging, 
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UCL, UK (http://www.fil.ion.ucl.ac.uk/spm), was employed (79). VDI was also used to calculate 

tissue fractions within the spectroscopic voxel for subsequent signal quantification. 

LCModel was used for metabolite quantification (Fig. 3D). The basis set contained 17 

metabolites in their basis sets: aspartate (Asp), ascorbic acid (Asc), glycerophosphocholine 

(GPC), phosphocholine (PCh), creatine (Cr), phosphocreatine (PCr), GABA, glucose (Glc), 

glutamine (Gln), Glu, Myo-inositol (mI), lactate (Lac), N-acetyl aspartate (NAA), N-

acetylaspartylglutamate (NAAG), scyllo-inositol (Scyllo), glutathione (GSH), and taurine (Tau).  

Absolute quantification was carried out by correcting the metabolite concentrations provided by 

LCModel for tissue fractions estimated from the segmented images (80) and for relaxation 

effects, using literature values of T2 (Supplementary Table S14). We assumed the same T2 for 

gray matter (GM) and white matter (WM) fractions and no metabolites in cerebrospinal fluids 

(CSF) tissue fractions (81). Metabolites for which T2 relaxation data was not found in the 

literature were not quantified or further considered. The long TR eliminated saturation effects. 

Therefore, no T1 corrections were required. For each metabolite, concentrations that were three 

median deviations away from the median were excluded. 

MRS spectra quality assurance metrics 

To evaluate lipid contamination within the spectrum, we determined the ratio of lipid signal 

intensity spanning 0.3-1.7 ppm to the NAA signal intensity spanning 1.9-2.1 ppm. The signal-to-

noise ratio (SNR) was computed by dividing the NAA peak signal within 1.9-2.1 ppm by the 

standard deviation (STD) of the noise spectrum. The noise STD was derived from the central half 

of the spectrum, excluding its first and last quartiles. Water FWHM was quantified as the width 

of the water peak at half of its maximum height in Hz, enabling assessment of spectral linewidth. 

fMRI Analysis 

fMRI data were preprocessed using FEAT (FMRI Expert Analysis Tool) version 6.0.4, part of FSL 

(FMRIB’s Software Library, www. fmrib.ox.ac.uk/fsl). Preprocessing steps included motion 

correction, slice timing correction, temporal high-pass filtering (0.008 Hz), and pre-whitening (82). 

Head motions were corrected using MCFLIRT (83). Non-brain areas were removed using BET. Each 

image was then spatially smoothed using a Gaussian kernel of FWHM 4 mm. Next, functional and 

structural images were co-registered to a standard (MNI152 atlas) image space. 

First-level statistical analysis was done using a general linear model (GLM). The design matrix 

included two weighted modeling explanatory variables (EVs) – the decision phase, weighted per 
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trial by the ΔQ value (the expected value difference for the selected option minus the rejected 

option- indicating the neuronal coding of subjective value difference), and the feedback phase, 

weighted per trial by the PE value- indicating the neuronal coding of subjective PE), their time 

derivatives, and extended motion parameters EVs (84). We used a measure of frame-wise 

displacement to find and remove trials with excessive head movement as confound (i.e. EVs with 

a threshold of 0.9 mm). Trials with no response to the task were also removed from the analysis. 

For higher-level analysis, the single-subject functional maps were registered in the Montreal 

Neurological Institute (MNI) 152 space (85). Z-scored activation maps were generated for the 

decision phase and the feedback phase, representing the activation probability of each voxel. In 

this paper, we discuss only the decision phase contrast. 

Three Group-level analyses are performed. First, we contrast BOLD responses for decisions made 

in Gain and Loss games separately, using an a priori ROI and a mixed effect FLAME 1+2 with a 

cluster-based threshold of Z=3.1 and p=0.05 (86). The ROI was defined as the mean MRS voxel 

(ROI-GL map; Supp. Fig. S2). Within the ROI mask, voxels shared by less than 5 subjects (out of 

105) were excluded. Second, we test the same contrast for the whole brain (GL map; Supp. Fig.S3). 

Finally, we correlate differences in learning scores (i.e., Gain minus Loss) with the BOLD responses 

for Gain versus Loss games. The learning scores were demeaned and defined as a continuous 

covariate (Learning-GL map).  

 

Mean Z-score, parameter estimates, and time series were extracted using Featquery 

(http://www.FMRIb.ox.ac.uk/fsl/feat5/featquery.html) from regions associated with different 

decision-making processes such as prediction error, expected value, and incorporation of learned 

information (for a complete list of regions, see Table 3) (11,87–89). The Harvard‐Oxford 

probabilistic atlas in FSL was used to obtain anatomic masks of the caudate, insula, nucleus 

accumbens, orbitofrontal cortex, Putamen, amygdala, thalamus, subcallosal cortex, and posterior 

cingulate cortex (PCC). A mask of the dlPFC was derived from the whole brain group-level 

thresholded map, as we did not find it in the Harvard-Oxford atlas. Masks for the left insula and 

left Putamen were derived from the whole brain group-level thresholded map for presentation 

and finding verification purposes.  
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Functional connectivity analysis 

Beta-series correlations were used to measure the connectivity during the task (90). We 

conducted separate analyses for stimuli events and outcome events. We calculated the 

connectivity between the dACC cluster from the ROI group analysis and 24 other brain areas 

(Table S12); some are decision-making-associated, and others are not, for reference. We used 

partial correlation with the mean whole-brain beta series to account for global signal changes. 

The correlation coefficients were transformed into z-score and were used for the group-level 

connectivity estimation. We used Bonferroni correction for multiple comparison correction (N = 

24).  

Mixed Linear Models 

Mixed linear models were calculated to assess the correlations with the mean Z score, ΔGABA, 

and the learning score. Four models were calculated, and all of them included the subjects’ 

random effect. The first model explains ΔGABA with the game probability (GP) and reinforcers 

(gain or loss; GL) with an option of interaction and ΔGlu. 

Mixed model 1 (MM1): 

∆𝐺𝐴𝐵𝐴~ ∆𝐺𝑙𝑢 + 𝐺𝑃 ∗ 𝐺𝐿 + (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 

The second model explains the learning score during the MRS games with ΔGABA and ΔGlu during 

the learnable 65-35 game. Separate models were calculated separately for the gain group and for 

the loss group. 

Mixed model 2 (MM2): 

 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑐𝑜𝑟𝑒(𝑀𝑅𝑆)~ ∆𝐺𝐴𝐵𝐴 + ∆𝐺𝑙𝑢 + (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 

The third model explains the mean Z score during the decision phase with ΔGABA, ΔGlu, and the 

learning score during the 65-35 fMRI task. Separate models were calculated separately for the 

gain group and for the loss group, as we do not have all variables for each subject. 

Mixed model 3 (MM3):  

meanZscore~ ∆𝐺𝐴𝐵𝐴 + ∆𝐺𝑙𝑢 + 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑐𝑜𝑟𝑒(𝑓𝑀𝑅𝐼) + (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 

The fourth model explains the average Z score in the decision phase using only the changes in 

ΔGABA and ΔGlu, along with their interaction with game probability, in order to investigate an 

influence that could potentially be obscured by the correlation with learning. Distinct models 

were computed for both the gain and loss groups. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2024. ; https://doi.org/10.1101/2024.07.29.605168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.29.605168
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mixed model 4 (MM4):  

meanZscore~ ∆𝐺𝐴𝐵𝐴 ∗ 𝐺𝑃 + ∆𝐺𝑙𝑢 ∗ 𝐺𝑃 + (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 

 

fMRI correlation with MRS data 

In order to evaluate the connection between MRS and fMRI measurements, we employed linear 

regression. This involved correlating the average brain activities, represented in Z-score values, or 

the mean connectivity coefficients derived from various brain regions with ΔGABA or ΔGlu 

(normalized concentrations), which served as the variables of interest in this analysis. These 

calculations were conducted independently for both the gain and loss groups.  

Although MRS and fMRI data were acquired separately for each game condition, we consider 

these datasets comparable because they were acquired within a subject and within the same 

session and because participants practiced the games prior to scanning. Indeed, there was no 

significant change in learning scores between games during MRS and fMRI acquisitions. 

As part of our quality control process, participants were excluded using the following method: 

Each data point's y-value was compared to a normal distribution centered around a specific x-

value. If the likelihood of obtaining such a measurement was less than 1%, the data point was 

excluded from the analysis (p < 0.01). 
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