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Introduction
At the beginning of the third millennium, we are witnessing the 
birth of the new biology era in which the issues related to biology 
and medicine are approached in a totally different and revolution-
ary way with respect to the past (Palsson, 2000). Instead of a 
reductionist approach, which dominated biological sciences dur-
ing the latter half of the 20th century, an integrative approach is 
now adopted, thanks to the continuous interplay between biology 
and technology (Fields, 2001).

New multidisciplinary fields are emerging in every section of 
biology. As underlined by Fields (2001), technology provides the 
tools and biology the problems. Within the plethora of possible 
marriages between faraway fields, one is advancing more than 
others, both in terms of scientific outcomes and technology trans-
fer perspective: we are referring to Neuroengineering. The term 
Neuroengineering is defined in various ways, depending on the 
perspective of the people developing and using it. In general, we 
can define Neuroengineering as the discipline developing instru-
ments which allow a dialogue with a neuronal system (i.e. in 
vitro neuronal cultures, ex vivo brain tissue, the nervous system 
of live experimental animals or of humans). In general, neuroen-
gineering products (which include some types of neurotechnolo-
gies, see below for a definition) embrace the technical and 
computational tools that allow the communication with the nerv-
ous system, such as measuring, analysing or manipulating (by 
different types of stimulation) the electrical activity of neuronal 

cells. Neurotechnologies are, for example, devices aimed at read-
ing/writing the electrical activity, tools designed to understand 
the neural code (Horch and Dhillon, 2004) and platforms allow-
ing the interaction with the nervous system, in order to alter its 
activity or to control external devices, also in case of pathological 
conditions (Bronzino et al., 2007).

In this review, we first introduce why it is important to develop 
novel neurotechnologies for brain repair. Second, we describe the 
logic underlying the function of artificial devices for therapeutic 
purposes. We then illustrate the different types of neurotechnolo-
gies being developed in basic and clinical research and provide a 
brief overview of recent advances in artificial intelligence (AI), 
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with the possibility of combining the two worlds. We conclude by 
providing our perspective on their implementation on humans and 
the possible implications for dual use.

Why Neuroengineering?

Brain matters: the global burden of disease 
of neurological disorders

A recent report by the World Health Organization (WHO) pointed 
out that neurological disorders (including neuropsychiatric con-
ditions) constitute 6.3% of the global burden of disease (GBD; 
Chin and Vora, 2014; WHO, 2006). With the highest GBD in 
Europe (11.2%), neurological disorders represent the most inval-
idating clinical condition, exceeding HIV, malignant neoplasm, 
heart ischemia, respiratory and digestive diseases. Among neuro-
logical disorders, more than half of the burden in disability-
adjusted life years (DALYs) is constituted by cerebrovascular 
diseases, such as stroke (55%), followed by Alzheimer’s disease 
and other dementias (12%), migraine (7.9%) and epilepsy (7%) 
– see Table 1.

The number of people affected by stroke and dementia is 
likely to increase in the coming years, because of the rapidly age-
ing population, whereas migraine and epilepsy affect people at 
any age and may be so severe to compromise the patient’s ability 
to work. Therefore, enhancing recovery of cognitive, sensory and 
motor functions in these conditions has become a global priority 
in healthcare.

From the scenario depicted above, it is clear that brain disor-
ders represent one of the biggest challenges for healthcare and 
society and that the lack of effective treatments demands for 
innovative interventions.

The challenge

Since the pioneering work in the 1970s by Eberhard Fetz (Fetz and 
Finocchio, 1971; Fetz, 1969) and at the end of the 1990s by the 
groups of Andrew Schwartz and Miguel Nicolelis (Nicolelis, 2001, 
2003; Taylor et al., 2002), we have experienced an exponential 

development of neuroengineering tools for brain repair, such as 
brain modulators, brain–machine interfaces (BMIs) and brain 
prostheses. For biomedical engineers, these technologies can be 
the key to innovative treatments for brain disorders, as witnessed 
by several initiatives in the United States (Brain Research through 
Advancing Innovative Neurotechnologies - BRAIN), in Europe 
(Human Brain Project - HBP) and in Japan (Brain Mapping by 
Innovative Neurotechnologies for Disease Studies). The interest in 
novel technologies relies on the possibility to use targeted electri-
cal stimulation delivered by smart microfabricated devices to 
replace pharmaceutical interventions, recently named in major 
journals as electroceutical (Famm et al., 2013; Reardon, 2014). 
The number of patents related to brain stimulation published in the 
last decades confirmed the interest in this field (Figure 1(a)). The 
United States is by far the most prolific nation in terms of patents 
published in this field (Figure 1(b)). Big companies such as 
Medtronic (http://www.medtronic.com/) and Boston Scientific 
Neuromodulation Corp. (http://www.bostonscientific.com) are 
constantly looking for new devices able to provide a useful therapy 
for neuropathologies like epilepsy, Parkinson’s disease, chronic 
pain and stroke (Figure 1(c)). Furthermore, the growing interest 
towards brain repair strategies is giving rise to new companies 
such as Elon Musk’s most recent initiative Neuralink (https://
www.neuralink.com/), Bryan Johnson’s initiative Kernel (https://
kernel.co/) and Galvani Bioelectronics, a joint venture between 
Verily and GlaxoSmithKline (http://www.galvani.bio/). These 
companies were created to accelerate the development of this new 
market. Thus, the 21st century is becoming the era of visionary 
brain repair strategies lying at the edge between neuroscience and 
engineering, in which the bi-directional dialogue between the brain 
and machine is at the core of cutting-edge neuroengineering.

The achievement of a truly useful bi-directional interface with 
the central nervous system (CNS) requires overcoming a set of dif-
ferent challenges (Thakor, 2013). Understanding the neural code is 
a priority, which is usually split into the coding problem (i.e. read-
ing the code from the CNS) and the encoding problem (i.e. writing 
the code back into the CNS). In this regard, giant steps have already 
been taken in the last decades, but there is room for much improve-
ment (Jun et al., 2017; Panzeri et al., 2017; Stanley, 2013). From the 
technical point of view, an urgency is represented, for example, by 

Table 1. Top diseases in the GBD at the European level.

Disease Incidence Description

Stroke 55% Stroke is an ischemic insult to the brain, leading to death of the nervous tissue. The effectiveness of acute stroke 
care is constrained by a narrow time window (3–6 h post onset) and, as a matter of fact, only 10–20% of patients 
can receive immediate intervention. Stroke is the leading cause of adult disability worldwide and is the fifth most 
frequent cause of death in the world and the second in Europe (Nichols et al., 2012).

Dementia 12% Dementias are characterised by progressive cognitive decline, the etiopathogenesis of which is rarely clarified. The 
lack of targeted treatments to heal dementias accounts for the fatal progression of these neurological syndromes 
(Rossor et al., 2010).

Migraine 7.9% Migraine is a highly prevalent disorder characterised by attacks of moderate to severe throbbing headaches that 
are often unilateral in location, worsened by physical activity and associated with nausea and/or vomiting, photo-
phobia and phonophobia (Marmura et al., 2015).

Epilepsy 7% Epilepsy can be defined as recurrent abnormal brain activity causing transient uncontrolled sensorimotor dis-
turbances, with or without loss of consciousness (seizures). Epileptic syndromes are particularly relevant in the 
context of neuroengineering for brain repair, in light of the brain damage consequent to the repeated seizures, 
the high incidence of cognitive and psychiatric comorbidities and the significant social stigma (Fiest et al., 2014).

GBD: global burden of disease.

http://www.medtronic.com/
http://www.bostonscientific.com
https://www.neuralink.com/
https://www.neuralink.com/
https://kernel.co/
https://kernel.co/
http://www.galvani.bio/
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the resolution of the recorded signal which is linked to the inva-
siveness of the recording system (Lee et al., 2013; Nunez and 
Srinivasan, 2006). A non-invasive recording technique like elec-
troencephalography (EEG) has a low spatial resolution and signal-
to-noise ratio but no clinical risk (Chaudhary et al., 2016). On the 
other hand, invasive recordings offer higher spatial resolution and 
signal-to-noise ratio but at the cost of higher clinical risks 
(Baranauskas, 2014; Tehovnik et al., 2013).

Similar issues regard the techniques used to stimulate the 
CNS, which range from non-invasive methods, such as non-inva-
sive brain stimulation (NIBS; Hummel and Cohen, 2005), to 
more invasive procedures, such as intracortical stimulating elec-
trodes (Tehovnik et al., 2006).

Another concern regards the algorithms mediating the inter-
action between the nervous tissue and an artificial device: the 
control policy may exhibit different levels of sophistication, 
from simple decoding techniques up to the implementation of 
smarter techniques that leverage on machine learning and AI 
(Andersen et al., 2014; Pohlmeyer et al., 2014; Shenoy and 
Carmena, 2014; Wissel et al., 2013). The development of these 
control algorithms for the clinical practice undoubtedly benefits 
brain disorders including neurological and neuropsychiatric 
conditions.

We will show in the next paragraphs that motor disorders (like 
Parkinson’s disease - PD, epilepsy and depression) are current 
target diseases for neuroengineering applications.

Figure 1. Patent analysis in neuroengineering. (a) Number of published patents per year from 1970 to 2017. (b) Map showing the countries where 
the patents were filed. The United States leads with 3073 patents followed by Germany with 147, Netherlands with 131, Switzerland with 127 and 
China with 82. The remaining nations are below 65. (c) Number of published patents per year (from 1998 to 2017) by the 15 most active applicants. 
Patent data were collected using the Patent Inspiration database (http://www.patentinspiration.com/) based on the DOCDB database from the 
European Patent Office (EPO). DOCDB database contains bibliographic data from over 102 countries. Bibliographic data include titles, abstracts, 
applicants, inventors, citations, literature citations, code classifications and family info. The database is updated on a weekly basis. Patents were 
searched from January 1970 to October 2017 using the following Boolean search strategy: (‘neurostimulation’ OR ‘neural stimulation’ OR ‘brain 
stimulation’) in title or abstract.

http://www.patentinspiration.com/
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Advances in Neuroengineering

Architecture and control algorithms: some 
definitions

Neurotechnological devices operate through architecture and 
control strategies which deserve a brief description in order to 
better classify what has been developed in the course of the years. 
Bearing in mind that no approach is better than another in an 
absolute sense, but each serves a specific purpose, we define 
these strategies according to their operating input/output (I/O) 
function and use the logic underlying that function (hereafter, the 
algorithm) to classify a system’s performance, from the lowest to 
the highest sophistication.

The first distinction should be made between open-loop and 
closed-loop architectures (Greenwald et al., 2016; Wright et al., 
2016), both involving two systems – a device (D) and a brain (B) 
– characterized by their specific I/O functions (ID/OD for the 
device and IB/OB for the brain; Figure 2(a)). In open-loop systems 
(Figure 2(b)), the output of the device (OD) consists of a stimulus 
(e.g. electrical pulse) which is directly delivered to the brain 
(IB = OD). The brain processes the incoming information (IB) and 
produces an output response (OB). The input to the device (ID) 
can be any function determining the features of the stimulation 
sequence; however, it is not modulated by any feedback from the 
brain.

Closed-loop devices are based on feedback: the output of the 
brain (OB), consisting in the ongoing brain activity or its pro-
cessed version, serves as the input for the device (ID = OB), which 
triggers the device operation. The output of the device (OD) is the 
input to the brain (IB = OD). This system generates an I/O loop, 
which continues indefinitely. With regard to the modus operandi 
of closed-loop devices, we use a hierarchical scheme to rank the 
sophistication of control algorithms and distinguish them in 
Reactive, Responsive and Adaptive (Figure 2(c)).

Reactive. The algorithm is based on a single-input-single-output 
paradigm. A typical example is activity-dependent stimulation in 
which a stimulus is delivered with a fixed delay upon the detec-
tion of an electrophysiological event in the recorded brain area, 
that is, stimulation is phase-locked to the brain activity (Guggen-
mos et al., 2013; Jackson et al., 2006). The output parameters are 
fixed by the human operator, but the device is triggered by an 
input signal detected by the system. This is a basic I/O system, 
representing the simplest implementation of control algorithm, 
which does not operate any autonomous choice, but it is simply 
instructed to react in a stereotypical fashion.

Responsive. The algorithm may process several inputs and 
respond with different outputs, but its operation is task oriented, 
contextual and conditional. The algorithm is provided with mul-
tiple built-in output options. For example, a stimulation algorithm 
may be instructed to modify its output frequency proportionally to 
the frequency of the recorded event(s) (Beverlin and Netoff, 2012; 
Morrell and Halpern, 2016). At any given time, the system fol-
lows a stimulation policy which is a function of the feedback it 
receives from the brain. In addition, the system contains a set of 
stimulation policies and decides, based on the context, which one 
to follow. All the stimulation policies and their activation rules 
are, however, fixed and predefined at design time.

Adaptive. The algorithm is similar to the previous one, but it 
implements an adaptive I/O response, in that it is capable of real-
time self-adjustment according to past experience, a set of learn-
ing rules and performance evaluation or reward functions. The 
algorithm evolves in time using the acquired knowledge, rather 
than obeying predefined rules. The human operator only provides 
the knowledge of what to achieve, whereas the algorithm autono-
mously chooses the how to, exhibiting the highest sophistication. 
In machine learning, this paradigm is regarded as reinforcement 
learning (Russell and Norvig, 2010; Sutton and Barto, 1998), 
because the learning system never receives indication of the cor-
rect I/O relationship (as in supervised learning), but it has to 
autonomously discover the set of actions (in our case the I/O 
policy) that converge to the optimal solution, that is, maximise a 
given reward and minimise a given penalty (Orsborn et al., 2012; 
Panuccio et al., 2013; Pineau et al., 2009).

Neuroengineering from bench to bedside

In the early seventies, the seminal work of Fetz (1969) and the 
observations of Schmidt (1980) and Georgopoulos et al. (1986) 
revealed that specific movement trajectories activate specific 
ensembles of cortical motor neurons and thus the observation of 
these ensembles can help predict the desired direction of the 
movement. These studies laid the foundation for brain signal 
decoding and the development of neuroprosthetics. Other types 
of neuroprostheses are directed towards the restoration of sen-
sory capabilities. The first examples in this context are the coch-
lear implant that uses electrical stimulation to restore hearing in 
the profoundly deaf (Loeb et al., 1983) and the retina implant that 
translates visual information into stimulation patterns directed 
towards retinal neurons (Humayun, 2001). Nowadays, brain 
modulators, BMIs and brain prostheses are neurotechnological 
tools under intense preclinical investigation.

Brain modulators. Brain modulators are devices that modulate 
brain patterns by means of externally applied current or magnetic 
fields, or by electrical stimulation of deep brain structures (deep 
brain stimulation - DBS). Here, we refer specifically to DBS 
devices, since they represent the majority of brain modulators. 
Typically, the development of these devices aims at treating 
movement disorders (e.g. PD; Collomb-Clerc and Welter, 2015; 
Duker and Espay, 2013), epilepsy (Laxpati et al., 2014) and psy-
chiatric conditions (such as obsessive-compulsive disorder and 
major depression; Berlim et al., 2014; Holtzheimer et al., 2017). 
Current preclinical studies for the development of DBS devices 
implement both open-loop and closed-loop architectures, the lat-
ter deploying a variety of control algorithms, including reactive, 
responsive and adaptive stimulation policies (see Panuccio et al., 
2016 for a comprehensive review). Well-known clinical applica-
tions of DBS are movement disorders and drug-refractory epi-
lepsy. Approved brain modulators for movement disorders are 
open-loop devices delivering high-frequency electrical stimula-
tion (Groiss et al., 2009; Figure 3(a)). With regard to epilepsy, the 
Food and Drug Administration (FDA) agency has recently 
approved the responsive neurostimulation (RNS) system Neuro-
Pace® as an adjunctive DBS therapy for drug-refractory epileptic 
patients (Bergey et al., 2015; Thomas and Jobst, 2015). This device 
operates in closed loop and implements a responsive algorithm 
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able to recognize abnormal brain activity and consequently 
adjusts its electrical stimulation response. It must be mentioned 
that recently a DBS non invasive strategy for electrically stimu-
lating neurons at depth was developed (Grossman et al., 2017) 
and, although human trials have not yet been conducted, this 
technique holds great promise for PD patients.

BMIs. The term BMI refers to a device that interfaces the brain 
with a robotic end effector, like a robotic limb (Figure 3(b)). 

BMIs aim at restoring missing motor functions in patients 
stricken by a disabling neurological condition, brain injury or 
limb amputation. Following the pioneering demonstration of the 
feasibility of this approach (Chapin et al., 1999), BMIs have 
become increasingly sophisticated and have proved to be suc-
cessfully applicable to paralysed humans (Ajiboye et al., 2017; 
Bouton et al., 2016; Hochberg et al., 2012). An increasing frac-
tion of the BMI community is also devoted to the investigation of 
neural stimulation as a tool to provide subjects with an artificial 

Figure 2. I/O control systems for neuroengineering. (a) Representation of the elements involved in a neurotechnological tool: an artificial device (D 
block) and a portion of the CNS (B block). (b) Open-loop architecture. The device is programmed to output a stimulus (device output – OD), which 
also represents the input to the brain (device input – ID); in turn, the brain generates an output response (brain output – OB). The open-loop device 
cannot read brain electrical activity (black trace) and thus operates independent of it. (c) Control algorithms for closed-loop architecture. In closed-
loop fashion, the brain output response (OB) is fed back to the device, thus serving as an input to the device (brain input – IB) and determining 
the device output (OD). The reactive I/O system is capable of reading an input signal, but cannot interpret its meaning. The system’s output is 
predefined by the human, based on theoretical assumptions or on empirical trial-and-error refinement, and the feedback from the brain acts as a 
simple trigger. The responsive I/O system is provided with a number of choices, but their conditional application is predefined by the human based 
on previously acquired knowledge. The system interprets the feedback from the brain and selects the stimulus based on its content. The adaptive 
I/O system can independently choose the best output provided a varying input. The system learns the best output strategy through the feedback 
provided by the performance evaluator. In this way, the system may evolve and deliver a different output upon subsequent presentation of the same 
input based on the learned strategy and on its past experience.
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Figure 3. Neuroengineering devices for brain repair. (a) Brain modulator for DBS. The device is implanted into deep brain structures and may be 
based on open- or closed-loop architecture. (b) A BMI conveys the electrical activity of the recorded brain area to the robotic end effector. In this 
rendition, the established system is made up of the input brain area, the interface apparatus and the robotic hand. In this case, an open-loop 
strategy is implemented: visual feedback aids in movement planning and the required adjustments, which, in turn, influence the function of the 
interface apparatus. (c) A brain prosthesis is an artificial device implanted in the brain to replace brain activity or to reconnect disconnected brain 
areas.

channel of feedback information (Flesher et al., 2016; Micera 
et al., 2008; Raspopovic et al., 2014).

Brain prostheses. Brain prostheses are intended as artificial 
systems directly connected with the brain in order to replace a 
damaged area or bridge disconnected areas and regain the lost 
functionality (Figure 3(c)). For example, the device may be used 
to reconnect somatosensory and motor cortical areas in order to 
restore forelimb movement impaired by brain injury. A brain 
prosthesis implementing an architecture following a closed-loop 
reactive policy has been presented for the first time by Kansas 
University Medical Center (Guggenmos et al., 2013). Another 
promising example is represented by the hippocampal memory 
prosthesis, in which the neural activity of specific hippocampus 
areas suitably processed can be used to manipulate and thus 
restore (through ad hoc electrical stimulation) cognitive mne-
monic processes (Berger et al., 2011, 2012; Song et al., 2015; 
Song and Berger, 2014). The development of brain prostheses is 
still at the preclinical stage.

At the boundaries between BMIs and brain prostheses lays 
the work of Courtine and co-workers (Wenger et al., 2014, 2016) 
who successfully demonstrated that spatiotemporal modulations 
of the spinal cord can restore the locomotion of spinal cord–
injured rodents. Indeed, it needs to be stressed that the borderline 
among these three types of technology is not always clear-cut; 
rather, some overlaps can be identified. For example, brain mod-
ulators may be integrated into brain prostheses, since these 
devices must stimulate target brain areas in order to act as a 
bridge or as a replacement within the brain.

It is worth underlining that all the abovementioned neuropro-
sthetic tools are taking advantage of the recent software and hard-
ware progress in terms of the number of recorded electrodes and 
related data processing (Jun et al., 2017; Mahmud et al., 2017; 
Mahmud and Vassanelli, 2016). Moreover, improved computa-
tional capabilities can be achieved thanks to innovative neuro-
morphic synthetic devices (Bonifazi et al., 2013; Chiolerio et al., 
2017) also based on memristor technology (Gupta et al., 2016). 
Technological progress interests also the field of the electrophys-
iological techniques. For example, optogenetics (Paz and 
Huguenard, 2015) and sonogenetics (Ibsen et al., 2015) allow, 
through light and sound, respectively, precise spatiotemporal 

control of cells and therefore the manipulation of specific brain 
circuits. These techniques can therefore be exploited in future 
neuroprosthetic devices with important implication for the treat-
ment of neurological disorders (Cheng et al., 2014).

Neuroengineering meets AI

Intelligent systems: an historical perspective

The foundation of AI as an academic discipline dates back to the 
Dartmouth Conference in 1956 (now regarded as the birth of AI 
(Russell and Norvig, 2010)) and has recently received a resurge of 
interest thanks to the remarkable success of deep learning. In the wake 
of this legacy, the adoption of AI in the treatment of neurological dis-
orders promises to revolutionise the concept of brain repair strategies. 
Because virtually any system receiving an input is generally regarded 
as intelligent, we would like to provide a definition of an intelligent 
system following the one provided by the pioneers of AI.

The invention of the first general-purpose programmable dig-
ital computer, the Z3 by Konrad Zuse in 1941 (see Zuse (1993) 
for historical review), inspired the vision of building an elec-
tronic brain. In 1948, Norbert Wiener described computing 
machines (i.e. computers) that were able to improve their behav-
iour during a chess competition by analysing past performances 
(Rossi et al., 2016). These machines may be regarded as self-
evolving: they are driven by a feedback mechanism based on the 
evaluation of previous failures/successes to adjust their behav-
iour in response to experience and performance scoring. In the 
same years, Gray Walter built the turtle robots, the first electronic 
autonomous robots (Walter, 1950a, 1950b). He demonstrated that 
a system composed of few elements produced unpredictable 
behaviour, which he defined as free will. These extraordinary sci-
ence achievements wiped out traditional certainty about machines 
as agents that ‘can do only what we tell them to do’ (as stated by 
Lady Ada Lovelace). This statement was formally rejected by 
Alan Turing in his seminal paper Computing Machinery and 
Intelligence (Turing and Copeland, 2004), in which he argued 
that the objection could be proven wrong by building a learning 
machine. He also explained that this was only possible if, instead 
of building a machine simulating the adult brain, we built a child 
machine having some hereditary material (predefined structure), 
subject to mutation (changes) and natural selection (judgement 
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of the experimenter) and undergoing a learning process based on 
a reward/punishment mechanism (interestingly, this process is 
not too far from how modern deep reinforcement systems are 
built; see, for example, Mnih et al., 2015). Turing therefore 
defined intelligence as the ability to reach human levels of per-
formance in a cognitive task (Turing Test). In robotics, the field 
of embodied intelligence challenges the conventional view that 
sees intelligence as the ability to manipulate symbols and pro-
duce other symbols. Embodied intelligence focuses instead on 
the skills that allow biological systems to thrive in their environ-
ment: the ability to walk, catch prays, escape from threats and, 
above all, adapt (Brooks, 1990; Pfeifer and Scheier, 1999).

From this brief excursus, it emerges that autonomous behav-
iour (Walter’s free will), intended as the agent’s ability to make a 
decision in response to an external event, and evolution, intended 
as the agent’s ability of adapting to changes in the environmental 
stimuli so to maximise a given reward, are both attributes of 
intelligence. According to this definition, the feature of detecting 
an electrical event generated by the brain without interpreting its 
meaning should not suffice for a system to earn the recognition of 
intelligence, whereas autonomous behaviour and evolution 
should be the appropriate prerequisites, because they imply the 
capability of interpreting a brain signal (the environment varia-
ble) so as to choose the most appropriate action (thrive in the 
environment).

Intelligent neurotechnologies

The scientific community has converged to the general consensus 
that the establishment of a functional partnership between bio-
logical and artificial components, as implemented in closed-loop 
systems, is a crucial prerequisite to successfully achieve func-
tional brain repair by means of neuroengineering (see, for exam-
ple, the change in perspective with regard to open- versus 
closed-loop stimulators for PD and epilepsy (Rosin et al., 2011)). 
However, the progressive parallelism between closed-loop 
architecture and intelligent operation has been made so that the 
closed-loop paradigm is generally considered as intelligent per 
se, regardless of the underlying control algorithm. Nonetheless, 
in most of the closed-loop systems (i.e. reactive and responsive 
as defined in the previous section) the artificial component is not 
set to autonomously evolve and adapt to the biological counter-
part in order to achieve the desired functional outcome. Rather, 
it responds in a quite stereotypical fashion to the biological 
inputs it receives. Most of the current control algorithms cannot 
autonomously adapt their policy to the progression of brain pat-
terns. Thus, the dialogue between biological tissue and an artifi-
cial device is necessary but definitely not sufficient to endow a 
system with true intelligent performance (Vassanelli and 
Mahmud, 2016).

In order to provide a definition of intelligent Neuroengineering, 
we bring back to light the canonical formalism proposed dec-
ades ago by Russel and Norving (2010). The authors distin-
guished in the first place between an agent and a rational agent, 
the latter being capable of autonomous (human-independent) 
behaviour. Then they stated that ‘A system is autonomous to the 
extent that its behavior is determined by its own experience. […] 
A truly autonomous intelligent agent should be able to operate 
successfully in a wide variety of environments, given sufficient 
time to adapt’.

Translating these canonical concepts to the design of intelli-
gent neuroengineering, the conceived devices should exhibit the 
capability of dynamic adaptation to the flow of neuronal infor-
mation that is continuously changing due to its reciprocal interac-
tion with the artificial device. That is, a truly intelligent system 
should intrinsically exhibit (1) the ability to acquire information 
(can read input), (2) set of choices (have options) and (3) autono-
mous decisional power (decide by itself). Only the synergetic 
enforcement of these three salient features will allow a system to 
accomplish its task in an intelligent manner, achieving rationality 
in its performance independent of human intervention. Such 
intelligent behaviour implies the pivotal role of a learning pro-
cess based on feedback mechanisms, cost and reward functions.

Outstanding advancements have been recently made leading 
to self-adjusting neuroprostheses (Bouton et al., 2016) and adap-
tive algorithms for DBS technology to treat epileptic disorders 
(Panuccio et al., 2013; Pineau et al., 2009). Based on statistical 
machine learning techniques, these algorithms exhibit autono-
mous decisional power and evolution, overcoming the initial 
expectations of the designers as they are capable of elaborating 
the best (mostly unexpected) intervention policy to achieve a 
specified goal, rather than picking the predefined most appropri-
ate task from a look-up table (Elbasiouny, 2017).

The future of AI for neurotechnologies

Humans have been striving for decades to mimic the brain using 
computing machines. However, despite sporadic success in very 
specific applications (e.g. IBM Deep Blue beating the World 
Chess Champion in 1997), progress has been slow. Thanks to 
deep learning, however, AI has received growing attention, in 
academia and industry (LeCun et al., 2015). With the adoption 
of deep neural networks, machines today demonstrate stunning 
performances in tasks that have been previously considered dif-
ficult, like automatic classification of images (see Russakovsky 
et al. (2015) for a review) and speech signals (Hinton et al., 
2012). Deep learning has also been applied successfully to solve 
reinforcement learning problems in the presence of very large 
state space (perhaps the most popular example is the application 
of deep learning to implement a software that learns to play 
Atari games (Mnih et al., 2015) and the game of Go (Silver 
et al., 2016)).

Deep learning has strong potentials for the development of 
neuroengineering devices, because the strength of deep networks 
is in their ability to process complex signals (like images or 
sound) to provide a low-dimensional representation that retains 
task-dependent information but it is much easier to manipulate. 
For this reason, it is reasonable to assume that deep learning 
could be employed as an efficient way to encode the complex 
signals that originate from the sensory system or from implanted 
arrays of electrodes (Mahmud et al., 2018).

The key ingredients that contribute to the success of deep 
learning are as follows: the availability of large dataset and 
affordable hardware for massive parallel computing (typically 
graphical processing units - GPUs) that can train neural networks 
with a large number of layers and millions of parameters in a 
reasonable amount of time. Today, these are not problems for 
conventional applications of deep learning. Humans produce 
large amounts of data through smartphones, Internet and social 
media, while powerful GPUs in datacenters are accessible 
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through cloud computing. However, these may be stumbling 
blocks for adoption of deep learning in neuroengineering devices.

For use of deep learning in embedded systems, companies 
have started to develop dedicated hardware supporting the 
deployment of deep neural networks with real-time performance, 
low power consumption and small footprint (NVIDIA  
Jetson TX2 https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems-dev-kits-modules/, ARM/MALI https://com-
munity.arm.com/graphics/f/discussions/165/deep-learning-inference-
on-arm-mali-super-efficient-convolutional-neural-networks-
implemented-on-arm-mali-based-socs, Intels’ Movidius https://
developer.movidius.com/). This trend is likely to continue in the 
following years, and it is reasonable to assume that affordable 
solutions supporting the deployment of deep learning systems in 
neuroengineering will be available in the future.

Adopting data-driven techniques for training such devices 
could, however, be difficult, because it requires long periods of 
data acquisition from human patients. An emerging area of 
research in machine learning deals with this problem by leverag-
ing on existing knowledge when solving a new task (Gopalan 
et al., 2015). Similar techniques have been used for the classifica-
tion of electromyography (EMG) signals (Gregori et al., 2017; 
Tommasi et al., 2013). The benefit of such techniques in the con-
trol of prosthetic devices is, however, debated (Gregori et al., 
2017) and may need to be further developed. A similar problem is 
being studied in robotics for training visual recognition systems 
from small dataset (Pasquale et al., 2016; Schwarz et al., 2015). In 
this case, the main idea is to rely on neural models that have been 
trained for a similar task for which a large dataset is available and 
to adapt the network to solve a novel task, using much less data.

Ethical considerations
The rapid advancements of neurotechnologies for clinical use raise 
important ethical questions that urge to be addressed (Goering 
and Yuste, 2016; Greely et al., 2016; Ienca et al., 2017; Muller 
and Rotter, 2017) since they may as well be implemented to aug-
ment cognitive abilities or body performance (Roco and 
Bainbridge, 2003). Indeed, a PubMed search of ‘neurotechnol-
ogy ethics’ returns almost 40 entries, of which the earliest dates 
back to 2004, while 16 papers were published only in the last 
2 years. This provides an indication that a growing number of 
psychologists and science philosophers are shifting their interests 
towards the ethical implications of these novel technologies.

Ethical considerations can be raised at different levels (Klein 
and Nam, 2016). A priority is represented by the concerns of 
end-users who report a controversial attitude towards neurotech-
nology (Yuste et al., 2017). For example, patients affected by PD 
describe apprehensions regarding the control over device func-
tion, authentic self, relationship effects and meaningful consent 
(Klein et al., 2016). In general, patients demand a major involve-
ment in the developing process of the technology programmed 
for their own use and rehabilitation, and also a major attention to 
the specific needs of their particular disease, given that different 
classes of patients have different requirements (Sullivan et al., 
2017). It is all too common for a preclinical researcher never to 
have met a person with the disease they are working on, with the 
consequence that patients’ hopes and aspirations or the burden 
of the illness are not appreciated (Garden et al., 2016).

Another important area of related ethical interests regards the 
restoration versus augmentation principle with which neurotech-
nologies are conceived. For example, BMIs and brain prostheses 
were designed with the ultimate goal of restoring a missing func-
tion or enhancing a poor one, following brain injury or neurologi-
cal disorder (Berger et al., 2011, 2012; Hatsopoulos and 
Donoghue, 2009; Lebedev and Nicolelis, 2006; Mussa-Ivaldi and 
Miller, 2003; Soekadar et al., 2015; Tankus et al., 2014). 
However, while developed and investigated with this aim, these 
tools also offered researchers the possibility to further study the 
brain, both in the physiological and pathological conditions 
(Chaudhary et al., 2015; Oweiss and Badreldin, 2015; Soekadar 
et al., 2015). Moreover, by investigating the strategies to potenti-
ate the functions of a damaged brain, the possibility of changing, 
augmenting or controlling the functions of a healthy brain also 
emerged (Jarvis and Schultz, 2015). As an example, researchers 
funded by the US military are developing innovative AI-controlled 
brain implants based on closed-loop technology to treat severe 
mental illness and mood disorders that resist current therapies 
(Reardon, 2017). The devices are now under tests in humans and 
the preliminary results have been presented at the Society for 
Neuroscience Meeting in Washington DC (November 2017). 
This technique, developed with the aim to treat soldiers and vet-
erans who have depression and post-traumatic brain disorders, 
raises thorny ethical concerns, since researchers can potentially 
access a person’s inner feelings in real time. To this end, research-
ers working at these projects understand the importance of these 
complex issues (Roco and Bainbridge, 2003) and of discussing 
them with experts in neuroethics.

The Nuffield Council of Bioethics indicates that blending 
humans with machines may lead to the man as a ‘prosthetic 
god’, with both exciting and scary implications, and warns that 
these considerations have to be taken into account when design-
ing neurotechnologies (Nuffield Council on Bioethics (NCB), 
2013).

Conclusion
The long-going effort of humans to build thinking computers and 
artificial replacement parts for the human body has landed on a 
very fertile ground. Still, it is clear that machines may be success-
ful at solving specific problems but are still far from matching the 
capabilities of the human brain. As of today, advanced complex 
machine learning algorithms and neuromorphic engineering have 
not yet been established for clinical applications. Nonetheless, 
such remarkable approaches promise to be at the core of future 
neuroengineering for brain repair, where the boundary between 
biology and AI will become increasingly less pronounced.
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