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Abstract

Motivation: B cells display remarkable diversity in producing B-cell receptors through recombination of immuno-
globulin (Ig) V-D-J genes. Somatic hypermutation (SHM) of immunoglobulin heavy chain variable (IGHV) genes are
used as a prognostic marker in B-cell malignancies. Clinically, IGHV mutation status is determined by targeted
Sanger sequencing which is a resource-intensive and low-throughput procedure. Here, we describe a bioinformatic
pipeline, CRIS (Complete Reconstruction of Immunoglobulin IGHV-D-J Sequences) that uses RNA sequencing (RNA-
seq) datasets to reconstruct IGHV-D-J sequences and determine IGHV SHM status.

Results: CRIS extracts RNA-seq reads aligned to Ig gene loci, performs assembly of Ig transcripts and aligns the
resulting contigs to reference Ig sequences to enumerate and classify SHMs in the IGHV gene sequence. CRIS
improves on existing tools that infer the B-cell receptor repertoire from RNA-seq data using a portion IGHV gene
segment by de novo assembly. We show that the SHM status identified by CRIS using the entire IGHV gene segment
is highly concordant with clinical classification in three independent chronic lymphocytic leukemia patient cohorts.

Availability and implementation: The CRIS pipeline is available under the MIT License from https://github.com/
Rashedul/CRIS.

Contact: mhirst@bcgsc.ca

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

During development in the bone marrow, B lymphocytes undergo
rearrangement of immunoglobulin (Ig) heavy (V, D and J) and light
chain (V and J) gene segments through recombination (Fig. 1).
Addition or deletion of nucleotides occurs at segment junctions dur-
ing recombination. In the germinal center, B-cells acquire additional
somatic hypermutation (SHM) within the Ig variable regions as part
of the adaptive immune response to generate a B-cell receptor (BCR)
repertoire diversity estimated to be as much as �1018 (Briney et al.,
2019; Janeway et al., 2004). Following SHM, B cells are positively
selected for further differentiation into memory B cells or antibody-
secreting plasma cells (Akkaya et al., 2020).

Profiling of the B-cell Ig repertoire has become an essential com-
ponent of immune research and is used clinically for malignant B-
cell classification (Briney et al., 2019; Georgiou et al., 2014). B-cell

malignancies arise at different stages of B-cell development and BCR
diversification is used as both a prognostic and diagnostic marker
(Georgiou et al., 2014; Monk et al., 2017). The presence of SHM
and specific usage of immunoglobulin heavy chain variable (IGHV)
genes are prognostic markers in different B-cell malignancies,
including chronic lymphocytic leukemia (CLL), mantle cell lymph-
oma (MCL) and follicular lymphoma (Berget et al., 2015; Damle
et al., 1999; Hamblin et al., 1999; Navarro et al., 2012). Malignant
B cells are classified into two major subtypes based on the SHM sta-
tus, where cells with very low SHM are classified as ‘unmutated
IGHV’ subtype, while those cells with evidence of SHM are classi-
fied as ‘mutated IGHV’ subtype. Unmutated IGHV subtypes of
CLL and MCL show more aggressive disease compared to the
mutated IGHV subtype (Damle et al., 1999; Hamblin et al., 1999;
Navarro et al., 2012). IGHV gene usage is also used as a prognostic
in follicular lymphoma (Berget et al., 2015).
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SHM analysis of the IGHV gene is commonly performed using
multiplex PCR and Sanger sequencing following the best practice
guidelines by the European Research Initiative on CLL (ERIC)
(Ghia et al., 2007). However the PCR-Sanger method is resource-in-
tensive and technically challenging in both clinical and research
applications and suffers from a 9% to 18% failure rate
(Stamatopoulos et al., 2017). Massively parallel sequencing of tar-
geted genomic DNA regions or RNA has emerged as an alternative
method to reliably sequence V-D-J segments (Boyd and Joshi, 2014;
Georgiou et al., 2014; Menzel et al., 2014; Yaari and Kleinstein,
2015). RNA sequencing (RNA-seq) has become the gold standard
for transcriptome analysis, applied in both clinical and research set-
tings and has been used in limited cases to identify BCR rearrange-
ment repertoire (Blachly et al., 2015; Iglesia et al., 2014; Monk
et al., 2017; Mose et al., 2016).

Several bioinformatic pipelines have been developed to infer
BCR repertoire from RNA-seq data, including ABRA (Iglesia
et al., 2014), TRUST (Hu et al., 2019), ImReP (Mandric et al.,
2020), MiXCR (Bolotin et al., 2015), V’DJer (Mose et al., 2016)
and IgID (Blachly et al., 2015). Among them, ABRA (Iglesia
et al., 2014) and IgID (Blachly et al., 2015) were not published
with stand-alone code to allow for replication. The remaining
IGHV-D-J reconstruction tools (e.g. TRUST, ImReP, MiXCR and
V’DJer) were designed to reconstruct only the CDR3 region, rep-
resenting only a portion of the IGHV gene, while the entire
IGHV gene segment is required to determine the SHM status in
B-cell malignancies. In addition, these tools have not been vali-
dated against gold standard PCR-Sanger datasets for SHM classi-
fication. To address these gaps in determining IGHV mutational
status in B-cell malignancies, we developed a bioinformatic
pipeline, CRIS (Complete Reconstruction of Immunoglobulin

IGHV-D-J Sequences), which extracts RNA-seq reads aligned to

putative Ig loci, assembles the complete IGHV gene, identifies the
most abundant Ig transcript and enumerates SHMs by comparison
with germline reference sequences. Classification of IGHV mutational

subtypes by CRIS was validated against PCR-Sanger-based clinical
classification in three independent cohorts of CLL patients and shown

to be comparable.

2 Methods

2.1 CLL samples
In the Centre for Epigenomic Technology (CEMT) cohort, periph-

eral blood samples were obtained from CLL patients undergoing
treatment at BC Cancer (n¼16) and used according to procedures
approved by the Research Ethics Board (REB H12-01767) of the

University of British Columbia (Supplementary Table S1). RNA was
purified from those peripheral blood samples and extraction was

performed on CD19þ sorted cells with >90% purity as described
(Pellacani et al., 2016).

2.2 RNA sequencing
The CEMT CLL RNA-seq datasets were generated as described
(Pellacani et al., 2016). RNA extraction, library construction and
sequencing were performed following the guidelines formulated by

the International Human Epigenome Consortium (http://www.ihec-
epigenomes.org). These guidelines as well as the standard operating

procedures for RNA-seq library construction and sequencing are
available at https://thisisepigenetics.ca/for-scientists/protocols-and-
standards and by request. Additional CLL patient RNA-seq datasets

with matching IGHV mutation status were collected from published
datasets: GSE66228 (Blachly et al., 2015), EGAD00001004046
(Beekman et al., 2018) and phs000435.v3 (Wang et al., 2011).

Fig. 1. IGHV-D-J recombination and SHM during B-cell development. BCRs are gen-

erated by ordered assembly of the Ig heavy chain gene segments (V, D and J) during

B-cell development. Addition and deletion of junctional nucleotides (N) contribute to

the diversity of BCR repertoires. BCR sequences undergo affinity maturation upon

antigen stimulation through SHMs in the variable domain (indicated in black arrows).

SHMs of Ig are enriched at the complementarity-determining regions (CDRs)

Table 1. Genomic coordinates of the putative Ig loci in the GRCh38

reference

Chromosome/contig Start End Length (bp)

Chr14 105 550 001 106 880 000 1 329 999

Chr15 21 710 000 22 190 000 480 000

Chr16 31 950 001 33 970 000 2 019 999

chr14_KI270726v1_random 1 43 739 43 739

chr16_KI270728v1_random 1 1 872 759 1 872 759

Fig. 2. CRIS workflow. CRIS extract reads from the putative Ig loci prior to assem-

bly of Ig transcripts and quantify transcript abundances. The percent of IGHV

mutations of Ig transcripts is calculated by comparing to the germline sequences
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2.3 Identification of putative Ig loci
We identified five putative Ig loci enriched with reads that were used
to reconstruct Ig containing contigs in the 16 CEMT samples
(Table 1). The detailed procedure of identifying Ig loci is described
in Supplementary Figure S1a.

2.4 CRIS pipeline

• Step 1: Read extraction prior to assembly of Ig transcripts: hg38-

bam-file was created by aligning the reads to the GRCh38 refer-

ence genome using BWA mem (v0.7.6a; Li and Durbin, 2009).

Using sambamba (v0.7.0; Tarasov et al., 2015), we extracted

reads that were aligned to the putative IGHV loci (Table 1) and

saved them in fastq format using Picard SamToFastq (v2.20.3;

Broad Institute, 2009; Fig. 2). These resultant paired-end reads

originated from the putative Ig loci were used as input for Trinity

(v2.1.1; Grabherr et al., 2011) for de novo transcriptome

assembly.
• Step 2: Identification of Ig transcripts and their abundances:

Trinity assembly performed in the previous step produced

around 250 transcripts per sample. To filter the transcripts that

have similarity (expectation value �20) with the germline IGHV

sequences, we used blastn (v2.9.0; Altschul et al., 1990) with de-

fault parameters with a custom database of IGHV sequences

downloaded from the international ImMunoGeneTics informa-

tion system (IMGT) (Giudicelli et al., 2005). The resultant Ig

transcripts were used in Salmon (v0.8.1; Patro et al., 2017) to

quantify their abundances with a k-mer of 31 bp. Transcript

with the highest TPM (transcripts per million) value was marked

as the dominant clone.
• Step 3: SHM and clonotype analysis: The Ig-transcript sequences

identified in step 2 were queried in IgBLAST (v1.14.0; Ye et al.,

2013) against the germline V, D and J gene database of IMGT.

IgBLAST returned the percent identity of the IGHV segment of

Ig transcripts compared to the germline alleles and clustered the

similar Ig transcripts into clonotypes. Productive Ig transcript

with highest TPM value was used to determine IGHV mutation

status of CLL sample and further compared with available

clinical PCR-Sanger data. Transcripts having TPM values within

one log10 of the highest expressed transcript were also consid-

ered while comparing with the PCR-Sanger data according to

(Blachly et al. 2015).

2.5 Analysis of SHM status using V’DJer, TRUST and

MiXCR
V’DJer, TRUST (v3.0.3) and MiXCR (v3.0.3) were run on the

RNA-seq bam file generated by STAR (v2.7.5a) aligner (Dobin
et al., 2013) using GRCh38 genome as reference. During STAR

alignment ‘–outSAMunmapped Within’ was used to include the un-
mapped reads in the bam file. All three tools were run with default
parameters to generate VDJ contigs of IGH. VDJ contigs were ana-

lyzed by IgBLAST to generate the percent identity of IGHV sequen-
ces compared to the germline database.

3 Results

3.1 De novo assembly-based Ig detection from RNA-seq
De novo assembly using Trinity (Grabherr et al., 2011) for 16

deeply sequenced (�300 M read pairs) CLL RNA-seq libraries
generated an average of �450 000 contigs per sample with 6–29

contigs demonstrating IGHV sequence homology. However, de
novo assembly of the complete RNA-seq read sets required sig-
nificant computational resources (Hölzer and Marz, 2019) and

thus we sought to identify the fraction of reads in the RNA-seq
libraries corresponding to the Ig loci. Using the resulting assem-

blies, we found that on average 99.85% of the sequence reads
used to reconstruct IGHV containing contigs originated from five
putative Ig loci in the GRCh38 reference (Supplementary Table

S2). These putative Ig loci consist of human Ig locus, Ig pseudo-
gene loci and unlocalized contigs at chromosomes 14, 15 and 16

(Table 1 and Supplementary Fig. S2). This suggests that sequence
reads used to reconstruct Ig sequence not only map to the refer-
ence Ig locus but also to pseudogene regions both within the cur-

rent assembly and in unlocalized contigs. We hypothesized that
this novel set of loci could be used as a highly specific filter to re-
construct IGHV-D-J sequence.

Table 2. Concordance of IGHV gene prediction and percent mutation between PCR-Sanger-based analysis and CRIS

Sample ID Sanger CRIS

IGHV Mutation (%) IGHV IGHV muta-

tion (%)

IGHD IGHJ No. of Ig transcript No. of clonotype

US-1422282 V1-69 0.4 IGHV1-69*04 0.3 IGHD6-19*01 IGHJ4*02 7 4

US-1422366 V1-18 0.34 IGHV1-18*04 0 IGHD3-3*01 IGHJ6*02 21 5

US-1422311 V3-11 2 IGHV3-11*01 2 IGHD4-17*01 IGHJ4*02 5 4

US-1422278 V3-74 5.4 IGHV3-74*01 5.4 IGHD5-18*01 IGHJ6*02 5 3

US-1422335 V4-59 10.2 IGHV4-59*02 8.5 IGHD3-10*01 IGHJ4*02 3 2

US-1422321 V3-66 0.7 IGHV3-66*02 0.7 NA IGHJ4*02 9 4

US-1422333 V4-34 0 IGHV4-34*01 0 IGHD3-3*01 IGHJ6*02 6 3

US-1422356 V2-70 0.8 IGHV2-70*01 0.3 IGHD3-16*01 IGHJ3*02 15 8

US-1422368 V3-74 6.1 IGHV3-74*03 8.8 IGHD1-1*01 IGHJ5*02 2 2

US-1422309 V3-53 8.8 IGHV3-53*01 6.1 IGHD3-10*01 IGHJ6*03 4 3

US-1422302 V2-70 0.3 IGHV2-70*01 0.3 IGHD2-15*01 IGHJ4*02 20 4

US-1422351 V1-46 0 IGHV1-46*01 0 IGHD3-10*01 IGHJ4*02 6 3

US-1422314 V1-3 0.7 IGHV1-3*01 0 IGHD6-19*01 IGHJ4*02 5 3

US-1422342 V3-21 0 IGHV3-21*01 0 IGHD3-16*01 IGHJ4*02 4 2

US-1422350 V3-48 2.8 IGHV3-48*03 2.4 IGHD3-22*01 IGHJ4*02 3 2

US-1422352 V1-46 0 IGHV1-46*01 0 IGHD3-22*01 IGHJ6*02 17 4

Notes: CRIS reconstructed V-D-J segments of Ig transcripts and identified multiple transcripts per sample that belong to different clonotypes. NA is used in

cases where IGHD genes were absent.
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3.2 CRIS pipeline development
Given the time required to complete a full assembly from an RNA-
seq library, we sought to extract Ig sequences prior to performing as-
sembly. For this, we leveraged the putative Ig loci identified in our
pilot set of libraries, retrieved sequences aligned by BWA mem (Li
and Durbin, 2009) within these coordinates (�1% of all reads) and
subjected these to de novo assembly using Trinity (Grabherr et al.,
2011). Enriching for Ig sequences from the bulk RNA-seq sequence
set reduced the run time for assembly by two orders of magnitude
while not significantly impacting the subsequent SHM analysis of Ig
transcripts (Supplementary Table S3). We confirmed that our ap-
proach also successfully assembled the IGHV-D-J and N-junctional
segments (Fig. 3a, Table 2 and Supplementary Table S4).

Having established that enrichment of sequences using our Ig
feature set significantly reduced compute resources without a re-
duction in the sensitivity, we next examined the impact of RNA-
seq sequencing depth. For this, we leveraged a set of 16 CLL
RNA-seq libraries with an average of �28 million paired reads
from GSE66228 (Blachly et al., 2015) and compared these to the
results obtained from our deeply sequenced CEMT libraries
(�300 million paired reads). We found no significant difference
in the fraction of the IGHV gene assembled between deep and
shallow RNA-seq libraries (Fig. 3b). This appears to be in part
due to the high expression level of the dominating clone in the

GSE66228 dataset (Blachly et al., 2015) driving sufficient se-
quence read coverage (at least 104 reads) for Trinity to assemble
the Ig transcript. However, as expected, the overall number of Ig
transcripts identified correlated with the sequencing depth. Based
on this analysis, we developed a pipeline called CRIS and bench-
marked its ability to call IGHV mutation status. In the CRIS pipe-
line, we automate the process of read extraction from our novel
putative Ig coordinates, perform quality trimming of selected se-
quence reads, assemble transcripts, enumerate transcript abun-
dances and identify somatic mutations using reference germline
sequences for SHM classification.

3.3 CRIS is concordant with clinical IGHV mutation

status
Having established that CRIS could efficiently assembly IGHV tran-
scripts, we explored its ability to call SHM mutation status in CLL.
Unmutated CLL (uCLL) is clinically defined by IGHV sequence
alignments of >98% identity to the reference sequence (Georgiou
et al., 2014; Monk et al., 2017). To benchmark CRIS against gold
standard Sanger-based clinical classification, we analyzed a series of
published RNA-seq libraries from CLL patients with matched
Sanger sequencing classifications. CRIS reported SHM on clonally
amplified Ig transcripts and its classification of mutated/unmutated

Fig. 3. Evaluation of CRIS to reconstruct IGHV-D-J sequences. (a) The most abundant Ig transcript from US-1422278 sample was aligned to the germline database using

IgBLAST where top hit germline genes are shown. In the alignment, mismatches are represented as nucleotide bases and matches as dots. The alignment length, number of

matches and mismatches are 296, 280 and 16, respectively. Total number of matched nucleotides between query and germline IGHV sequence is used to calculate percent

identity e.g., 100*(280/296) ¼ 96.4%. N-junctional sequences are highlighted in gray boxes. (b) Fraction of the IGHV gene assembled in two CLL RNA-seq datasets with dif-

ferent sequence depths and lengths as indicated. An unpaired two-tailed t-test demonstrated no significant (P¼0.15) difference between the two distributions (NS). (c) Scatter

plot comparing the percent of mutation of IGHV as predicted by CRIS and clinical PCR-Sanger-based analysis for 16 CLL patient samples obtained from GSE66228
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CLL (mCLL/uCLL) showed perfect concordance with Sanger-based
clinical calls in the GSE66228 dataset (Blachly et al., 2015; Table 2).
The percent mutations reported by CRIS and the clinical test were
also highly correlated (Pearson’s r¼0.95, 95% CI 0.86–0.98;
Fig. 3c). The reported IGHV mutational frequency was identical in
8/16 cases with the remaining cases showing small deviations (mean
deviation 0.22%) that did not change the SHM classification. In
seven of the eight divergent cases, the percent IGHV identity
reported by the Sanger-based test was higher compared to CRIS
(Table 2). Closer inspection of the alignments revealed that this like-
ly an artifact in the Sanger calls due to incomplete IGHV coverage
by the PCR product used as denominator to calculate percent iden-
tity (Blachly et al., 2015). In addition to calling mCLL/uCLL status,
CRIS also reported 2–8 dominant clonotypes in the GSE66228 data-
set, a feature not detected by clinical Sanger-based classifiers.

We further benchmarked CRIS using two independent CLL
RNA-seq datasets with matched IGHV mutation status determined
by Sanger sequencing. In the phs000435.v3 dataset (Wang et al.,
2011), CRIS calls were identical to the Sanger-based calls in 50/51
cases with 98.3% accuracy, 100% sensitivity and 97.3% specificity
(Fig. 4a). A single sample (DFCI-5121) was reported as mCLL
(Wang et al., 2011), however, CRIS determined it as uCLL. In the
third independent dataset, EGAD00001004046 (Beekman et al.,
2018), CRIS agreed with clinical classification in all cases and deter-
mined the identical IGHV gene as the dominant clone (Fig. 4b and
Supplementary Fig. S1b).

3.4 Comparison of CRIS against existing tools
We next compared CRIS with previously published tools: V’DJer
(Mose et al.2016), TRUST (Hu et al., 2019) and MiXCR (Bolotin
et al., 2015) that reconstruct BCR repertoires from short-read RNA-
seq data. In 16 CLL RNA-seq samples obtained from GSE66228
(Blachly et al., 2015), V’DJer did not produce full-length IGHV as it
is designed to generate contigs of fixed length (360 bp) spanning the
CDR3 region. Thus, on average, V’DJer assembled 75.44% of the
IGHV gene whereas CRIS reconstructed 99.74% (Fig. 4c). Partial re-
construction of the IGHV gene could lead to misclassification of
IGHV mutation status especially for samples with IGHV sequence
identity near the established 98% cutoff. For example, CRIS recon-
structed 295 bp out of 296 bp of the IGHV3-74*03 sequence whereas
V’DJer assembled 226 bp in US-1422368 (Supplementary Fig. S3a
and b). The additional 69bp reported by CRIS contained two muta-
tions that resulted in a 1.2% difference in reported percent identity be-
tween CRIS (91.2%) and V’DJer (89.4%). TRUST assembled only
41.5% of the IGHV gene on average using the GSE66228 dataset
(Fig. 4c). Furthermore, V’DJer and TRUST did not produce a contig
for US-1422282 that contained IGHV1-69 gene whereas CRIS gener-
ated IGHV1-69 containing contig in agreement with the clinical call.

To compare the computational performance between CRIS and
V’DJer, both of the pipelines were configured to use up to 16
threads. In the shallow libraries from GSE66228 dataset, CRIS had
�14% faster total run time (average 3.07 wall-clock minutes) com-
pared to V’DJer (average 3.50 wall-clock minutes). Using deeper

Fig. 4. Comparison of CRIS with clinical data and existing tools. (a and b) Confusion matrix represents the classification accuracy of CRIS compared to Sanger-PCR data in

two independent CLL cohorts. The P-value was calculated by one-sided binomial test. (c) Comparison of CRIS, V’DJer and TRUST to reconstruct the proportion of IGHV

sequences in GSE66228 (Blachly et al., 2015) dataset. The average fraction of IGHV gene length for each tool is represented by dashed horizontal lines

CRIS: complete reconstruction of immunoglobulin V-D-J sequence 5
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RNA-seq datasets (�300 million reads) V’DJer took five times more
time to run than CRIS (87 versus 16 wall-clock minutes on average).
Using 16 threads, TRUST took 36 wall-clock minutes on average
using GSE66228, an order of magnitude longer than CRIS. MiXCR
(Bolotin et al., 2015) generated partial CDR3 sequence contigs with
<10% of IGHV gene sequence in the GSE66228 dataset of 75 bp
read length. MiXCR recommends �100 bp read length to extract
CDR3 repertoires from RNA-Seq data. Thus, our comparisons sug-
gest that existing BCR reconstruction tools developed to extract just
CDR3 regions perform poorly compared to CRIS in the determin-
ation of SHM status because they are designed to generate and ana-
lyze partial IGHV sequences. Overall, CRIS showed increased
sensitivity and specificity and reduced run time over existing RNA-
seq-based BCR reconstruction tools.

4 Discussion

PCR-Sanger-based Ig SHM classification is resource-intensive, sub-
ject to PCR bias, and suffers from an �9% to 18% failure rate
(Ghia et al., 2007; Stamatopoulos et al., 2017). In contrast, RNA-
seq is now routinely applied in the clinical setting, eliminates the
need for targeted amplification of Ig locus and can be used to iden-
tify BCR rearrangement repertoire (Blachly et al., 2015). Here, we
showed that CRIS can rapidly analyze RNA-seq to detect IGHV
mutation status in CLL at a sensitivity and specificity equivalent to
current Sanger-based clinical tests. Furthermore, CRIS was able to
reconstruct the entire IGHV sequence thus increasing the accuracy
of SHM classification. This is in contrast to a majority of existing
pipelines designed to infer only CDR3-derived sequences (Bolotin
et al., 2015; Hu et al., 2019; Mose et al.2016).

A registry of �1500 CLL patients showed that 90% of patients
were not screened for IGHV mutations (Mato et al., 2016). In the
public domain, there are thousands of RNA-seq data available for dif-
ferent B-cell malignancies but their SHM status of IGHV genes is ei-
ther not reported or partially reported. Furthermore, for a majority of
publicly available RNA-seq datasets where SHM status is reported,
detailed IGHV mutation reports with gene name, percent identity and
clonal frequency are not available restricting the ability to assess mu-
tational values. To meet this need, we developed CRIS and demon-
strated its ability to rapidly classify IGVH mutational status with
clinical accuracy. We anticipate that CRIS will prove to be useful in
the mining of available B-cell RNA-seq datasets and that it will pro-
vide a framework to incorporate RNA-seq as a diagnostic tool to
examine the BCR clonal rearrangement and SHM status.
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