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Objectives: Brain arteriovenous malformation (AVM) is one of the most common causes

of intracranial hemorrhage in young adults, and its expeditious diagnosis on digital

subtraction angiography (DSA) is essential for clinical decision-making. This paper firstly

proposed a deep learning network to extract vascular time-domain features from DSA

videos. Then, the temporal features were combined with spatial radiomics features to

build an AVM-assisted diagnosis model.

Materials and method: Anteroposterior position (AP) DSA videos from 305 patients,

153 normal and 152 with AVM, were analyzed. A deep learning network based on

Faster-RCNN was proposed to track important vascular features in DSA. Then the

appearance order of important vascular structures was quantified as the temporal

features. The structure distribution and morphological features of vessels were quantified

as 1,750 radiomics features. Temporal features and radiomics features were fused in a

classifier based on sparse representation and support vector machine. An AVM diagnosis

and grading system that combined the temporal and spatial radiomics features of DSA

was finally proposed. Accuracy (ACC), sensitivity (SENS), specificity (SPEC), and area

under the receiver operating characteristic curve (AUC) were calculated to evaluate the

performance of the radiomics model.

Results: For cerebrovascular structure detection, the average precision (AP) was 0.922,

0.991, 0.769, 0.899, and 0.929 for internal carotid artery, Willis circle, vessels, large veins,

and venous sinuses, respectively. The mean average precision (mAP) of five time phases

was 0.902. For AVM diagnosis, the models based on temporal features, radiomics

features, and combined features achieved AUC of 0.916, 0.918, and 0.942, respectively.

In the AVM grading task, the proposed combined model also achieved AUC of 0.871 in

the independent testing set.

Conclusion: DSA videos provide rich temporal and spatial distribution characteristics

of cerebral blood vessels. Clinicians often interpret these features based on subjective
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experience. This paper proposes a scheme based on deep learning and traditional

machine learning, which effectively integrates the complex spatiotemporal features in

DSA, and verifies the value of this scheme in the diagnosis of AVM.

Keywords: radiomics approach, real-time image, temporal features, Faster-RCNN, digital subtraction

angiography, arteriovenous malformation

INTRODUCTION

Digital subtraction angiography (DSA) is the most important
imaging technique for cerebrovascular disease diagnosis (1). As
a type of real-time images, it provides a unique combination of
high spatial and temporal resolution, and it is able to exquisitely
delineate the location and number of feeding vessels and the
pattern of perfusion (2). Brain arteriovenous malformations
(AVM) are fast-flow vascular networks characterized by direct
shunts from feeding arteries to draining veins, devoid of the
interposed capillary system. AVM is more common in the central
nervous system (CNS) than other organs, with a prevalence rate
of 1.3 per 100,000 population (3). Although only a small portion
of brain AVM patients present symptoms of headache or seizure,
a morbidity rate of 30–50% and a mortality rate of 10–15% were
reported in young adults with intracerebral hemorrhage (4). The
definitive diagnosis of AVM relies on cerebral DSA (2). However,
it might be labor- and time-consuming for inexperienced centers
or doctors to read a 2D-DSA video and give an accurate diagnosis
of brain AVM. Therefore, an automatic AVM diagnosis system
would be helpful to provide objective diagnostic hints, especially
in emergency cases.

Recent studies on AVM diagnosis have focused on AVMnidus

extraction and vessel classification based on 4D CTA (computed
tomography angiography) or 3DRA (three-dimensional
rotational angiography) medical images (5–7) and focus on the

extraction of AVM nidus and the classification of feeding vessels

and drain vessels (8). However, these images are not able to
provide information of vascular distribution and perfusion. DSA
is the gold standard of cerebrovascular diagnosis that contains
all the information mentioned above, but it is difficult to extract
information from a DSA video since no effective method has
been developed yet. Our study proposed a methodology to
extract vascular distribution and perfusion from a DSA video
in an automated manner by combining Faster-RCNN and
radiomics method, where Faster-RCNN is used to detect vessel
structures and radiomics is used to obtain static image features.

Faster-RCNN is an algorithm, and it used to recognize the
blood vessels of a DSA video in our method. It is widely used
in target detection and recognition in natural images (9–12) and
also shows high efficiency in clinical applications. It has been
used in the region of interest detection and lesion localization
on medical images, such as ultrasound images, X-ray images,
and CT images (13–15). Sa et al. (13) applied a fine-tuned
Faster-RCNN trained on natural images to identify landmark
points in lateral lumbar X-ray images and demonstrated that
using very small annotated clinical datasets can also achieve
great accuracy. Radiomics is used to transfer medical images
into high-dimensional, mineable features that reflect underlying

pathophysiological information (16) and has a great potential
in precise diagnosis and treatment planning. It uses machine
learning or deep learning techniques to solve various clinical
tasks (17).

Automated AVM diagnosis is helpful to make the diagnosis
of AVM more objective and reliable. Designing an automated
AVM diagnosis model based on a DSA video is a challenging task
because of the following obstacles. First of all, most of the existing
medical image diagnosis models are based on static images. DSA
reflects the perfusion of a three-dimensional vascular network
that changes with time. The existing modeling methods based
on static images are not suitable. Secondly, in DSA imaging, the
sequence of vascular appearing reflects differences in vascular
perfusion, and these differences are essential for the diagnosis
of cerebrovascular diseases. Because of the complexity of the
cerebrovascular network, it is difficult to quantitatively evaluate
the sequence of key blood vessels. Thirdly, the assessment of
images depends on the experience of doctors, and inconsistencies
of the results among different doctors for the same case are likely
to occur.

To overcome these challenges, an automatic detection model
of the blood vessel phase based on Fast-RCNN is proposed. This
model can automatically identify the early arterial phase, the
late arterial phase, the early venous phase, the late venous phase
with one sinus, and the late venous phase of the cerebral vessels.
According to the results of the time phase detection, the time
characteristics contained in theDSA image can be obtained. Then
the key frames in the DSA image are extracted to calculate the
radiomics features. Finally, the temporal features and radiomics
features are fused to establish the final AVM diagnostic model.

MATERIALS AND METHODS

Patients and Materials
This study protocol was approved by the ethics committees of
the Huashan Hospital, Fudan University, and informed consent
was waived since the retrospective study. From January 2010 to
December 2013, 1,025 patients with cerebrovascular diseases who
underwent DSA examination before operation or conservative
treatment were reviewed. All 2D-DSA were conducted by senior
neurosurgeons or neuro-interventional radiologists with more
than 10 years of experience, on a Philips UNIQ FD20 digital
subtraction biplane angiographic system. After a sheath (with
an internal diameter of 1.65mm and 10 cm long) was placed
inside the femoral artery and an angiopointer (with an internal
diameter of 1.22mm and length of 100 cm) was placed at
the beginning of ICA or VA, the contrast agent was injected
by a contrast delivery system (Angiomat Illumena). During
the 6-s anteroposterior position digital subtraction angiography
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image acquisition, 6ml of the contrast agent was injected
at a rate of 4 ml/s under a pressure of 200 Pa to obtain
frames, where rates of Philips’ instrument varied from 166 to
333 ms/frame.

AVM cases that are included in this study must satisfy the
following aspects: (1) cases have anteroposterior position 2D-
DSA videos; (2) lesions are visible in anteroposterior position
images by experienced doctors; and (3) AVM cases without other
diseases such as moyamoya disease and brain tumor (18), which
may bias the DSA video and cause uncertainty in the validation
of our model. The inclusion criteria for non-AVN cases in this
study are as follows: (1) cases show negative results in the DSA
video but are diagnosed by other medical image and (2) blood
vessel disease cases that do not affect the distribution of blood
vessels, such as aneurysm.

Finally, a total of 305 cases (153 non-AVM vs. 152 AVM)
were collected. Among the 153 non-AVM cases, 31 were
diagnosed with cavernous hemangioma by MRI, and 46 were
diagnosed as aneurysm-negative by DSA, but confirmed as
spontaneous subarachnoid hemorrhage in CT. Thirty-six cases
were negative in DSA anteroposterior position images but
were confirmed with aneurysms in three-dimensional rotational
angiography (3DRA). Forty cases were suspected of aneurysms
by computed tomography angiography (CTA) or magnetic
resonance angiography (MRA) but proved to be normal or artery
ectasia by DSA. Table 1 shows information about the age, gender,
and Martin-Spetzler Score (19) of the AVM patients.

Feature Extraction and Selection
Vascular Structure Detection
AVM will change the perfusion characteristics of the patient’s
cerebrovascular network. In a DSA video, doctors mainly
diagnose AVM and judge its severity based on the sequence
of appearance of the main blood vessels and the structural
characteristics of the vascular network. Because of the complex
structure of cerebral blood vessels, it is difficult for the human
eye to accurately quantify the order of appearance of the main
blood vessels. We conducted a target detection algorithm, Faster-
RCNN, to obtain DSA sequence information. Two specialists,
who have been engaged in clinical cerebrovascular disease
for more than 5 years, annotated the vascular structures in
different phases, as shown in Figure 1. If there were any
ambiguity, the third senior doctor would review and give the
final decision.

In the vessel structure recognition, we have annotated the key
vessels in the DSA video. As shown in Figure 1, rectangular boxes
of different sizes are used to mark important vascular structures
such as carotid artery, Willis circle, large vein, venous vessel,
and venous sinus. In 153 non-AVM patients, a total of 1,714
vascular structures were annotated, 80% of which were used for
training of the Faster-RCNN network (Figure 2) and 20% were
used for testing. The labeling statistics of each vascular structure
are shown in Table 2. We applied average precision (AP), mean
average precision (mAP), and intersection-over-union (IoU) to
evaluate the performance of the detection model. The AP of

TABLE 1 | Baseline characteristics of patients with lower levels of brain AVM (Grade I,II,III) and higher levels of brain AVM (Grade IV, V).

Variables Grade I, II, III Grade IV, V p-value

Gender(M/F) 81 (43/38) 71 (37/34) 0.977

Age 29.12 ± 13.57 28.87 ± 12.43 0.899

Smoking 0.073

Non-smoking 57 (70.3%) 58 (82.8%)

Smoking 24 (29.7%) 13 (17.2%)

Drinking 0.315

Non-drinking 63 (77.8%) 59(84.2%)

Drinking 18 (22.2%) 12 (16.8%)

Hypertension 0.951

Non-hypertension 72 (88.9%) 62 (88.5%)

Hypertension 9 (11.1%) 9 (11.5%)

Size <0.001

Small (<3 cm) 48 (59.2%) 0

Medium (3–6 cm) 33 (40.8%) 44 (61.9%)

Large (>6 cm) 0 27 (38.1%)

Location <0.001

Non-situated in neurological 13 (16.0%) 1 (1.40%)

Critical areas

Situated in neurological 68 (84.0%) 70 (98.6%)

Critical areas

Deep venous drainage <0.001

Non-deep venous drainage 26 (32.1%) 7 (9.80%)

Deep venous drainage 55 (67.9%) 64 (90.2%)
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FIGURE 1 | Annotation details of different phases. (A) Early arterial phase. (B) Late arterial phase. (C) Early venous phase. (D) Late venous phase with one sinus. (E)

Late venous phase with two sinuses.

FIGURE 2 | The structure of Faster-RCNN network.

each cerebrovascular structure and the mAP on the test set
were calculated to evaluate the performance of the multivessel
detection model.

Temporal Features
The order in which important blood vessels appear defines
the different phases of the DSA video (Table 3). According
to the results of Fast-RCNN automatic tracking, DSA videos
are divided into five phases: early arterial phase, late arterial
phase, capillary phase, early venous phase, and late venous
phase, respectively, according to the criteria described in
Table 3. Each phase can be further divided into early and
later phases. In order to facilitate computer quantification,
complex blood vessel temporal information is integrated
into five temporal features. These five characteristics can

TABLE 2 | Data summary of structures annotations.

Category Training set Test set Total

Annotation num Carotid artery 260 62 322

Willis circle 267 67 334

Vein 280 70 350

Venous Vessel 276 70 346

Venous sinus 289 73 362

Total 1,372 342 1,714

simply and directly describe the sequence of different time
phases. Details of the proposed five temporal features were
summarized in Table 3.
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TABLE 3 | Phase classification and temporal features extraction.

Phase classification

Early arterial phase Both early and late arterial phases only detect the internal carotid artery and the circle of Willis. The vascular tree in

early phase is incomplete, and it is complete in late phase.Late arterial phase

Capillary phase There is no apparent blood vessel.

Early venous This phase only has large veins.

Late venous This phase has both large veins and sinuses

Temporal features Features value

T1 Venous sinuses appear before the end of the artery. Yes (1) No (0)

T2 Venous sinuses appeared before the disappearance of the circle of Willis. Yes (1) No (0)

T3 Venous sinuses appear before venous vessels. Yes (1) No (0)

T4 Veins appear before wills ring disappeared. Yes (1) No (0)

T5 No obvious capillary phase. Yes (1) No (0)

Radiomics Features
In addition to the temporal feature, the distribution structure
of the vascular network is also an important feature for
AVM diagnosis (20). Therefore, in this step, we use the
radiomics method to extract the radiomics features in the DSA
static frames. To reduce the subjectivity of data selection, we
selected five frames in equal proportion from the beginning
to the end of a video. Radiomics features were extracted
from these five DSA frames. Obtained features mainly fell
into three groups: intensity, texture, and wavelets (21–23).
The intensity group consisted of 16 features that describe the
overall intensity and heterogeneity information of the whole
image. The texture group contained 54 features, estimating
the gray-level regional spatial distribution. In the wavelet
group, we transformed the intensity and texture features into
eight frequency subbands via wavelets to obtain additional
information, obtaining 280 features.

Feature Integration
To verify the significance of the proposed features, three sets of
features were determined:

i. The temporal features. Table 3 shows the detailed information
of the temporal features. This group of features was set
to determine the association between temporal features and
AVM diagnosis.

ii. The radiomics features. A total of 1,750 (350 × 5) radiomics
features were extracted from each sample. This group
of features was set to represent the vessel distribution
characteristics for AVM diagnosis.

iii. The combined features. These two feature sets were
concatenated into an integrative dataset, and a model was
expected from two types of features with higher accuracy
that should capture static and dynamic information from
input images.

To exclude redundant and irrelevant features, we applied
the iterative sparse representation (ISR) for feature selection
(24, 25). A partial sample was selected for SR in each
iteration, and the result of multiple SRs was calculated on

average to obtain coefficients, denoting the importance of the
corresponding feature.

Classification
We applied the support vector machine (SVM) as our classifier,
which is efficient in machine-learning tasks with limited
samples (26–28).

For AVM diagnosis, 305 cases were randomly divided into
two groups: an independent testing cohort and a cross-validation
cohort at a ratio of 3–7. We also applied the leave-one-out (LOO)
cross-validation test diagnosis model with different feature sets.
Then, the independent validation set was used for further
evaluation of the diagnostic performance of the diagnosis model.
We calculated the area receiver operating characteristic (ROC)
curve to establish the overall performance of the models.

For AVM grading, a total of 152 AP series with visible nidus
were considered as cross-validation cohorts, shown in Table 1.
Accuracy (ACC), sensitivity (SENS), specific (SPEC), and area
under the ROC (AUC) are used to evaluate the performance of
our model.

The overall flowchart was shown in Figure 3. The injections
for fine-tuned Faster-RCNN were complete DSA sequences,
which were used to obtain temporal features. For diagnosis
modeling, the final input were radiomics features collected from
our equal-proportional sampling and temporal features obtained
from the Faster-RCNNmodel.

RESULTS

The Cerebrovascular Structure Detection
Based on the predicted results, we calculated the Precision–
Recall (P-R) curve of five types of blood vessel ROI and
calculated the area under the P-R curve (average precision) to
measure the model’s detection precision of each blood vessel
structure. We used the target detection model to calculate the
AP values of the internal carotid artery, the Willis circle, the
large vein, the venous blood vessel, and the venous sinus,
respectively. The results are shown in Figure 4. In the test set,
the AP of the vein was 0.889, that of the internal carotid artery
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FIGURE 3 | DSA analysis process from extraction to model building. Temporal features are obtained from the whole series, while radiomics features are extracted

from 5 frames, representing early arterial phase, later arterial phase, capillary phase and vein phase, and sinus phase.

FIGURE 4 | Precision-Recall curve of five structure and AP value of each

structures. The AP of the internal carotid artery is 0.922, of the circle of Willis is

0.991, of the vein is 0.889, of the venous sinus is 0.929, and of the venous

blood vessel is 0.769.

was 0.922, that of the circle of Willis was 0.991, that of the
venous sinus was 0.929, and that of the venous blood vessel
was 0.769.

The model had good performance in discriminating the circle
of Willis and deficient in discriminating veins. The mAP of the
five types of blood vessel, detected by this model, was 0.902.
We can conclude that this model had good performance in the
detection of vascular structure based onDSA. Then, we visualized
the detection results of the representative images. The model can
detect the positions of the internal carotid artery and the circle
of Willis in the arterial phase images, as shown in Figures 5A,B.
The positions of large veins, venous blood vessels, and venous
sinuses can be detected in venous phase images, as shown in
Figures 5D–F. The capillary phase is shown in Figure 5C, where
no obvious vascular structure can be detected.

AVM Diagnosis
After feature selection, the feature contribution of the combined
features is shown in Figure 6. Table 4 illustrates the classification
results by LOO cross-validation and independent validation
cohorts in three different feature sets. The corresponding model
was firstly determined in an LOO cross-validation experiment

based on AUC. Then, we evaluated themodel on the independent
validation set. The traditional radiomics method achieved an
ACC of 0.856 and an AUC of 0.913. The temporal features
obtained an ACC of 0.850 and an AUC of 0.873. Our proposed
method (combined features) yielded an ACC of 0.889 and an
AUC of 0.967 in differentiating between AVM and non-AVM
DSA (Table 4). Receiver operating characteristic (ROC) curves
of the three features group are summarized in Figure 7.

AVM Grading
As shown in Table 1, age, smoking history, and hypertension
cases were significantly different between the normal cases and
the brain AVM patients. The baseline characteristics of patients
with lower levels of brain AVM (Grade I, II, III) and higher
levels of brain AVM (Grade IV, V) are presented in Table 1.
More patients with higher levels of brain AVM (Grade IV, V)
presented with epilepsy than patients with lower levels of brain
AVM (Grade I, II, III) (p < 0.001), probably due to the stimulus
of larger nidus to the cortex.

Considering the small number of cases and the imbalance
of data at all scores, we were able to design both high (Grade
IV, V) and low (Grade I, II, III) level classification tasks.
To verify the effectiveness of temporal features, combined,
and radiomics features were considered in this task. The
model’s indicators with and without temporal features are
shown in Table 5. After combining the temporal features, the
indicator had a slight increase in accuracy. This result proved
that the temporal features had an effect on grading of the
deformity group.

DISCUSSION

Being relatively convenient and non-invasive, CTA and MRA
usually serve as the primary tools for screening brain AVM
after patients suffer from headache or seizure. Depending on
postprocessing, CTA and MRA often demonstrate insufficient
resolution and artifacts. Moreover, CTA and MRA could only
reveal the whole brain vessels in a static image. Therefore, they
cannot be used to accurately evaluate AVM. In contrast, through
contrast injection into one single brain inflow artery, DSA is able
to clearly delineate the feeding and draining vessels of AVM. The
primary diagnosis of AVM needs to be ultimately confirmed by
DSA. In addition, one of the classic grading systems on brain
AVM, the Spetzler–Martin (SM) (19) grade could be scored
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based on DSA videos with regards to the size, the pattern of
venous drainage, and the neurological eloquence of the adjacent
brain (18, 19). This could provide guidance in further treatment
decision-making. Specifically, multimodality approaches by
microsurgical resection, endovascular embolization, and
radiosurgical technique could be applied to Grades I, II, and III
brain AVMs, while the recommended management of Grades
IV and V brain AVMs is conservative treatment (19, 29).
Therefore, patients suspected of brain AVM are expected to
undergo DSA examination, regardless of the following varied
treatment techniques. It might be challenging for junior doctors
or inexperienced ones to give a definitive diagnosis. The model
we built up using vascular phase feature extraction based on deep
learning and DSA radiomics features based on machine learning
is able to expeditiously recognize brain AVM on anteroposterior
position DSA videos, shedding lights on brain AVM artificial
intelligence study.

The DSA video provides both dynamic information and
static information, which is valuable for cerebrovascular disease
diagnosis. The characteristics of DSA imaging are as follows: as
the contrast medium flows in the cerebrovascular, the developed
structure will gradually change, and the number of frames in
each case is unpredictable (30). DSA video images and natural
video images have similarities that they can reflect the state of

the target within a certain time period, but the difference is
that natural video images are usually RGB images, reflecting
the behavior of objects, while the DSA videos are grayscale,
reflecting the periodic changes of the cerebrovascular structure
with limited and unfixed frames. Most researches focused on
how to extract features from the video that can describe the
video actions better. The traditional video classification usually
uses static apparent and temporal features for classification tasks.
The preferred temporal features include spatial–temporal interest
points, the histogram of the optical flow, dense trajectories
(31–34), and so on. The above features are manually designed
features and require lots of prior knowledge. Therefore, video
classification based on deep learning is favored bymore andmore
researchers and has become the mainstream research method in
this field. The preferred methods are the dual-stream method
(35), using CNN to extract spatial features and optical flow to
obtain temporal features, and long-term recurrent convolution
(LRCN) (36, 37), which extracts the apparent information of the
video frame through the CNN layer and retains the information
of time dimension through the LSTM layer.

However, these classic video classification methods are not
suitable for DSA videos for three reasons: First, the number
of DSA frames is not fixed, which is usually between 20 and
50 frames. The development status of each frame is related to

FIGURE 5 | (A–F) Detecting results of DSA videos with different phase. From left to right are arterial phase I, II, capillary phase, vein phase, venous sinus phase I, and

venous sinus phase II. In arterial phase I, the confidence level of the internal carotid artery is 0.908, the Willis Circle is 0.986; In arterial phase II, the internal carotid

artery is 0.957, the Wil lis Circle is 0.986; In vein phase, the confidence level of vein detection is 0.809, venous vessel is 0.900; In venous sinus phase I, the confidence

level of vein is 0.909, venous vessel is 0.944, venous sinus is 0.980; In venous sinus phase II, the confid ence level of large vein is 0.871, venous vessel detection is

0.956, and venous sinus is 0.985 and 0.990.
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the patient’s blood flow rate and the shooting interval of the
machine. In other words, when random frames from each case
are selected, the change of the image in time dimension will be
different. Second, there are interference, noise, and artifacts that
will influence the image quality. Therefore, it is difficult to obtain
effective information. Finally, the number of DSA data is limited
in our research, which makes it hard to meet the conditions of
deep learning.

The Faster-RCNN model achieves good performance in
vessel structure detection, and the temporal feature, which
was introduced in this study, provides the temporal features
of the real-time image. We can use Faster-RCNN to obtain
reliable temporal features and eliminate the undeveloped frame
automatically. First, from the beginning to the end of the
development frame, five frames are selected in equal proportions,
representing the pre-arterial phase, the late arterial phase, the
capillary phase, the early vein, and the sinus phase, respectively.
Then, we extract image features in selected frames. Finally, two
types of features are combined to train the SVM model. It is
obvious that a better performance classifier can be achieved

FIGURE 6 | Contribution of selected features. The red bar represented

temporal features, and the blue bar corresponded to traditional static image

featu res that clearly showed temporal features took precedence over most

radiomics features.

if we manually select the frame that contains the biggest
nidus and annotate the ROI area to make training datasets, or
even collect the time sequence features through human eyes.
However, this method increases the burden of the medical
staff, violates the original intention of automatic diagnosis, and
cannot be applied to clinical diagnosis. In our proposed method,
although the Faster-RCNN may make mistakes occasionally in
the structure detection of abnormal cases, we take the structure
detection results of all frames into consideration when calculating
the temporal features to avoid those mistakes. Therefore, if
one or two frames are detected incorrectly during the whole
process, it will not affect the final temporal features. Based
on the reasons above, there is no external intervention in the
acquisition of static image features and temporal features in the
proposed method.

In our study of AVM diagnosis, the model trained by
radiomics features performs poorly on the independent testing
set, while temporal features showed surprising performance with
only five time sequence features; moreover, fusion features have
high robustness, producing an AUC of 0.942 and an ACC of 0.889
in the diagnosis. For AVM grading, the group with temporal

FIGURE 7 | Receiver operating characteristic (ROC) curves. Diagnostic

performance of different feature group models in independent testing. While

comparing the AUC curve s between radiomics, temporal and combined

features, the AUC of combined features [0.942, (0.875–0.979)] was the

highest one.

TABLE 4 | Performance comparison of the model trained by different feature sets.

Feature set AUC (0.95 CI) ACC SENS SPEC

LOO cross-validation cohort Radiomics 0.956 (0.929∼0.976) 0.883 0.843 0.929

Temporal 0.877 (0.837∼0.911) 0.865 0.849 0.884

Combined 0.971 (0.947∼0.986) 0.937 0.911 0.967

Independent testing cohort Radiomics 0.918 (0.845∼0.963) 0.856 0.856 0.855

Temporal 0.916 (0.843∼0.963) 0.836 0.735 0.935

Combined 0.942 (0.875∼0.979) 0.889 0.943 0.823
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TABLE 5 | Performance comparation between two models.

# Feature set AUC (0.95 CI) ACC SPEC SENS

1 Combined 0.871(0.813∼0.916) 0.840 0.866 0.797

2 Radiomics 0.863(0.807∼0.911) 0.806 0.812 0.796

features obtained an AUC of 0.871 and an ACC of 0.840, which
were better than the one without temporal features. The results
can be understood in the way that radiomics features represent
static image features. and temporal features represent effective
temporal features. Combined features integrate changes in the
DSA series with radiomics features that can describe DSA videos
more completely.

Several limitations should be noted. First, samples should be
excluded when the nidus is too large that it covers the vascular
structures because it will affect the credibility of temporal
features extracted by the detection model. Second, multiposition
images were not included to establish the DSA radiomics model.
Although many studies have reported that multimodality images
are helpful for classification tasks, multiposition images are not
available for all included patients in the current study (38–40).
Therefore, we select the anteroposterior position for the analysis
to diminish the selection bias. Finally, more samples should be
collected to provide a more convincing result.

CONCLUSION

DSA videos provide an important basis for the diagnosis
of cerebrovascular disease and provide a reference plan
for surgical treatment, which is of great significance for
the study of cerebrovascular disease. Our results suggest
that temporal features obtained from DSA videos are
representative and highly correlated with real-time medical
images classification. DSA radiomics features combined with

temporal features provide better performance in AVM analysis
with high ACC.

However, DSA is a two-dimensional image that cannot
describe blood vessels’ shape or the blood flow rate. In the
future, by combining CTA and DSA videos, more comprehensive
modeling of cerebral blood vessels can be carried out. The
influence of drainage veins and supply veins on the size of AVM
can also be analyzed.
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