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Abstract: In the current work, YAGG:Cr3+ nanophosphors were synthesized by the Pechini method
and then annealed at different temperatures in the range 800–1300 ◦C. The structure and morphology
of the samples were characterized by X-ray Powder Diffraction (XRPD). The lattice parameters and
average crystalline sizes as site occupation by Al3+ and Ga3+ ions were calculated from the Rietveld
refinement data. To investigate the effect of crystalline size of the materials on their optical properties:
excitation and emission spectra were recorded and analyzed. Finally, the effect of crystalline size
on the probability of carrier recombination leading to PersL was determined experimentally with
thermoluminescence analyses. The Tmax-Tstop method was applied to determine the trap type and
particle size (calcination temperature) effect on their redistribution. A correlation between structural
changes and trap redistribution was found. In particular, the extinction of high-temperature TL
maximum with increasing annealing temperatures is observed, while low-temperature TL maximum
increases and reaches a maximum when the lattice parameter reaches saturation.

Keywords: YAGG; transition metal (Cr); lattice parameter; persistent luminescence; thermoluminescence;
traps redistribution

1. Introduction

The recently observed increase in interest in nanomaterials that could combine lumi-
nescent properties with the ability of temporary storage and emission release due to thermal
(thermoluminescence, TL) and optical (optically stimulated luminescence, OSL) stimuli has
resulted in the numerous publications on so-called persistent nanophosphors [1–7]. Due
to potential biomedical applications, the most studied compounds are chemically stable
oxides with spinel and garnet structures that provide better biocompatibility compared to,
for example, fluorides and sulfides. In these materials, specific positions in the crystal lattice
are defined, which can be substituted in a controlled way with acceptor and donor ions
involved in the mechanism of electron and hole trapping, as well as their release leading
to radiative deactivation [2,8]. An additional advantage of garnet and spinel structured
materials is the ability to simultaneously control the energy gap value of the host material
by introducing appropriate concentrations of other cations [9].

Ceramics and micro and nanocrystals based on the garnet matrix are the most per-
spective oxide crystals widely used as the active medium in solid-state lasers. Due to
the anisotropic optical properties, YAG powders doped with rare-earth (Ce3+, Pr3+, Yb3+,
and Nd3+) and transition metals (Mn2+, Cr3+, etc.) are suitable for preparing transpar-
ent laser ceramics with the working region in the near-infrared range that is suitable for
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bio-applications [10]. At the same time, several publications have described the modula-
tion of the band gap by replacing Ga3+ with Al3+ in the Y3Al5-xGaxO12 matrix to obtain
Y3Al2Ga3O12 (YAGG) stoichiometry, which has been shown to be optimal for use as garnet
PersL host material [9,11,12]. As a result, YAGG:Cr co-doped with lanthanides have gained
attention due to their interesting persistent luminescence (PersL) in the visible, red, and
NIR range, where Cr ions play an important role in obtaining long-lasting emissions.

Unfortunately, the theoretically very predictable results of the above actions for op-
timizing persistent luminescence (PersL) quality (intensity and duration) are perturbed
in nanoscale particles due to structural imperfections related to size effects as well as the
greater influence of the environment of these particles on radiative and non-radiative pro-
cesses occurring in their volume [13]. Additionally, garnet powder is a convenient material
for the manufacture of laser and persistent luminescence ceramics from nanosized grains
by low-temperature sintering under high pressure [14,15]. Furthermore, the duration and
color of PersL are determined by the luminescence center. Therefore, the use of Cr ions
both as an independent dopant and as a co-dopant extends the emission time for most of
the used matrices and shifts the emission range to the NIR region [9,16–18].

In this work, we present the results of a spectroscopic study that allow us to better un-
derstand the influence of these effects using a model system of Y3Al2Ga3O12 garnet (YAGG)
doped only with chromium ions, which, according to previously accepted models, act both
as dopants leading to the formation of trapping centers and leading to the production of
PersL. The presented here results of a detailed analysis of traps based on the Tmax-Tstop
method in correlation with structural changes—particularly site occupancy—will, in our
opinion, help to establish the relationship between structural changes in crystals and their
effect on traps creation and redistribution.

2. Materials and Methods
2.1. Materials Preparation

Y3Al1.99Cr0.01Ga3O12 (YAGG:Cr3+) nanophosphors were synthesized by using a mod-
ified Pechini method described previously in more detail [19]. Y2O3 (99.999% purity,
Stanford Materials Corporation, Lake Forest, IL, USA ), AlCl3 (99.999% purity, Alfa Aesar,
Haverhill, MA, USA) GaCl3 (99.999% purity, Sigma-Aldrich, Saint Louise, MO, USA), and
Cr(NO3)3×9H2O (99.99% purity, Alfa Aesar, Haverhill, MA, USA), additionally Citric acid
(99.5% purity, Alfa Aesar, Haverhill, MA, USA) aqueous solution and ethylene glycol (99%
purity, POCH. S.A., Basic, Gliwice, Poland) were used as starting materials. The gel was
subsequently annealed at selected temperatures from 800 to 1300 ◦C for 16 h in static air for
further investigations.

2.2. Characterization Techniques

X-ray powder diffraction (XRPD) patterns were acquired by a PANalytical X’Pert pro
X-ray (Malvern Pananalytical, Malvern, UK) powder diffractometer at 40 kV and 30 mA in
the 2θ range of 10–80◦ (2θ step: 0.02626◦) using nickel-filtered Cu Kα1 radiation. The phase
identification was performed using the X’pert HighScore Software. The phase composition,
cell parameters, crystallite sizes, and microstrain as the occupancy of the octahedral and
tetrahedral sites in the YAGG structures were evaluated based on the Rietveld method [20]
using the WinPLOTR, and WinPLOTR-2006 applications. The average crystallite size was
calculated using a Williamson–Hall analysis.

Photoluminescence emission (PL) and excitation (PLE) spectra were measured using the
FLS980 Fluorescence Spectrometer (Edinburgh Instruments Ltd., Livingston, UK) equipped
with a 450 W Xenon lamp as an excitation source. The excitation arm was supplied with
a holographic grating of 1800 lines/mm, blazed at 300 nm, while the emission arm was
supplied with ruled grating, 1800 lines/mm blazed at 750 nm. Both the excitation and
emission monochromators were in the Czerny-Turner configuration. The photomultiplier
tube R928P (Hamamatsu Photonics, Shizuoka, Japan) was used as a detector. The scanning
range was from 250 to 680 nm for the PLE spectrum and from 460 to 820 nm for the PL
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spectrum with a spectral resolution of 0.2 nm. All spectra were corrected for the sensitivity
of detectors and intensity excitation source.

The thermoluminescence (TL) glow curves were collected with a lexygresearch–Fully
Automated TL/OSL Reader (Freiberg Instruments GmbH, Freiberg, Germany) from room
temperature to 300 ◦C with heating rates 2, 1, 0.75, 0.5, and 0.25 ◦C·s−1. Varian VF-50J/S
RTG tube (Varian Medical Systems Inc., Palo Alto, CA, USA) with tungsten core and
copper case as an X-ray radiation source was used as an irradiation source. The voltage
and amperage for the X-Ray source were 15 kV and 0.1 mA respectively. The signal was
collected using PMT R13456 (Hamamatsu Photonics, Shizuoka, Japan Shizuoka, Japan)
with a filter 721/65 Brighline HC (Semrock Inc., Rochester, NY, USA). Powder samples
were prepared for measurements the same as was described in our previous work [17] For
detailed analyses of the traps redistribution as an annealing temperature function, the Tmax-
Tstop (partial cleaning) experiment proposed by McKeever was performed [21]. The sample
was irradiated at room temperature with the following partially heating to a temperature
Tstop and cooling back to room temperature (25 ◦C). TL curves were recorded from room
temperature to 300 ◦C with a heating rate of 0.5 ◦C·s−1 and integration (detection) time of
0.1 s. Positions first maximum Tmax in the glow-curve versus Tstop are plotted in the Tstop
range between 30 and 200 ◦C with step 10 ◦C to cover completely the glow curve.

3. Results and Discussion
3.1. Microstructure

Figure 1 shows the XRPD patterns of the YAGG:Cr3+ powders annealed at different
temperatures. The XRPD patterns were refined by Rietveld analysis (see Figure S1), which
showed the presence of pure Y3Al2Ga3O12 phase of the cubic Ia3d space group [22]. The
crystallographic data and refinement details of the structure including lattice parameter
and grain size, are summarized in Table 1.
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Table 1. Cell parameter a, crystallite size DXRPD, lattice microstrain ε, an average number of Ga3+ ions
per lattice in octahedral site N(A) and tetrahedral site N(D), and fractional parameter f Ga obtained by
applying the Rietveld method to the XRPD patterns.

Annealing Temperature, ◦C a, Å DXRPD, nm ε N(A) N(D) f Ga

800 12.1806(16) 26(2) 0.00223(10) 8.83(9) 15.16(9) 0.632(7)

900 12.1723(16) 36(2) 0.00159(9) 8.27(9) 15.72(9) 0.655(7)

1000 12.1667(15) 51(2) 0.00113(8) 7.52(9) 16.47(9) 0.687(8)

1100 12.1640(26) 76(2) 0.00077(6) 7.59(8) 16.40(8) 0.684(7)

1200 12.1645(29) 94(2) 0.00061(7) 7.33(8) 16.66(8) 0.695(7)

1300 12.1653(6) 110(2) 0.00053(4) 7.70(8) 16.30(8) 0.679(7)

Figure 2 presents the calculated values of grain sizes and lattice parameters of the
YAGG:Cr3+ nanopowders for the sample annealed at various temperatures. Direct depen-
dence of the average grain size on temperature is clearly seen, increasing the temperature
from 800 ◦C to 1300 ◦C led to a growth in the average crystallite size from 26(2) nm to
110(2) nm. Meanwhile, the lattice parameters decrease from 12.1806(16) Å to 12.1640(26) Å
for an annealing temperature of 1100 ◦C, and a further rise in the temperature barely
changes the lattice parameter.
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Figure 2. The influence of the annealing temperature on the grain size and lattice parameter of the
YAGG nanopowders.

The change in the lattice parameter can be explained by the influence of the surface.
The YAGG:Cr3+ nanopowders with an average crystalline size above 50 nm do not reveal
any structural alteration, while the samples smaller than 50 nm show an increase in the
lattice parameter. The noticed decrease in its value is most probably related to the increase
in crystallite size through the repulsive force at the surface due to unpaired electronic
orbitals. These dipoles repel each other, which reduces the value of the equilibrium lattice
parameter for the smaller crystallites (with a higher surface-to-volume ratio) to be greater
than that of crystallites with larger sizes [23]. This is also reflected in the microstrain, which
decreases with increasing crystallite size (Figure S2).
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The general formula of the YAGG crystal structure can be represented as C3A2D3O12,
where the C–dodecahedral site is occupied by Y3+ ions, while A, D-octahedral, and tetra-
hedral sites, respectively, are occupied by Al3+ and Ga3+ ions [24]. Unlike Al3+ and Ga3+

ions, Cr3+ can occupy only octahedral sites, because the crystal field stabilization energy
of tetravalent chromium ions in tetrahedral coordination is about a third of the value in
octahedral coordination [25]. Otherwise, Cr4+ can occupy both octahedral and tetrahedral
sites [26]. Accordingly, the only variable independent parameter is the occupancy of octa-
hedral and tetrahedral sites by Al3+ and Ga3+ ions. The increase in annealing temperature
leads to redistributions of Ga3+ and Al3+ ions between the different sites in the garnet
lattice. Figure 3 shows the change in the occupancy of the octahedral and tetrahedral sites
of the samples at different annealing temperatures. It is interesting to recall the fact that
only a third of Ga3+ is in the octahedral site, and the rest–is in the tetrahedral [23].
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dral (b) sites of the Y3Al2Ga3O12 nanopowders.

An important parameter of YAGG materials is the fractional parameter f Ga, which
indicates the degree preference of the tetrahedral site by Ga3+. The fractional parameter
f Ga was calculated according to the methodology described earlier [27]. It should be noted
that the f Ga value higher than 0.6 indicates prefer occupation of the tetrahedral site by Ga3+

ions (see Figure S2). The calculated f Ga value was in the range of 0.63(1) to 0.70(1) and
depended on crystalline size (Table 1). This indicates that the Ga3+ preferentially occupies
the tetrahedral position. The tendency to occupy the tetrahedral site cannot be explained by
cation sizes, as larger cations (Ga3+, 0.61 Å, and 0.47 Å in A and D sites, respectively [28])
tend to occupy the smaller tetrahedral positions, while the smaller cations (Al3+, 0.53 Å,
and 0.39 Å in A and D sites respectively [29]) tend to occupy the larger octahedral site [27].

The decrease in the average grain size of the crystallites leads to a change in Ga3+ ions
distributions resulting in a decrease f Ga from 0.69(1) at crystallite size 51(2) nm to f Ga 0.63(1)
at crystallite size 26(2) nm (Figure S2) which is below the value f Ga (0.68–0.72) reported ear-
lier for a single crystal of the same composition [27,29]. The decrease in the f Ga is probably
caused by an increase in the lattice parameter of YAGG nanopowders caused by a decrease
in the crystallite size. Beforehand the same results were detected on Y3Al5-xGaxO12 single
crystals where the increase in lattice parameter caused a decrease of fractional parameter
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f Ga. The Ga3+ cation distributions in Y3Al2Ga3O12 nanopowders are due to the binding
nature of the cation-oxygen bonds and cation-cation repulsive forces. Most likely, the
peculiar distribution of cations in the Y-Al-Ga system is associated with the compensation
of the cation-cation repulsive force, as well as the effect of electronegativity [27].

3.2. Photoluminescence

A comparison of the PLE spectra of Cr3+ ions in YAGG samples annealed at dif-
ferent temperatures from 800 ◦C to 1300 ◦C reveals the presence of a blue shift of the
4A2g(F)→ 4T1g(F) transition. It can be noted that the maximum of that band shifts its
position on the energy scale from 22 779 cm−1 to 23 031 cm−1 (∆E ~ 250 cm−1). In contrast,
the band assigned as 4A2g(F)→ 4T2g(F) almost does not change its position (16 385 cm−1)
even for the highest annealing temperature. This effect is visible in Figure 4. It should be
noted that the abnormal behavior of the band 4T1g is observed, namely the appearance of
inflexion on the shoulder from the lower energies side. This anomaly may be associated
with the presence of the band 2T2g (Figure S3). The position of this inflexion coincides with
the corresponding line in the Sugano-Tanabe diagram (Figure 5) [30].
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As the Cr3+ ion belongs to the transition metal ions, its spectroscopic properties
depend much more on the crystal field strength than is the case for, e.g., lanthanide ions.
For example, in the presence of a low field, the Cr3+ luminescence occurs from the spin-
allowed 4T2g → 4A2 transition (broadband emission with a short lifetime), but for a high
crystal field (more than 2.1), the dominant luminescence originates from the spin-forbidden
2E→ 4A2 transition, which results in the presence of sharp zero phonon R lines, a phonon
sideband, and a longer decay time [30,31]. In the YAGG host, the Cr3+ ion substitutes
the Al3+ site with the octahedral symmetry, so it is possible to determine the values of
crystal field parameters by using a Tanabe-Sugano diagram for a d3 system [30]. The Racah
parameter B, as well as the ligand field splitting term Dq for each annealing temperature,
were found by determining the positions of the two excitation peaks evident in Figure 4,
calculating their energy ratio, and locating these ratios on the proper Tanabe-Sugano
diagram [32]. The result of this procedure is presented in Figure 5. The calculated ratios
increase with the temperature from 1.378 to 1.417 and obtained 10Dq/B parameters decrease
from 27.203 to 23.730, respectively. Hence, we can determine the values of the parameter B
as the point of intersection of the vertical line representing 20 Dq/B, with the term line of
the lowest 4T2g(F) state on the Tanabe-Sugano diagram. Finally, using the calculated Racah
parameter B, one can determine the Dq value representing the crystal field strength for this
system as well as the β = B/B0 (where B0 is the Racah parameter for free Cr3+ ion, equal to
1030 cm−1). All the calculated parameters are presented in Table 2.

The slightly decreasing distance between 4T1g(F) and 4T2g(F) terms over the range of
temperatures investigated indicates a decreasing repulsion interaction of the d electrons
and, hence, an expansion of the d electrons cloud. This effect is called the nephelauxetic
effect [33]. In addition, with the increase of annealing temperature (and therefore with
the crystallite size) an increase of the β parameter, determining the degree of bonding
covalence is observed. In the case of the investigated YAGG:1%Cr3+ sample, the bonding
covalence degree appears to decrease with the crystallite size. As can be seen from the data
obtained, the YAGG:Cr3+ samples annealed at lower temperatures (between 800 to 1000 ◦C)
seem to be identical in terms of crystal field calculations. Thereafter, as the annealing
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temperature increases, the Dq/B parameter starts to decrease and reaches a minimum (~24)
at 1200 ◦C. However, despite the observed tendency for higher temperatures to decrease
the crystal field intensity with crystallite size, a breakdown is observed at 1300 ◦C. At this
temperature, the redistribution of ions does not change compared to the sample annealed
at 1100 ◦C. This tendency is similar to the data for the lattice parameter and Ga3+ and Al3+

sites occupancy.

Table 2. Crystal field parameters for YAGG:Cr3+ nanopowders as a function of annealing temperature
calculated with Tanabe-Sugano diagram for a d3 system.

Annealing
Temperature, ◦C

υ2/υ1
Ratio Dq/B B2, cm−1 β = B2/B0 Crystallite Size

DXRPD, nm

800 1.378 27.203 828.889 0.805 26(2)

900 1.378 27.203 828.889 0.805 36(2)

1000 1.378 27.203 828.889 0.805 51(2)

1100 1.391 26.045 874.601 0.849 76(2)

1200 1.417 23.730 980.021 0.951 94(2)

1300 1.404 24.887 925.828 0.899 110(2)

The PL spectra of samples annealed at temperatures from 800 to 1300 ◦C are shown in
Figure 6. The sharp and strong PL peak at ∼690 nm, is related to the 4A2g → 2Eg transition,
while the broadband is related to the 4T2g → 4A2g transition.

Materials 2022, 15, x FOR PEER REVIEW 8 of 13 
 

 

Table 2. Crystal field parameters for YAGG:Cr3+ nanopowders as a function of annealing tempera-

ture calculated with Tanabe-Sugano diagram for a d3 system. 

Annealing Temperature, 

°C 

υ2/υ1 

Ratio 
Dq/B B2, cm−1 β = B2/B0 

Crystallite 

Size DXRPD, 

nm 

800 1.378 27.203 828.889 0.805 26(2) 

900 1.378 27.203 828.889 0.805 36(2) 

1000 1.378 27.203 828.889 0.805 51(2) 

1100 1.391 26.045 874.601 0.849 76(2) 

1200 1.417 23.730 980.021 0.951 94(2) 

1300 1.404 24.887 925.828 0.899 110(2) 

The PL spectra of samples annealed at temperatures from 800 to 1300˚C are shown 

in Figure 6. The sharp and strong PL peak at ∼690 nm, is related to the 4A2g → 2Eg transi-

tion, while the broadband is related to the 4T2g → 4A2g transition. 

 

Figure 6. Photoluminescence spectra of the YAGG: 1% Cr nanopowders as a function of annealing 

temperature. Excitation 450 nm, at room temperature. 

It was reported elsewhere, that the PL intensity of the Cr-doped garnet may strongly 

depend on the particle size [34]. In this work, particularly for samples annealed at tem-

peratures from 800 to 1000˚C, the PL intensity has almost the same intensity. This is con-

sistent with the reported structural features-for these samples, the average particle size is 

found to be almost the same. However, for lower annealing temperatures a significant 

number of O–H groups remain on the particle surfaces or in the pores and it can lead to 

luminescence quenching [35]. With a further increase in annealing temperature, an in-

crease in intensity is also observed, which reaches its maximum value for a temperature 

of 1200˚C and then remains unchanged. 

3.3. Thermoluminescence Analysis 

Figure 6. Photoluminescence spectra of the YAGG: 1% Cr nanopowders as a function of annealing
temperature. Excitation 450 nm, at room temperature.

It was reported elsewhere, that the PL intensity of the Cr-doped garnet may strongly
depend on the particle size [34]. In this work, particularly for samples annealed at tempera-
tures from 800 to 1000 ◦C, the PL intensity has almost the same intensity. This is consistent
with the reported structural features-for these samples, the average particle size is found to
be almost the same. However, for lower annealing temperatures a significant number of
O–H groups remain on the particle surfaces or in the pores and it can lead to luminescence
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quenching [35]. With a further increase in annealing temperature, an increase in intensity is
also observed, which reaches its maximum value for a temperature of 1200 ◦C and then
remains unchanged.

3.3. Thermoluminescence Analysis

To determine the effect of structural changes on the traps formation and redistribution,
the TL curves for all investigated powders after irradiation by X-ray were recorded and
analyzed. The first and dominant TL peak for the YAGG:Cr3+ sample is observed at around
60 ◦C (Figure 7). Furthermore, a second high-temperature peak with a maximum at 190 ◦C
is more pronounced at lower annealing temperatures. In YAGG:Cr3+ annealed at 900 ◦C,
the two TL peaks reflect two well-defined series of traps. As the annealing temperature
increases, the intensity of the second peak decreases slightly and it becomes less prominent
compared to the first peak, whose intensity increases. Importantly, both peaks have a
similar symmetrical shape, suggesting that they may be the result of a superposition of a
series of traps with a continuous energies distribution [21,36].
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As can be seen from the results of structural studies carried out for the samples doped
with chromium, three critical temperatures can be distinguished for the powders studied,
namely 900, 1100, and 1300 ◦C. At 900 ◦C, crystal structure formation was observed for
the garnet synthesis by the Pechini method [17]. The temperature of 1100 ◦C was chosen
based on the minimum values of the lattice parameter and the particle size, which is still
less than 100 nm. The third is 1300 ◦C, at which the lattice parameter begins to increase
and the crystal field decreases. To further analyze the traps contributing to the main
thermoluminescence peaks, the Tmax-Tstop method was carried out for selected annealing
temperatures (Figure 8 left panel). In addition, the Initial Rise method [37] was used to
determine the energy from each of the recorded curves. Using data obtained, plots of the
dependence of Tmax (black square) and activation energy (blue square) on Tstop value were
drawn for observed traps, which are presented in Figure 8 (right panel).
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Two maxima are clearly evident in the plots, which are of different natures. The first
maximum is linear with a slope near unity, indicating a series of first-order peaks with a
quasi-continuous distribution of peaks (and, therefore, of trapping centers) [38,39]. The
second maximum consists of a single first-order peak only in the Tmax-Tstop part of the
curve (150–200 ◦C) and in the further course is simply a line with zero slope [38]. This is
because the peak has not shifted as the initial population of trapped charges decreases.
From the point of view of the activation energy, the first maximum in all samples is the
same and is about 0.75 ± 0.02 eV, which is close to the value observed previously for
the same matrix with different co-dopants [17,40]. In contrast, the activation energy of
the second maximum noticeably decreased from about 0.9 to 0.5 eV with increasing an
annealing temperature. The invariability of the position of the maximum with decreasing
activation energy can be explained by the following Equation (1):

βE
kT2

m
= s· exp

{
− E

kTm

}
(1)

where Tm is the glow curve maximum, E is the activation energy, β is the heating rate
(in K/s), and s—frequency factor (s−1). Equation (1) shows that the frequency factor also
plays an important role in the de-trapping process. As the activation energy of the second
maximum decreases from 0.9 to 0.5 eV, the value of the frequency factor decreases from
108 to 103 s−1, and the process of releasing trapped electrons occurs more slowly [37,41].
Finally, it is likely that one TL peak with a position at a higher Tm may have a lower
activation energy than the previous one. Combining these results with the previous analysis
of the structure and optical properties, it can be concluded with a high probability that the
traps with lower energy values are related to changes occurring inside the phosphors. In
particular, morphology, phase change, redox reactions of the dopant ions, changes due to
clustering of such dopants, etc. Specifically, one of the limiting points may be –OH groups,
which may be present in samples after lower annealing temperatures [35] and which can
transform into oxygen vacancies as a result of annealing at higher temperatures.

4. Conclusions

It was found, that increasing the annealing temperature to 1100 ◦C leads to a decrease
in the lattice parameter to 12.164, after which it remains almost unchanged. In parallel, a
redistribution of the Ga3+ and Al3+ ions between octa- and tetrahedral sites in the garnet
lattice occurs. Above 1100 ◦C, most Ga3+ ions (up to 70%) remain in the tetrahedral site
while Al ions (up to 55%) move to the octahedral site. These structural changes correlate
with the optical characteristics of both PL and PersL. As the grain size increases, the electron-
phonon coupling decreases, whereas the crystal-field strength increases. A similar trend
is observed for thermoluminescence curves. The maximum of the TL intensity reached
1100 ◦C and remains unchanged for higher temperatures.

It can therefore be concluded that the higher annealing temperature (>1100 ◦C) did not
improve the optical properties of studied phosphors. Consequently, the YAGG phosphor
annealed at 1100 ◦C, showing an acceptable degree of particle agglomeration, may already
be suitable for practical applications as starting materials for the production of, among
others, high-quality optical ceramics and luminescent markers for imaging in the first
biological window.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ma15134407/s1, Figure S1: X-ray diffraction patterns with
main (hkl) of the samples. The results of the Rietveld refinement analysis; Figure S2: The influence
of the annealing temperature on the microstrain and fractional f Ga parameters of the Y3Al2Gd3O12
powders calculated from X-ray diffraction patterns; Figure S3: Deconvolution of the PLE spectra of
the YAGG:Cr3+ nanophosphors. Reference [20] is cited in the Supplementary Materials.
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