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Gene networks under circadian control exhibit
diurnal organization in primate organs
Jie Li 1,3, Pengxing Nie 1,3, Christoph W. Turck2 & Guang-Zhong Wang 1✉

Mammalian organs are individually controlled by autonomous circadian clocks. At the mole-

cular level, this process is defined by the cyclical co-expression of both core transcription

factors and their downstream targets across time. While interactions between these molecular

clocks are necessary for proper homeostasis, these features remain undefined. Here, we utilize

integrative analysis of a baboon diurnal transcriptome atlas to characterize the properties of

gene networks under circadian control. We found that 53.4% (8120) of baboon genes are

oscillating body-wide. Additionally, two basic network modes were observed at the systems

level: daytime and nighttime mode. Daytime networks were enriched for genes involved in

metabolism, while nighttime networks were enriched for genes associated with growth and

cellular signaling. A substantial number of diseases only form significant disease modules at

either daytime or nighttime. In addition, a majority of SARS-CoV-2-related genes and modules

are rhythmically expressed, which have significant network proximities with circadian reg-

ulators. Our data suggest that synchronization amongst circadian gene networks is necessary

for proper homeostatic functions and circadian regulators have close interactions with SARS-

CoV-2 infection.
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The mammalian circadian system is hierarchical in struc-
ture, with the brain’s suprachiasmatic nucleus (SCN) act-
ing as a master pacemaker to orchestrate clocks in other

organs1–3. This system is replicated in individual cells, which
need to be synchronized with each other to properly perform
their organ’s functions3–5. The central clock regulates peripheral
clocks slightly each day to adapt to the 24 h day-night cycle, as the
intrinsic circadian period is longer than a day6. At the molecular
level, circadian oscillation in mammals is regulated by the tran-
scriptional/translational autoregulatory feedback loop (TTFL).
The core circadian network consists of CLOCK (along with
its paralog NPAS2) and its heterodimeric partner BMAL1
(ARNTL), which bind to their downstream targets including
PER1, PER2, CRY1, and CRY27–9. These core clock genes regulate
the expression of other molecules, thus generating the rhythmi-
city of various biological physiology. Although it is well known
that a substantial fraction (3–16%) of transcribed mRNAs show
rhythmic expression10–13, the effects of global circadian syn-
chronization on the transcriptomes of individual organs remains
elusive.

To help understand the influence of synchronization between
subordinate oscillators, we propose the concepts of “global
cycling genes” and “rhythmic interactions” for analysis of the
transcriptome. Global cycling genes are those transcripts that
exhibit a rhythmic expression profile across multiple organs/
tissues. Rhythmic interactions refer to gene pairs that are
rhythmic across time. Testing these concepts has been difficult so
far because only one or a few tissues are analyzed by high-
throughput sequencing technologies in any given study14–16.
Still, several large-scale circadian transcriptomes have been
recently reported13,17,18, making examination of this conceptual
framework feasible. Through quantification of the circadian gene
expression of 12 mouse organs, ~43% of protein-coding genes
and a large number of non-coding genes show oscillations in
their expression in at least one organ13. Likewise, 64 baboon
tissues were collected every 2 h and utilized in RNA-seq and the
data was then constructed into a high-resolution atlas of the
circadian transcriptome17. Use of such comprehensive datasets
could allow examination of the molecular design principles
within the circadian clock from a systemic perspective19.

Here, by integrative analysis of the high-resolution baboon
diurnal transcriptome, we identified a large number of global
cycling genes and cycling interactions, which implicate the fun-
damental circadian network organization of the primate body.
We then characterized the co-expression properties of networks
across different time points and discovered that networks can
exhibit either “daytime” or “nighttime” status. Finally, we found
that SARS-CoV-2 related proteins tend to be encoded by global
cycling genes whose module is linked to circadian rhythms in
the protein-protein interaction network. Together, these results
demonstrate the effect of circadian rhythm on the whole-body
primate transcriptome.

Results
More than half of all baboon genes are globally expressed in a
rhythmic pattern. We identified global cycling genes by assessing
the circadian transcriptome of more than 60 baboon (Papio
anubis hamadryas) organs17. No obvious outliers for any organs
or circadian time points were detected based on PCA of these
data (Supplementary Fig. 1). Thus, no additional normalization
on FPKM value was performed to improve the detection of global
cycling genes. For the 15,219 expressed genes considered,
JTK_CYCLE was performed to identify the significant rhythmic
signals20,21. Notably, 53.4% (8120) exhibited a significant circa-
dian expression signal after a multiple comparison correction test

(Benjamini-Hochberg adjusted P < 0.05) (Supplementary Data 1),
suggesting that body-wide gene expression is of a robust, rhyth-
mic nature (Fig. 1a). To examine the robustness of the approach,
we performed leave-one-out cross validation. In each experiment,
we removed one organ at a time and used the remaining data to
identify the global cycling genes. By removing one organ at a
time, we found that >96% global cycling genes can be reproduced
in more than half of the experiments (33 of 63 experiments) and
>91% global cycling genes can be detected in all experiments,
demonstrating the robustness of our methodology (Supplemen-
tary Fig. 2). By using mouse circadian atlas13, we conducted
global cycling gene identification analysis on mice as well.
We found that 50.5% of the genes (6,613 genes) in mice can be
detected as global cycling genes, with a significant overlap with
baboon (3,954) (Supplementary Fig. 3a, odds ratio (OR)= 1.58,
P= 1.32 ×10−44). With the exception of RORA and RORB, the
majority of the core circadian clock genes exhibited a significant
global oscillation signal (CLOCK, BMAL1, NPAS2, PER1, PER2,
PER3, CRY1, CRY2, RORC, NR1D1, NR1D2 and DBP, Supple-
mentary Fig. 4). CLOCK showed a weak but significant rhythmic
expression profile (Benjamini-Hochberg adjusted P= 0.022) at
body-wide level, while all other 11 core circadian genes exhibited
a strong and significant oscillation signal (Benjamini-Hochberg
adjusted P < 10−6) (Supplementary Data 1).

Consistent with previous work17, two peak phases were
observed for global cycling genes, with the first peak around
noon and the second at midnight (ZT06 and ZT18, Fig. 1b).
Additionally, we found that the phase of the global cycling genes
represents the median phase of cycling genes in each organ
(Fig. 1c, d), and thus there is a strong positive correlation between
these two parameters (Pearson correlation coefficient r= 0.93,
P < 2.2 × 10−16) (Fig. 1d). Subsequent functional analysis of these
global cycling genes revealed that they are largely involved in
basic cellular functions such as metabolic process, RNA
biosynthesis, cellular localization, intracellular transport, DNA
repair and others (Fig. 1e), a finding that is consistent with
analysis of individual organs17. Similar results were observed for
the mouse (Supplementary Fig. 3b, c). Interestingly, cell type
enrichment analysis revealed that global cycling genes are
strongly associated with immune cell type and muscle cells
(Supplementary Fig. 5). To further explore the effect of global
cycling genes on disease, GWAS gene-set analysis was performed
using MAGMA22. Global cycling genes, especially the ones
that have phase at ZT06, are significantly enriched in schizo-
phrenia and type 2 diabetes risk genes (P= 0.00256 and 0.0008,
Supplementary Fig. 6). These results indicate that the identifica-
tion of global cycling genes is a useful concept that helps delineate
circadian synchronization between the transcriptomes of periph-
eral oscillators.

One third of gene-gene interactions exhibit rhythmic co-
expression. Next, we examined to what extent gene-gene inter-
actions exhibit rhythmic patterns. For this purpose, 10,000 gene
pairs were randomly sampled from all protein-coding genes. For
every circadian time point, Spearman correlation coefficients
were estimated by integrating organ-based expression profiles
(Fig. 2a). Thus, “gene-gene interaction” specifically indicates an
association between the expression of gene pairs among diverse
organs and high coefficients suggest similar expression profiles
across organs. The significance of rhythmic co-expression for
these gene pairs was determined by JTK_CYCLE20,21 and the
procedure was repeated 100 times in order to obtain an unbiased
assessment. 3180 gene pairs displayed a strong signal of rhythmic
co-expression (Benjamini-Hochberg adjusted P < 0.05) (Fig. 2b).
The phase distribution of these rhythmic interactions was similar
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Fig. 1 Global cycling genes and their functions. a 3D plot of called global cycling genes and the number of organs with peak expression. Scale bar
indicates the number of organs with peak expression, with a greater number indicated in red and a lower number indicated in blue. b Phase distribution
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with that of global cycling genes (Fig. 2c). As the variation of
individual phase increases, both the proportion of global cycling
genes and rhythmic interactions decrease rather than increase
(Supplementary Fig. 7a, 7b), which suggests that the rhythmicity
in rhythmic co-expression cannot be explained by the variation in
the cycling phase of individual tissues. For a comparison with
other types of networks, a similar approach was also applied to
protein-protein interactions, genetic interactions, and functional
relevant interactions (genes located in the same KEGG
pathway)23–26. These data illustrated that approximately 20% of
the interactions in these network types are rhythmically co-
expressed, which is notably lower than that observed for the co-
expression network (P < 2.2 × 10−16) (Fig. 2d).

To investigate the contribution of global cycling genes on
rhythmic interactions, three situations were considered: (i) when
both are global cycling genes, (ii) when only one is a global
cycling gene, and (iii) when neither one is global cycling gene.
For each category we examined the proportion of rhythmic
interaction. For 10,000 randomly selected gene pairs in case (i),
4,450 interactions were rhythmically co-expressed, while in cases
(ii) and (iii) only 2903 and 2158 gene pairs exhibited rhythmic
links, respectively (P < 2.2 × 10−16) (Fig. 2e). As cycling genes are
highly expressed27,28, we then sampled the same number of gene
pairs from the top 1000, 5000 and 10,000 expressed genes. We
found that a considerably greater percentage of rhythmic co-
expression links were detected in these groups than expected by
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Fig. 2 Properties of rhythmic co−expression interactions. a Schematic diagram of rhythmic co-expression interactions. Spearman correlation coefficients
were used to measure co-expression relationships between gene pairs at given time points. Greater coefficients indicate stronger interactions between
gene pairs. b Heatmaps of 3,182 rhythmic co-expression interactions from 10,000 randomly sampled gene pairs. Stronger interactions are marked in red
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chance (P < 2.2 × 10−16) (Fig. 2f). Such results demonstrate that
global cycling genes substantially contribute to body-wide
rhythmic interactions.

Next, we assessed whether the interactions of the members of
the core circadian regulatory network exhibit a rhythmic co-
expression pattern. Strikingly, CLOCK and BMAL1 are robustly
and rhythmically co-expressed, with a peak phase at ZT13
(Benjamini-Hochberg adjusted P= 4.22 × 10−5), indicating that
the two core circadian partners bind to each other in a time
dependent manner. For the potential interactions amongst the 14
core circadian genes, 62.22% (56/91) were observed to exhibit a
robust rhythmic interaction, which was significantly higher than
the proportion of other detected interaction pairs (Supplementary
Data 2; Supplementary Fig. 8). The high proportion of rhythmic
co-expression among core circadian genes implies that the
periodicity of these interactions may be a fundamental feature
of core circadian oscillators29.

Rhythmic expression of body-wide network modules. Because
the co-expression of gene pairs results in distinct gene clusters
that form network modules30,31, we asked whether the latter also
exhibit rhythmic characteristics. Weighted Gene Co-expression
Network Analysis (WGCNA) was constructed by using all the
samples from the circadian expression atlas32,33, with 20 mod-
ules detected (Fig. 3a, b; Supplementary Data 3). 9 modules
exhibited significant rhythmic signals based on either their
module eigengenes or the average expression of each module

(brown, yellow, cyan, tan, midnight blue, black, red, turquoise,
salmon modules, Benjamini-Hochberg adjusted P < 0.05)
(Fig. 3c; Supplementary Data 3). The peak phases of 5 of these
rhythmic modules were around noon (brown, yellow, cyan,
midnight blue, black modules), while the peak phases of other 4
rhythmic modules occurred around midnight (tan, red, tur-
quoise, salmon modules), suggesting that phase peak times also
impact network modules. We also found that 7 of the 9 rhythmic
modules are enriched for global cycling genes (Fig. 3d). Addi-
tionally, 3 core circadian genes (PER1, NR1D1, and DBP) were
found in the “brown” cycling module, whereas 6 core circadian
genes (NR1D2, CLOCK, RORA, PER3, RORC, and BMAL1) were
located in the “turquoise” cycling module (Fig. 3e). MAGMA
analysis revealed that there is significant enrichment of disease
risk genes in cycling modules (Supplementary Fig. 9). For
example, the yellow module is highly related to obesity and T2D
risk genes (P= 0.03 and 0.04, respectively) and the SCZ risk
genes are overrepresented in turquoise module (P= 0.00002).
Remarkably, 8 out of 9 cycling modules (turquoise, brown, yel-
low, tan, red, salmon, cyan, black) are conserved between baboon
and mouse, while only one module (midnight blue) is not con-
served (Supplementary Fig. 10). The results suggest that cycling
modules, together with other modules, are preferably preserved
during evolution These results indicate that circadian oscillation
is a basic property of body-wide gene networks.
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Co-expression networks are more internally connected at
nighttime than during daytime. To investigate the dynamics of
body-wide networks across time, we then built detailed WGCNA
modules for each circadian time point and computed the network
topology accordingly34. In order to make different networks
comparable, similar parameters were used (soft threshold= 16)
for each network’s construction (Supplementary Code). We
found that these networks exhibited distinct properties (Supple-
mentary Data 4). The median network connectivity at night is
significantly higher than during daytime (Average degree= 38 vs.
35, respectively, P= 0.013) (Fig. 4a), suggesting that the expres-
sion profiles of different organs are more similar to each other at
night. The network density fluctuated about 54% between day-
time and night, and the network is denser at night than during
daytime (0.00515 vs. 0.003), respectively, (P= 0.0076) (Fig. 4b).
The differences found between nighttime- and daytime-assigned
networks were preserved when using other network parameters,
such as centrality (P= 0.0076) (Fig. 4c), cluster coefficients
(P= 0.021) (Fig. 4d), heterogeneity (P= 0.021) (Fig. 4e), and
Maximum Adjacency Ratio (P= 0.0022) (Fig. 4f). Overall, the
topological differences suggested that the body-wide co-expres-
sion networks are flexible during daytime and robust at night
(Fig. 4g–l).

Networks at the two peak phases impact distinct functions. To
further characterize the differences between daytime and night-
time networks, we focused on the phase peaks at ZT06 and ZT18
(Fig. 1b), which correspond to noon and midnight, respectively.
The midnight (ZT18) networks possessed both a higher con-
nectivity and clustering coefficient than the daytime networks
(ZT06) (Fig. 5a, b). 43 and 42 network modules were classified in
each network, respectively (Fig. 5c, d; Supplementary Data 5).
Although the two network types exhibited distinct network
topologies (Fig. 5a, b), approximately half of the modules detected
were shared between them (Supplementary Fig. 11). Many of
these “consensus” modules were related to a specific organ
(Supplementary Fig. 12; Supplementary Data 6), indicating the
conservation properties of these two network types. Brain, mus-
cle, and immune system tissues were associated with five, four,
and four consensus modules, respectively (Supplementary
Data 6), and included 5223 global cycling genes in total. The
connectivity of global cycling genes is significantly higher than
other genes in both networks (P= 5.31 × 10−13 for daytime
network and P= 2.55 × 10−233 for nighttime network, Wilcoxon
rank sum test, Supplementary Fig. 13). We next examined the
differentially connected nodes of these two network types by
focusing on genes with a network connectivity that is at least
2-fold higher in one network than the other. Of the 5755 dif-
ferentially connected genes, 3767 (65%) were global cycling genes
(Fig. 5e), which were over-represented (P= 2.05 × 10−122, Fish-
er’s exact test). In addition, we also determined the Euclidean
distance for each gene between ZT06 and ZT18 by taking the co-
expression weights into consideration. We found that global
cycling genes have greater Euclidean distance compared to other
genes, indicating that global cycling genes tended to have dif-
ferent network partners than other genes in the two networks
(P < 2.2 × 10−16) (Fig. 5f). Subsequently, we asked whether global
cycling genes can explain the distinct strength of network con-
nections. We found that global cycling gene pairs displayed
greater differences in co-expression coefficients compared with
cases where only one or none of the two interacting partners was
a global cycling gene (P < 2.2 × 10−16).

Disease module is an important concept in network medicine,
implicating the pathology of complex diseases and their related
drug partitioning35,36. The daytime and nighttime networks in

baboon implicate that those disease modules are not static.
Indeed, we found that many diseases only form significant disease
modules at either daytime or nighttime, i.e., disease modules
formation depends on the network dimorphism (Fig. 5g). We
have plotted 20 representative disease modules according to
whether they are daytime or nighttime oriented. Interestingly, it
appears that most of the diseases are nighttime oriented (rest
period or with low locomotor activity in baboon) (Fig. 5h), such
as glucose metabolic disorders (Supplementary Fig. 14). This may
have important implications for treatment and disease pathology.
Finally, we found that of the 2024 approved drug target genes in
the U.S. Food and Drug Administration Drug Bank37(https://go.
drugbank.com/), >30% (634) are differentially connected between
daytime and nighttime networks (Supplementary Figs. 15 and
16), of which 11% (70) represent network hubs, which further
implicates the biomedical significance of the two circadian
network statuses.

Besides the differences in network topology, we also found that the
daytime and nighttime networks are associated with distinct
functions and organs may cycle through functions throughout the
day. We then focused on the genes that have less connectivity with
other genes, as such these genes could indicate dissimilarities in organ
activities across circadian time. Genes with fewer network partners at
ZT06 (daytime) were associated with various metabolic processes
(including organic acid catabolic process, adjusted P= 1.86 × 10;−06

carboxylic acid catabolic process, adjusted P= 1.86 × 10;−06 small
molecule metabolic process, adjusted P= 2.84 × 10−05 and organic
substance metabolic process, adjusted P= 0.0002) while genes with
small amounts of network connectivity at ZT18 (nighttime) were
implicated in growth-related functions (bone mineralization, adjusted
P= 0.035, response to growth factor, adjusted P= 0.040 and
biomineral tissue development, adjusted P= 0.040) or cellular
signaling pathways (enzyme linked receptor protein signaling pathway,
adjusted P= 0.0059) (Fig. 5i, j; Supplementary Fig. 17; Supplemen-
tary Data 7). Thus, the metabolic functions of specific gene modules
were more dynamic during daytime, seemingly fitting the energetic
demands of diurnal animals. Interestingly, five core circadian genes
(BMAL1, PER1, PER2, DBP, and RORB), most of which cycled in a
body-wide pattern, displayed at least two-times higher connectivity at
night (ZT18) than at daytime (ZT06), implicating the core circadian
clock in this is transcriptomic architecture.

Global cycling genes and rhythmic interactions tend to be
COVID-19 related. The COVID-19 pandemic has resulted in
hundreds of millions of infections with millions of those being
fatal38,39. The relationship between SARS-CoV-2 infection and
circadian regulation has not been fully explored. We thus
examined the recently identified 332 human proteins that are
reported to interact with SARS-CoV-240. Surprisingly, we found
that 69.01% (216) of these genes were global cycling genes
(OR= 1.97, P= 1.57 × 10−8, Fisher’s exact test). This enrichment
cannot be explained by the high expression level of these genes
(P= 3.79 × 10−8, logistic regression analysis). Further, among
these 216 cycling genes, 92 exhibited oscillating expression in 13
human tissues18 and 61 of them showed periodic expression in at
least one organ in both mouse and human13,18 (Supplementary
Data 8). Enrichment analysis using the Human Protein Atlas41

suggested that the 61 conserved global cycling genes were highly
expressed in respiratory epithelial cells, bronchi, the placenta, the
epididymis, glandular cells, the kidneys, and cells in tubules
(adjusted P < 0.001). In addition, 52.06% of co-expression inter-
actions among those 216 baboon global cycling genes were highly
rhythmic, which was greater than for gene pairs from the entire
set of 313 SARS-CoV-2 interacting genes (42.68%) or from all the
global cycling genes (44.52%) in the co-expression network.
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To validate the enrichment between baboon global cycling genes
and SARS-CoV-2 related proteins, we explored an independent
dataset, i.e. SARS-CoV-2 host factors42–45. It appears that this
enrichment still exists (OR= 2.10, P= 2.41 × 10−10, Fisher’s exact
test) and cannot be explained by expression level (P= 9.55 × 10−10,
logistic regression analysis, Fig. 6a). We also found that >80% of the
SARS-CoV-2 related genes enriched network modules are rhythmic
modules (Fig. 6a), whose functions are tightly associated with
autophagy (P= 0.0017), viral process (P= 0.0087) and intracellular
transport (P= 6.43 × 10−12) (Fig. 6b–d). Furthermore, we found that
for the differential connected SARS-CoV-2 interacting proteins
between ZT18 and ZT06, > 90% of them are global cycling genes (33
out of 36 genes, 44 out of 48 genes, respectively).

In addition, we also estimate whether global cycling genes are
enriched in other virus-related pathways. To do this, we used the 323
host factors that co-immunoprecipitated with influenza viral proteins
and affected influenza virus replication (influenza host factors)46. It

seems that influenza virus-host proteins are overrepresented in
baboon global cycling genes (OR= 1.93, P= 9.6 × 10−8, Fisher’s
exact test). These results demonstrated that global cycling genes are
important for various virus pathways.

Most importantly, the module of circadian regulation and
SARS-CoV-2 interacting genes (either host factors or SARS-CoV-
2 interacting proteins) are significantly closer in the protein-
protein interaction network (P= 0.011 and 0.020, respectively,
Supplementary Data 9), suggesting that SARS-CoV-2 infection
may disrupt the circadian regulatory pathway as well. Indeed,
many proteins that surround the two network modules are
related to viral infection process (P= 2.9 × 10−119 and 4.2
×10−123, Fig. 7a–c) and immune response (P= 0.0079 and
0.0154, Fig. 7b, d, Supplementary Data 9). We thus posit that the
treatment of circadian disruption may also be beneficial for the
recovery of SARS-CoV-2 infection and the relief of the long
COVID symptoms.
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Discussion
Individual organs require coordination with other organs to per-
form unified functions and ensure homeostasis. Similarly, indivi-
dual cells in an organ need to be synchronized in order to
implement the function of that organ, and this relies on gene co-
expression. Hence, two genes that are related in function need to
be properly co-expressed across time. By analyzing body-wide
diurnal transcriptome data from >60 baboon organs, we found
that more than half (53%) of transcripts is rhythmically expressed
on a global scale. The phase of these genes represents the median

phase of the cycling genes in each organ. More importantly, two
modes of network status were discovered, with daytime networks
associated with metabolic functions and nighttime networks
associated with growth-related processes. At least one third of
interactions and half of all network modules were rhythmic,
revealing a cyclical nature to organ-specific output. Interestingly,
this rhythmicity is widely enriched in genes encoding SARS-CoV-2
interacting proteins.

Several novel aspects of circadian rhythms were revealed by
our approach of evaluating global cycling genes and rhythmic
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interactions. Firstly, by integrating the circadian transcriptomes
of multiple organs, robust detection of cycling genes was achieved
with high-confidence (Benjamini-Hochberg adjusted P < 0.05),
even though the sequencing depth of samples was relatively low
(median total of 18.7 million sequence reads per sample). Sec-
ondly, this approach allowed detection of coordination between
multiple oscillators, resulting in dynamic regulation of thousands
of genes, which has been demonstrated in both baboon and
mouse. Thirdly, most of the core circadian genes including
CLOCK exhibited oscillation at the body-wide level, which is
distinct from their behavior in individual tissues17; lastly, the
interactions among human SARS-CoV-2 interacting genes were
also rhythmic and have close links with circadian regulation.

The nature of gene networks has been extensively studied and
several important features have been revealed. For instance,
‘small-world’ and ‘scale-free’ features characterize the structural
organization of biological networks47,48. Hub genes in the
network frequently indicate portend the functional importance
of a particular gene49,50. Our data show that rhythmicity is
another fundamental feature of biological networks. This
property might be extended to protein-protein interaction
networks, genetic interaction networks, functional association
networks and regulatory networks, although the proportion of
the rhythmic interactions each network could differ. The
rhythmicity of biological networks reveals that gene networks
may function in a temporally-organized manner, allowing dif-
ferent parts of the network to work sequentially.

Overall, co-expression networks were significantly more
internally connected at night suggesting that there are two basic
network modes: daytime and nighttime mode. This network
dimorphism implicates that circadian clock is regulating meta-
bolism to assist feeding/digestion during the day and tissue
repair/growth at night which may have biomedical implications
and is consistent with the fact that the baboon has higher loco-
motor activity and body temperature (enhanced metabolic
functions) during daytime compared with nighttime. It has been
proposed that circadian time should be considered as a factor
during drug development, as it may affect drug efficiency, espe-
cially for drugs with short half-lives51–53. Indeed, we found that
many diseases only form disease modules either at daytime or
nighttime. Since network dimorphism indicates the similarity of
drug target activities in these organs, we submit that for circadian
medicine, these two network modes need to be validated and then
tested for their usefulness in drug development and usage.

Although the cycling genes display two phase peaks, the time
point of these phase peaks can differ between genes13,17. More-
over, the diurnal nature of such peaks has remained elusive. By
constructing peak phase co-expression networks, we have found
that daytime- and nighttime-assigned networks have differential
topologies and associated functions, with greater regulation of
metabolic pathways during daytime and more regulation of
growth and cell-signaling functions at night. The function of
these peak phases is consistent with the daily activity of baboon.

The inflammatory course of viral infections are closely linked
to the circadian system54–57, especially for influenza. The rhyth-
mic expression of genes encoding SARS-CoV-2 interacting pro-
teins and host factors together with their enrichment in rhythmic
modules shows that SARS-CoV-2 may be associated with circa-
dian rhythms, which has potential implications for health care
efforts58,59. The organs with the most circadian-based regulation
of SARS-CoV-2 interacting genes may be the ones where the
response to SARS-CoV-2 infection is time dependent. More
importantly, SARS-CoV-2 related proteins have closer network
proximity with circadian rhythm than expected by chance. These
links may imply that SARS-CoV-2 patients should increase their
“circadian robustness” by avoiding behaviors that disrupt the

circadian system, such as insufficient sleep and excessive fatigue.
Time restricted eating may be benefit to the recovery as well. The
design of the COVID-19 vaccination may also need to take this
chronobiology factor into consideration60 and thus this repre-
sents a rich area for future investigation.

In conclusion, we find that both global rhythmic expression
patterns and interaction signatures are robust features of gene
networks; thus, reflecting circadian synchronization amongst
different organs and tissues. We show that such models can be
successfully applied to the analysis of single-cell oscillations, as
the transcriptome of individual cells should be aligned together
with the cycling functions of their particular organs. Forthcoming
research that applies single-cell sequencing technologies to the
molecular architecture of the circadian clock could help validate
our findings herein61.

Methods
Primate gene expression data. FPKM expression values from 756 samples were
downloaded from NCBI’s Gene Expression Omnibus, with GEO accession number:
GSE9896517. For each organ, only genes with expression levels above 0 for at least
half of all the time points were considered to be expressed. In the final dataset, the
expression profiles of 15,219 genes were included for further analyses. The multi-
organ single-cell data from Tabula Sapiens were obtained from public resource62

and subjected to findmarker analysis63 to search for cell type markers. Only genes
with at least 4-fold higher expression level in a specific cell type were considered as
a potential cell type marker.

Baboon global cycling genes identification. To detect global cycling genes, all the
expression information from 63 organs was considered at a particular time point.
JTK_CYCLE20,21 was employed to detect the global rhythmic parameters, such as
amplitude, phase period, and the significance level. Only genes with a Benjamini-
Hochberg adjusted P value <0.05 were considered to be global cycling genes. In
addition, leave-one-out cross validation was performed to verify the robustness of
identification of global cycling genes, by removing one organ at a time and using
the remaining 62 organs to calculate global cycling genes.

Mouse global cycling gene identification. We downloaded the circadian
microarray data of 12 mouse tissues from NCBI (GSE54650)13. Then the expres-
sion levels of 13,087 mouse genes that are homologous with baboon genes were
extracted. Next, ComBat was used to eliminate the variations among organs64 and
the JTK_CYCLE20,21 was used to detect global cycling genes. Only genes with
Benjamini-Hochberg adjusted P < 0.05 were considered to be global cycling genes.

Rhythmic interaction identification. 10,000 gene pairs were randomly sampled
from the expressed genes. For each gene pair, the Spearman correlation coefficient
was estimated based on expression among 63 organs. Then, JTK_CYCLE was used
to estimate the rhythmic parameters and only gene pairs with Benjamini-Hochberg
adjusted P values < 0.05 were retained as rhythmic interactions. The above pro-
cedures were repeated 100 times to obtain an unbiased assessment. Protein-protein
interactions were obtained from the STRING26 and HIPPIE25 databases; genetic
interactions were downloaded from the BioGRID24 database, and functional
relevant interactions were downloaded from the KEGG pathway database23. Then
the proportion of rhythmic co-expression in these types of interactions was ana-
lyzed via JTK_CYCLE20,21. R function pheatmap with the parameter scale= row
was used to display the rhythmic changes of interaction strength between gene
pairs. z-score was used to transform the raw spearman correlation coefficients (ρ)
by this formula: ρ0i ¼ ρi��ρ

σρ
, where �ρ is the mean of ρ1; ρ2; ¼ ; ρ12 and σρ represents

the standard deviation of ρ1; ρ2; ¼ ; ρ12.

Co-expression network analysis. To investigate rhythmic co-expression char-
acteristics at the module level, co-expression networks were constructed based on
the expression data among diverse organs. In brief, Pearson correlation coefficients
were used to calculate expression similarities across tissues. Then, the power
parameter was selected as 16. In total, 15,219 genes were assigned into 20 modules.
To estimate whether one particular module is rhythmic, both the module eigengene
and the mean expression of this module were analyzed by JTK_CYCLE20,21.
Modules with Benjamini-Hochberg adjusted P values < 0.05 were considered to be
rhythmically expressed.

Then we applied the same soft threshold (16) to build the co-expression
network at each time point. To compare the network topologies at different time
points, six network indices were calculated by the building function
fundamentalNetworkConcepts in WGCNA33; including network connectivity,
cluster coefficient, maximum adjacency ratio (MAR), network density,
centralization and heterogeneity.
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Co-expression network comparison at noon and midnight. To compare the peak
phase networks, which occur at noon and midnight, the above expression networks
built at ZT06 and ZT18 were chosen for downstream analyses, respectively. Dif-
ferentially connected genes were defined as genes with >2-fold changes in their
connection degree in the two networks. Then the Euclidean distance of each node
in the two co-expression networks and the absolute number of differences of
correlation coefficients between gene pairs was estimated. These three parameters
were used for the network comparisons. To compare network modules, we cal-
culated the module similarity based on the jaccard index among modules65.

Diurnal variation analysis of disease modules. The 299 diseases were obtained
as previously reported35. Firstly, we constructed unweighted gene co-expression
networks at ZT06 and ZT18 respectively, with Pearson Correlation Coefficient
greater than 0.8. Then for each of the disease gene set, we determine the shortest
distance ds based on previously reported approach35. To test whether disease genes
tend to form a module in a network, the same number of genes was randomly
selected to calculate the average distance. To detect whether the distance of disease
gene sets is differential in the ZT06 and ZT18 networks, 10,000 permutation tests
were performed for each disease with the same number of disease genes sampled. P
values were corrected for multiple tests using FDR. In the disease gene enrichment
analysis, the GWAS annotation of 8 diseases (obesity; insomnia; schizophrenia,
SCZ; bipolar disorder, BD; heart failure, HF; nonischemic cardiomyopathy, NICM;
type 2 diabetes, T2D; autistic-spectrum disorder, ASD) were collected from pre-
viously published studies66–72.

Functional enrichment analysis. The function annotation of global cycling genes
was performed by g:Profiler73. Each term was ranked according to the false discovery
rate (FDR), and the significance threshold was set to 0.05. To assess the main function
of global cycling genes, we restricted the term size to between 500 and 5000. As many
enriched terms have intersections, term similarity based on the jaccard index was
calculated and then clustered together by using a neighbor-joining method74.

Rhythmic interactions analysis of SARS-CoV-2 linked protein and host fac-
tors. To investigate whether rhythmic interactions exist among human SARS-
CoV-2 interacting proteins, all information of 332 SARS-CoV-2 interacting pro-
teins were downloaded as recently reported40. In addition, 374 SARS-Cov-2
infection host factors identified by three large-scale genome-wide CRISPR screens
were collected as well. 313 interacting proteins and 333 host factors were found to
be expressed in the baboon circadian transcriptome and were included in the
downstream analysis. Finally, rhythmic interactions among these genes were esti-
mated accordingly based on the baboon circadian transcriptome. In addition, 323
host factors that coimmunoprecipitated with influenza viral proteins (influenza
host factors) were collected from a previous reported study. The enrichment of
SARS-CoV-2 interacting proteins and host factors in global cycling genes was
performed using a two-sided Fisher’s exact test with odds ratio >1 and an FDR-
adjusted P < 0.05.

Human interactome. The human protein–protein interactome was assembled by
Zhou et al.75, which includes five types of protein–protein interactions (PPI):
protein complexes data identified by AP-MS, binary protein-protein interactions
tested by high-throughput yeast-two-hybrid (Y2H) systems, kinase–substrate
interactions, signaling networks and literature-curated protein-protein interactions
or protein 3D structures from public databases. The final dataset contains 17,706
proteins with 351,444 interactions.

Gene sets for circadian rhythm, viral infection process and immune related
functions. We downloaded viral infection process and immune related terms gene
sets from AmiGO76. Only the human proteins are filtered. For genes that are
involved in circadian rhythm, we used the “GO class (direct)” to limit them to the
ones annotated directly to this function.

Calculation of network proximity. We calculated the proximity of the SARS-
CoV-2 host factors and SARS-CoV-2 interacting proteins to genes directly related
to “circadian rhythm” based on previously reported methodology75. For the closest
distance dAB between group A and group B:

dAB ¼ 1
Aj jj j þ Bj jj j ∑

a2A
minb2Bd a; bð Þ þ ∑

b2B
mina2Ad a; bð Þ

� �
ð1Þ

where dða; bÞ is the shortest distance of gene a and gene b in the interactome, Aj jj j
represents the size of A, Bj jj j represents the size of B. To evaluate the statistical
significance, 1000 permutation tests were performed in which two randomly gene
sets were chosen with the same gene number and degree distribution as A and B.

Statistics and reproducibility. All the analyses were performed in R (v4.0.2).
Statistical significance was determined at Benjamini-Hochberg adjusted P value <
0.05. Gene set enrichment analysis was performed using a two-sided Fisher’s
exact test.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All datasets analyzed in this paper are publicly available. The RNA sequencing data of
baboon and mouse are available in NCBI’s Gene Expression Omnibus, with GEO
accession number: GSE98965 and GSE54650. The multi-organ single-cell data from
Tabula Sapiens is available at https://tabula-sapiens-portal.ds.czbiohub.org/.

Code availability
The codes for co-expression network construction are included in the supplementary
code and all other codes necessary to replicate the analyses are available upon request.
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