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ABSTRACT Understanding the genetic and environmental basis of genotype · environment interaction
(G·E) is of fundamental importance in plant breeding. If we consider G·E in the context of genotype · year
interactions (G·Y), predicting which lines will have stable and superior performance across years is an
important challenge for breeders. A better understanding of the factors that contribute to the overall grain
yield and quality of rice (Oryza sativa L.) will lay the foundation for developing new breeding and selection
strategies for combining high quality, with high yield. In this study, we used molecular marker data and
environmental covariates (EC) simultaneously to predict rice yield, milling quality traits and plant height in
untested environments (years), using both reaction norm models and partial least squares (PLS), in two rice
breeding populations (indica and tropical japonica). We also sought to explain G·E by differential quanti-
tative trait loci (QTL) expression in relation to EC. Our results showed that PLS models trained with both
molecular markers and EC gave better prediction accuracies than reaction norm models when predicting
future years. We also detected milling quality QTL that showed a differential expression conditional on
humidity and solar radiation, providing insight for the main environmental factors affecting milling
quality in subtropical and temperate rice growing areas.
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Genetic by environment interaction (G·E) could be expressed as a
difference in the relative response of genotypes across diverse envi-
ronments. When we consider a set of genotypes exposed to different
environments, their performance will differ depending on the in-
teraction of genetic properties with the different environmental

conditions, leading to differences in variances and rank changes
among genotypes (Cooper and DeLacy 1994). These rank changes
represent a very important challenge for breeders due to the diffi-
culties of selecting genotypes with stable performance over diverse
environments.

Environments can be different both in time and space. For this
reason, the concept of G·E embraces both interactions that take place
between genotypes and a particular location (genotype by location in-
teraction), and between genotypes and particular years (genotype by
year interaction). Genotype by location interactions are usually
determined by soil and climate conditions, while genotype by year in-
teractions are characterized by plot-to-plot variability and weather
conditions (Malosetti et al. 2016).

Several statistical approaches have been proposed to describe
G·E in the context of classical plant breeding. The classic parametric
approaches used to evaluate G·E are based on linear regression and
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ANOVA techniques. Linear regression analysis (Yates and Cochran
1938; Finlay and Wilkinson 1963) measures individual genotype per-
formance over environmental means. Multiplicative models combine
univariate and multivariate approaches for reducing data dimension-
ality and facilitate the interpretation of results (Gauch 1988; Smith
et al. 2005). The most commonly used multiplicative model is the
additive main effect and multiplicative interaction model (AMMI;
Gauch 1992). AMMI combines univariate (ANOVA) and multi-
variate (singular value decomposition; SVD) techniques for esti-
mating genotype and environment main effects, and G·E effects,
respectively. Factorial regression models are another type of mod-
els that allow the modeling of genotype sensitivity to specific envi-
ronmental covariates (EC) (van Eeuwijk et al. 1996; Vargas et al.
1998; Malosetti et al. 2004; Malvar et al. 2005). Linear mixed-models
became very popular for the analysis of G·E since they allow dif-
ferent correlation structures among environments (Burgueño et al.
2007). These covariance structures may range from a compound
symmetry form, where homogeneous variance and homogeneous
covariance between environments are assumed, to an unstructured
form where a covariance parameter is assumed between each pair of
environments and environments are assumed to have heterogeneous
variances.

Recent developments in sequencing technologies and statistical
modeling have made it possible to use dense genotypic information
to predict phenotypic responses through genomic prediction (GP). This
idea was introduced by Meuwissen et al. (2001), and provides an alter-
native approach to indirect selection in crop breeding. GP models were
originally developed for traits evaluated in single environments, but
more recently standard GP models have been extended to account
for G·E. Burgueño et al. (2012) were the first to extend genomic best
linear unbiased prediction (GBLUP) to a multi-environment context,
by combining genetic and environmental covariance matrices and us-
ing different covariance structures to model the environmental com-
ponent. Lopez Cruz et al. (2015) proposed a marker by environment
approach where marker effects and genotypic values are partitioned
intomain effects across environments (stability) effects that are specific
to each environment (interactions).

Standard GP models can be modified to accommodate climate
information in the form of EC. However, including EC in the analysis
can pose some similar constraints encountered when predicting breed-
ing values with multiple markers. As climatic and agronomic systems
develop, a very high number of covariates can potentially be obtained
increasing the dimensionality of the data and also the possibility of being
correlatedwith each other. Several studies have proposed different ways
to deal with highly dimensional data, showing that the incorporation of
explicit environmental and genetic information can improve prediction
accuracies and predict performance in untested environments (Heslot
et al. 2014; Jarquín et al. 2014; Malosetti et al. 2016). Jarquín et al.
(2014) proposed a Bayesian reaction norm model where the main ge-
netic and environmental effects were modeled using covariate struc-
tures as functions of molecular markers and EC respectively, and the
interaction effects between markers and EC were modeled using a mul-
tiplicative operator. Heslot et al. (2014) proposed a factorial regression
model, where instead of using all the available EC and molecular
markers, they chose the EC thatmost significantly influenced the growth
and development of the crop by using crop growth models (CGM).
These variables were introduced in the factorial regression model along
with those markers that showed the most variable effects across envi-
ronments and reducing thus, dimensionality of both markers and EC.

The partial least square regression (PLS) (Wold et al. 2001) is a
generalization of multiple linear regression (MLR). PLS is a dimension

reduction approach that can accommodate a large number of corre-
lated genetic and environmental variables simultaneously, by finding
one or few factors named latent variables (LV) that explain both the
variance of the X matrix (containing predictor variables) and the co-
variance between matrices X and Y (containing response variables).
PLS can be used for variable selection, in order to improve estimation/
prediction performance, but also to improve model interpretation and
understanding of the system studied. Another advantage of PLS is
that it can be more robust against multicollinearity (Aastveit and
Martens 1986). PLS models have previously been used for GP both
in plant and animal breeding (Solberg et al. 2009; Long et al. 2011;
Colombani et al. 2012; Iwata et al. 2015), to detect highly influential
environmental and marker covariates that explain a significant pro-
portion of the total G·E (Vargas et al. 1998; Crossa et al. 1999; Vargas
et al. 1999).

Understanding the genetic basis of G·E is also necessary to gain
predictive capability, and one way to do this is detecting QTL with
varying effects across different environmental conditions, or QTL
by environment interaction (QTL·E). Methods usually employed to
detect QTL·E have been very useful to detect QTL with differential
expression across environments, but provide no explanation of the
underlying environmental factors involved. When weather data are
available, factorial regression models can be used to determine the
extent of influence of these factors on QTL·E (Crossa et al. 1999;
Campbell et al. 2004; Malosetti et al. 2004).

Rice is one of the world’s most important staple food crops, consti-
tuting over 21% of the caloric intake of the world’s population and up
to 76% of the caloric needs in many Asian countries (Fitzgerald et al.
2009). World markets dictate the value of rice mainly based on mill-
ing quality traits, so breeding for both high yield and quality is a major
breeding objective for rice exporting countries like Uruguay.

In a previous study we showed that accounting for heterogeneous
covariance parameters between pairs of environments can be beneficial
for predicting yield and milling quality performance in Uruguayan rice
for untested environments (Monteverde et al. 2018). In another study,
Quero et al. (2018) found a set of QTL for milling yield traits in the
same Uruguayan indica and tropical japonica populations. However,
none of these studies tested the use of EC to both predict yield and
milling quality traits in untested environments, and investigate QTL
responses in specific environments. The main objectives of this study
were to: 1) use molecular marker data and environmental covariates
simultaneously to predict rice yield and milling quality traits in un-
tested environments (years), and 2) Detect marker by environment
covariate interactions that provide explanations of variable QTL ef-
fects across environments. Two rice breeding populations (indica
and tropical japonica) were used in this study and were evaluated
for grain yield, plant height and grain quality traits (head rice per-
centage and chalky grain percentage) across 3-5 years in Eastern
Uruguay. Results from these two analyses provided clues about the
main environmental variables that could be driving G·E in temperate
rice-growing regions such as Uruguay.

MATERIALS AND METHODS

Germplasm
The germplasm consists of two rice-breeding populations, an indica
and a tropical japonica population belonging to the National In-
stitute of Agricultural Research (INIA-Uruguay). Both populations
were evaluated in a single location, Paso de la Laguna Experimental
Station (UEPL), Treinta y Tres, Uruguay (33�15’S, 54�25’W) between
2009-2013.
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The indica population consisted of 327 elite breeding lines eval-
uated over three years (2010-2012), and the field design consisted
in a randomized complete block design with two or three replica-
tions. Trait correlations, heritabilities, and genomic prediction ac-
curacies for this dataset were computed in previous studies (Rosas
et al. 2017, Monteverde et al. 2018, Quero et al. 2018). The tropical
japonica population consisted of 320 elite breeding lines evaluated
over five years (2009-2013). The number of accessions observed
each year ranged from 93 to 319, as detailed in Table 2. This dataset
was unbalanced with non-random missing data, since �50% geno-
types were dropped from testing every year based on performance,
and new genotypes were added over time. Each year, the genotypes
were planted independently in replicated trials in six-row plots
using an augmented randomized complete block design with two
or three replications. Both indica and tropical japonica trials were
conducted under irrigated conditions using appropriate pest and
weed control.

The agronomic traits of interest used in this study were Grain
Yield (GY of paddy rice in kilograms per hectare) and Plant Height
(PH measured in cm from the soil surface to the tip of the flag leaf).
The grain quality traits measured were Percentage of Head Rice
Recovery (PHR measured in grams, as the weight of whole milled
kernels, using a 100g sample of rough rice), and the percentage of
Chalky Grain (GC measured as % of chalky kernels in a subsample
of 50 g of total milled rice, where the area of chalk -core, white back
or white belly- was larger than half the kernel area based on visual
inspection). More details about how grain quality traits were
measured can be found in Quero et al. (2018) and Monteverde
et al. (2018).

Phenotypic analysis
Phenotypic data for each trait were analyzed separately each year. The
model used to calculate the best linear unbiased estimators (BLUEs)
for each year was:

yijkl ¼ mþ bi þ gj þ rkðiÞ þ clðiÞ þ eijkl

where yijkl is the trait score, m is the overall mean, bi is the random
effect of the ith block with bi � Nð0;s2

bÞ, where s2
b is the block var-

iance, gj is the genotypic effect of the jth genotype, rkðiÞ and clðiÞ are the
random kth row and lth column effects nested within the ith block with
rkðiÞ � Nð0;s2

r Þ and clðiÞ � Nð0;s2
c Þ, where s2

r and s2
c are the row

and column variances respectively, and eijkl is the model residual
vector with eijkl � Nð0;s2

e Þ where s2
e is the error variance.

Trait heritabilities in tropical japonica for years 2009 and
2013 (data not yet published) was calculated on a per line basis
as H2 ¼ s2

g=ðs2
g þ s2

e=rÞ, where s2
g is the variance among geno-

types, s2
e is the error variance, and r is the number of replicates.

Genotypic characterization
The lines were genotyped using genotyping-by-sequencing (GBS). SNP
calling was performed using the TASSEL 3.0 GBS pipeline (Bradbury
et al. 2007), and SNPswere aligned to the Nipponbare reference genome
MSU version 7.0 (http://rice.plantbiology.msu.edu/) using Bowtie
2 (Langmead and Salzberg 2012). Imputation of missing data were
performed with the FILLIN algorithm implemented in TASSEL 5.0
(Swarts et al. 2014) for both datasets separately. The GBS datasets
were filtered to retain markers with,50% missing data after impu-
tation, and a minor allele frequency MAF . 0.05, as reported by
Quero et al. (2018), and Monteverde et al. (2018). The final indica
and tropical japonicamarker dataset consisted of 92,430 and 44,598
SNP markers respectively.

Derivation of EC From weather data
Daily weather data were obtained from GRAS unit from INIA (http://
www.inia.uy/gras/Clima/Banco-datos-agroclimatico). The database
contains weather data from 1965 to the last calendar month com-
pleted, for all 5 INIA experimental stations in Uruguay. The variables
available were related to temperature, precipitation, solar radiation,
humidity, wind, and evaporation.

To compute the EC from daily weather data for each rice genotype,
the plant development stagehas tobe determined in order to account for
the differential effect that weather variables may have in different stages

n Table 1 Environmental covariates used in this study

EC abbreviation Explanation

ThermAmp Thermal Amplitude (�C): Average of daily thermal amplitude calculated as max temperature (�C) – min
temperature (�C).

RelSun Relative sunshine duration (%): Quotient between the real duration of the brightness of the sun
and the possible geographical or topographic duration.

SolRad Solar radiation (cal/cm2/day): Solar radiation calculated using the Armstrong’s formula.
EfPpit Effective Precipitation (mm): Average of daily precipitation in mm that is actually added and stored in

the soil.
DegDay Degrees Day in rice (�C): Mean of Daily average temperature minus 10 �.
RelH Relative humidity (hs): Sum of daily amount of hours (0hs-24hs) where the relative humidity was equal

to 100%.
PpitDay Precipitation day: Sum of days when it rained.
MeanTemp Mean Temperature (�C): Average of temperature over 24 hs (0-24 hs).
AvTemp Average Temperature (�C): Average Temperature calculated as daily (Max+Min)/2.
MaxTemp Maximum Temperature (�C): Average of maximum daily temperature.
MinTemp Minimum Temperature (�C): Average of minimum daily temperature.
TankEv Tank water evaporation (mm): Amount of evaporated water under influence of sun and wind.
Wind Wind speed (2m/km/24hs): Distance covered by wind (in km) over 2m height in one day.
PicheEv Piche Evaporation (mm): Amount of evaporated water without the influence of the sun.
MinRelH Minimum relative humidity (%): Lowest value of relative humidity for the day.
AccumPpit Accumulated precipitation (mm): Daily accumulated precipitation.
Sunhs Sunshine duration: Sum of total hours of sunshine per day
MinT15 Minimum temperature below 15�: Sum of the days where the minimum temperature was below 15�.
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of crop development. This information is usually hard to obtain directly
or, as in our case, not available. For this reason, the phenology of the
crop was defined according to flowering time (days to 50% flowering,
FT), which was measured for each line every year. With this measure,
and sowing and harvest date, three main phenology stages were de-
termined for each year, according to Yoshida (1981): vegetative stage
(of variable length, starting on sowing date), reproductive stage (start-
ing 35 days before FT), andmaturation stage (ending 30 days after FT).

Once these phenological stages are defined for each year, EC can be
computed from daily weather data. Covariates with zero variance were
removed from the analysis. For prediction, both markers and EC were
centered by subtracting the mean, and standardized to unit variance by
dividing the centered values by the standard deviation of the marker
or EC. A total of 54 EC were used in both populations (18 for each
developmental stage: vegetative, reproductive, andmaturation), and are
summarized in Table 1.

PLS regression
PLS regression was first introduced by Wold (1966), and was originally
developed for econometrics and chemometrics. It is a multivariate sta-
tistical technique that was designed to deal with the p.. n problem; i.e.,
when the number of explanatory variables (p) is much larger (and more
highly correlated) than the number of observations (n). A brief expla-
nation of PLS relating one response variable ðyÞ to a set of explanatory
variables ðXÞ is given below, but it can be extended to more than one
response variable (Boulesteix and Strimmer 2006; Wold et al. 2001).

In PLS, the data for p explanatory variables are given by the matrix
X ¼ ðx1; . . . ; xpÞ, and data for the dependent variables are given by the
response vector y. Each x1; . . . ; xp and y vectors have n · 1 dimensions
corresponding to the number of observations. In this work, the y vector
contains all the observations for a given trait in different environments
(years), and the columns of the X matrix are the variables correspond-
ing to either markers only, or markers and EC. All variables in PLS
must be centered and scaled.

PLS is based on the latent variable (LV) decomposition:

X ¼ TPT þ E; (1)

y ¼ TqT þ f ; (2)

where T is a n · cmatrix giving the LV (also called scores) for the
n observations, and P ðp · cÞ is a matrix of p-dimensional orthogonal
vectors called X-loadings, q (1 · c) is a vector of scalars and, also
named Y-loadings, E (n · p) and f (n · 1) are a residual matrix and
vector respectively.

The LV matrix T that relates the X matrix to the vector y is calcu-
lated as:

T ¼ XW; (3)

whereW is a (p · c) matrix of weights. For a givenmatrixW, the LV
obtained by forming corresponding linear transformations of the var-
iables in X, X1; . . . ;Xp are denoted as T1; . . . ;Tc:

T1 ¼ w11X1 þ . . .þ wp1Xp

⋮
Tc ¼ w1cX1 þ . . .þ wpcXp

These LV are then used for prediction in place of the original
variables. After computing the T matrix, qT is obtained as the least
squares solution of Equation (2):

qT ¼ �
TTT

�-1
TTy:

The vector b of regression coefficients for the model y ¼ Xbþ f ,
to predict new responses, is calculated as:

b ¼ WqT ¼ W
�
TTT

�-1
TTy:

Since regression and dimension reduction are performed simulta-
neously, all b, T, W, P and q are part of the output. Both X and y
are taken into account when calculating the LV in T. Moreover, they
are defined so that the covariance between the LV and the response is
maximized.

In PLS, the optimal number of LV (c) must be determined. In this
work, we used the root means squared error of prediction (RMSEP),

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
10

X10
k¼1

�
ŷk2 yk

�
vuut

which was minimized with 10-fold cross-validation in the training
data set and for each value of LV (Mevik and Cederkvist 2004). In this
study, two PLS models were fitted: the PLS-G model used marker
covariates as predictors, and the PLS-GW model, which used both
marker covariates and EC as predictors. PLS models calculations were
performed with the R package “mixOmics” (Lê Cao et al. 2016).

Genomic Best Linear Prediction (GBLUP) and reaction
norm models
Mixed linear models were used as a baseline comparison of prediction
accuracies with PLS models. The models used considered the random
main effects of markers (Gmodel), the randommain effects of markers
and EC (G+W model), and the random main effects of markers, EC,
and the interactions between them (G+W+GW model).

The Gmodel constituted of a standard GBLUPmodel for the mean
performance of genotypes within each set of environments, using the
following model:

yi ¼ mþ gi þ ei; (4)

wherem is the overall mean, gi is the genotypic random effect of the ith

line expressed as a regression on marker covariates of the form:

gi ¼
Pp
m¼1

ximbm, where xim is the genotype of the ith line at the mth

marker, and bm is the effect of the mth marker. Marker effects are
considered as IID draws from normal distributions of the form
bm � Nð0;s2

bÞ.
The vector g ¼ Xb contains the genomic values of all the lines, and

follows a multivariate normal density with null mean and covariance
matrixCovðgÞ ¼ Gs2

g , whereG is a genomic relationshipmatrix whose
entries are given by G ¼ XXT=p.

As previously reported by Jarquín et al. (2014), it is possible tomodel
the environmental effects with a random regression on the EC that
describes the environmental conditions faced by each genotype, that

is: wij ¼
PQ
q¼1

Wijqgq, where Wijq is the value of the qth EC evaluated in

the ijth environment · genotype combination, gq is the main effect of
the corresponding EC, and Q is the total number of EC. Again, we
consider the effects of the EC as IID draws from normal densities,
gq � Nð0;s2

gÞ. The vector w ¼ Wg follows a multivariate normal
density with null mean and a covariance matrix proportional to V
whose entries are computed the same way as those of the G matrix
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but using EC instead of markers. This covariance structure describes
the similarity among environmental conditions. Then, the model
becomes:

yij ¼ mþ wij þ gj þ eij (5)

This model also includes a marker · EC interaction term, where
the covariance of the interaction is modeled by the Hadamard product
of ZgGZT

g and V, denoted as ½ZgGZT
g �∘V, where Zg is an incidence

matrix for the vector of additive genetic effects. This model extends
Equation (4) as follows:

yij ¼ mþ wij þ gj þ gwij þ eij; (6)

with w � Nð0;Vs2
wÞ, g � Nð0;Gs2

gÞ, gw � Nð0; ½ZgGZT
g �∘Vs2

gwÞ,
e � Nð0;s2

e Þ.

Assessing prediction accuracy for new environments
The prediction problem studied here was that of predicting future
seasons, also denoted as “leave one environment out” prediction sce-
nario. This prediction was performed by including phenotypic re-
cords and parameter information of either two (indica dataset) or
four (tropical japonica dataset) years in the training population to
predict a third (indica dataset) or fifth (tropical japonica dataset) year,
where no phenotypic data were collected. Prediction accuracies
obtained from both PLS and Reaction norm models were assessed
by calculating the Pearson correlation between the predicted values
from each model for a particular testing year, and the observed phe-
notypic values for that same year.

QTL by EC interactions
For the detection of QTL by environment interaction we used a
two-step strategy as described in Gutiérrez et al. (2015). In the first
step, we scanned the genome of both indica and tropical japonica
subspecies to detect QTL in individual environments (single en-
vironment QTL mapping). In the second step, QTL expression
across environments was regressed on environmental covariates
in order to explain QTL effects in terms of sensitivities to envi-
ronmental covariates (Malosetti et al. 2004; Boer et al. 2007;
Malosetti et al. 2013).

For the first step, we fitted a mixed model for single environment
QTL detection. The model used was the kinship model with:

y ¼ Xbþ Zuþ e;

where y is the vector of phenotypic means for that environment,
X is the molecular marker score matrix, b is the vector of marker
effects, Z is an incidence matrix, u is the vector of random back-
ground polygenic effects with variance s2

u ¼ Ks2
G (where K is the

kinship matrix, and s2
G is the genetic variance), and e is the vector of

residuals. A GWAS analysis for each dataset, trait and environment
was performed using the R statistical software (R Core Team 2017)
with the package GWASpoly (Rosyara et al. 2016) fitting the addi-
tive model. For QTL determination in each environment, we used
the Benjamini-Hochberg FDR (a=0.05) to control the type I error
(Benjamini and Hochberg 1995).

In the second step, all marker-trait associations detected in the first
step were fitted in a second mixed model testing for interaction with all
availableEC.Thismodel assumes a linear relationshipbetween the effect
of the QTL and a given environmental covariate, using the model
presented in Malosetti et al. (2013) given by:

yij ¼ mþ Ej þ xi
�
aq þ bqzj þ a

�jq
�þ G

� iþ GE
�ij

where yij is the phenotype of individual i at environment j, m is the
general mean, Ej effect of the jth environment, xi is the value of the ith

marker predictor, aq is the effect of the qth QTL in the average envi-
ronment, bq corresponds to the change of the QTL effect per unit of
change of the covariable’s value, and a

�iq is the random effect cor-
responding to the residual (unexplained) QTL effect, with a

�iq �
Nð0;s2

aqÞ, G� i is the random remaining (not due to the QTL) geno-
type effect withG

� i � Nð0;Ks2
GÞ, andGE�ij is the remaining (random)

G·E effect, with GE
�ij � Nð0;ΣÞ. All EC were tested for interaction

using three different models for the variance-covariance matrix Σ were
compared: compound symmetry (CS) where the genetic variances are
homogeneous across environments ðs2

G þ s2
GEÞ and the genetic co-

variances between environments are modeled by sG; heterogeneous
compound symmetry (HCS), which allows for heterogeneous genetic
variances across environments (s2

Gj
) and a common genetic covari-

ance parameter s2
G; and the unstructured (UN) model with a specific

genetic variance parameter per environment and a specific genetic
covariance between environment. The different models were com-
pared using the Bayesian information criterion (BIC) to select the
optimal model (Broman and Speed 2002). We tested for the signifi-
cance of the fixed terms in mixed models using Wald test at a p value
of 0.05, following Malosetti et al. (2004). For QTLxEC interaction
testing we used the Benjamini-Hochberg FDR (a=0.05) to control
the type I error (Benjamini and Hochberg 1995).

Mixed models for QTL·EC interaction were computed with the R
package sommer (Covarrubias-Pazaran 2016).

Data Availability
All the data used in this study, as well as Supplemental Table 1 are
provided in SupplementalMaterial available at Figshare. Genotype data
can be found as RDS files (“geno_indica.rds” and “geno_japonica.
rds”), phenotypic data can be found as “.csv “ files (“pheno_indica.
csv” and “pheno_japonica”), marker positions can be found in files
“map_indica.csv” and “map_japonica.csv”, and EC data are available
in files “EC_indica.csv” and “EC_japonica.csv”. Supplemental mate-
rial available at Figshare: https://doi.org/10.25387/g3.7685636.

RESULTS

Phenotypic data analysis
The indica dataset was balanced with a total of 327 lines per environ-
ment, while the tropical japonica dataset was unbalanced, with a total of
23 lines common to all environments (Table 2). Estimations of broad-
sense heritability estimated on a line-mean basis per trait by year for
both datasets weremedium to high, with PHRhaving the highest values
of heritability in both datasets.

Table 3 shows the partitioning of the observed phenotypic variance
into different sources of variation for both rice datasets. In the indica
population, PHR and GC showed the highest proportion of variance
explained by G·Y, at 20.04% and 13.22%, respectively. On the other
hand, the year component was the highest variance component for GY
and PH (Table 3). In the tropical japonica population, the year compo-
nent was the highest; it was above all components for the four traits, and
much higher than for the indica population. In contrast, the G·Y com-
ponent was lower in tropical japonica compared to indica (Table 3).

Genomic prediction of untested years
Bar plots showing prediction accuracy for the four traits in the indica
population are shown in Figure 1. PLS-based methods showed higher
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prediction accuracies than reaction norm-based models for all traits
except GC, where prediction accuracies for the PLS method using
both markers and EC (PLS-GW) were the same as the reaction norm
models. For PLS models, the use of EC in addition to molecular
markers resulted in higher prediction accuracies in all cases, though
PHR in 2011 and GC in 2012 had identical prediction accuracies for
both methods. For reaction norm models, fitting the main effect of
genotypes, environments and interaction (G+W+GWmodel) resulted
in either lower or equal prediction accuracies than fitting the simpler
model without the interaction term (G+W model) (Figure 1).

In the tropical japonica population, the use of PLS-based models
was always better than reaction normmodels, with the single exception
of GY in 2010 (Figure 2). In all cases, including both markers and EC
(PLS-GW) was better than using markers only (PLS-G). Within the
reaction norm models, the G+Wmethod was the best, with the excep-
tion of GC in 2013. Fitting a G·E component in these models resulted
in lower prediction accuracies than fitting the G+W model (Figure 2).

Many of the ECused in this studywere correlated. Thismay result in
lower prediction accuracies in the reaction normmodel, since it would
weight the environmental covariances toward the highly correlated
variables.Reactionnormmodelswitha subsetof less correlatedvariables
were tried, resulting in very similar or even lower prediction accuracies
than when using the entire set of EC (Table S2).

WhenrunningPLSwithall the environmentswithineachdataset,we
can detect which variables best explain each trait by looking at the
coefficients. Table 4 shows the ranking of coefficients for the EC var-
iables for each trait in both datasets. For GY, variables related to tem-
perature and humidity during flowering stage were among the most
important. For PHR and GC, the 5 variables with the highest coeffi-
cients were related to temperature, humidity and solar radiation during
maturation. In the tropical japonica dataset, variables related to humid-
ity, solar radiation and rainfall during maturation showed the highest
coefficients for PHR and GC. For GY, two variables at flowering time
showed higher coefficient values than the rest: maximum temperature
and wind speed (Table 4).

Detecting QTL in single environments
We searched for significant trait-marker associations in single years to
find QTL to test for interactions with EC in the next step. In this first
analysis, we could not find any QTL that passed the FDR threshold for
GY in any environment in any population. In the case of PH, we did not

find any QTL for the indica population, but we found one major effect
QTL on chromosome 1 (position: 37,755,448 - 38,755,448 bp) that was
significant in all environments in the japonica dataset; it corresponds to
the sd-1 gene (position: 38,363,881 bp).

WedetectedQTL for grainquality traits in bothdatasets (Table 5). In
the indica population, a total of 13 QTL (chromosomes 1, 2, 3, 4, 6, 7,
10 and 11) were found for PHR, and a total of 4 QTL (chromosomes 1,
3 and 4) for GC. QTL were found only in years 2010 and 2012 for PHR,
and in years 2011 and 2012 forGC. Three of theQTLwere reported in a
previous GWAS analysis using this same dataset (Quero et al. 2018).
These QTL were: qPHR.i.2.2 (S2_24210614), qPHR.i.3.1 (S3_10247958),
qGC.i.1.1 (S1_1066894). Two additional QTL were in LD with two
previously reported QTL in the same study. These were qPHR.i.3.2
and qPHR.i.6.1, which were in LD with S3_15365726 and S6_829223

n Table 3 Trait variance component estimation and proportion of
the total variance explained for the four traits evaluated in
Uruguayan indica and tropical japonica populations. GY: grain
yield, PHR: percentage of head rice, GC: percentage of chalky
grains, PH: plant height

indica

GY PHR

Group Variance % Group Variance %

Year 496540 18.9 Year 0.0001 10.02
Genotype 379554 14.5 Genotype 0.0002 20.04
GxY 143374 5.5 GxY 0.0002 20.04
Column 55361 2.1 Column 0.000007 0.70
Row 31357 1.2 Row 0.000006 0.60
Block 516792 19.7 Block 0.0002 20.04
Residual 1000130 38.1 Residual 0.000285 28.56

GC PH

Group Variance % Group Variance %

Year 0.0003 13.22 Year 12.51 9.26
Genotype 0.0004 17.62 Genotype 8.91 6.60
GxY 0.0003 13.22 GxY 5.56 4.12
Column 0.0003 13.22 Column 0.84 0.62
Row 0.00007 3.08 Row 0.92 0.68
Block 0.0005 22.03 Block 8.31 6.15
Residual 0.0004 17.62 Residual 98.02 72.57

tropical japonica

GY PHR

Group Variance % Group Variance %

Year 1988252 43.2 Year 0.001 41.36
Genotype 197961 13.2 Genotype 0.0003 12.41
GxY 99052 5.1 GxY 0.0001 4.14
Column 24932 0.3 Column 0.000008 0.33
Row 19062 0.5 Row 0.00001 0.41
Block 115775 22.7 Block 0.0006 24.81
Residual 682613 15.1 Residual 0.0004 16.54

GC PH

Group Variance % Group Variance %

Year 0.005 66.32 Year 37.5 43.7
Genotype 0.0007 9.29 Genotype 18.4 21.4
GxY 0.0006 7.96 GxY 1.6 1.8
Column 0.000009 0.12 Column 0.1 0.1
Row 0.00003 0.40 Row 0.1 0.2
Block 0.0004 5.31 Block 13.3 15.5
Residual 0.0008 10.61 Residual 14.8 17.2

n Table 2 Description of the rice breeding lines evaluated each
year and broad-sense heritabilities for each trait calculated in a
line-basis. GY: grain yield, PHR: percentage of head rice, GC:
percentage of chalky grains, PH: plant height

indica

H2

Year Lines evaluated GY PHR GC PH

2010 327 0.46a 0.86a 0.73a 0.49a

2011 327 0.60a 0.78a 0.59a 0.66a

2012 327 0.68a 0.71a 0.69a 0.58a

tropical japonica

2009 93 0.44 0.67 0.59 0.77
2010 292 0.68 0.71 0.59 0.62
2011 319 0.43a 0.85a 0.41a 0.62a

2012 319 0.57a 0.79a 0.75a 0.79a

2013 134 0.70 0.75 0.80 0.78
a
Previously reported by Monteverde et al. (2018) and Rosas et al. (2017)
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in our study, respectively. In the tropical japonica population, a total of
5 QTLwere found for PHR (chromosomes 1, 2, 3, 6, and 8), and one for
GC (chromosome 6) (Table 5). Two of these QTL were in LD with
previously reported QTL: qPHR.j.3.1 with S3_1395165, and qGC.j.6.2
with S6_27402260 (Quero et al. 2018). No significant QTL were found
for GY or PH for any year in either of the populations.

QTL 3 environmental covariate interactions
A decomposition of the QTL with significant QTL · environment in-
teraction was obtained by introducing environmental covariates as
explanatory variables. We first tested different covariance structures
for the modeling of the G·E component and compared them using
BIC (see Methods). For all QTL and traits, BIC values decreased when
using the HCS matrix compared to the CS matrix. However, the HCS
model already behaves quite similar to the maximally complex UN
model, so the HCS was the model of choice (Table S1). The QTL
responses for the indica dataset are shown in Table 6. One QTL
showed significant interaction with environmental covariates related
to precipitation and humidity during the maturation stage. Marker
S2_24210614 showed a negative relationship with PpitDay_M and
RelH_M. The high correlation between these two variables (r = 0.99)
explains why they show the same coefficients for the main QTL effect
(a), and the interaction (b). No significant main effect was detected
for this QTL (Table 6).

Results for regression of marker covariates on environmental
covariates for the tropical japonica dataset are shown in Table 7. For
GC, marker S6_27402260, located in chromosome 6, showed a
significant positive response to weather covariates related to pre-
cipitation and minimum temperature, and a negative response to
sunshine duration and solar radiation. This marker also showed a
significant main effect (Table 7).

DISCUSSION
In this work we proposed to characterize and interpret G·E interaction
for four traits (GY, PHR, GC and PH) in two different breeding pop-
ulations of rice (indica and tropical japonica) grown in a subtropical/
temperate climate. In the first part of our paper, we compare the per-
formance of different genomic prediction models that account for ge-
notype, environment and G·E components, to predict untested years,
and we identify the most influential weather covariates for our two
datasets. In the second part, we map environment-specific QTL and
study the environmental variables that affect their expression, in order
to interpret the QTL·E effects that account for the total G·E.

Prediction accuracies for untested environments
Usually genomic prediction models are tested and compared us-
ing cross-validation strategies. In a multiple environment context,
most studies include two basic random cross-validation schemes

n Table 4 Top 5 PLS-GW coefficients for the environmental covariates for Grain Yield (GY), Head Rice Percentage (PHR), Grain Chalkiness
percentage (GC) and Plant Height (PH) for the indica and tropical japonica rice breeding populations. Suffixes V, R and M mean Vegetative
stage, Reproductive stage, and Maturation stage respectively

indica

Coefficient

Type Variable GY PHR GC PH

Temperature ThermAmp_V — 0.0001251 20.000403 —

MinTemp_R 0.005277 — — 20.00751
MeanTemp_R 0.005265 — — 20.00773
ThermAmp_M — 0.0001273 20.000402 —

Precipitation EfPpit_R 0.005159 — — 20.00723
Evaporation TankEv_V 0.005185 — — 20.00772

TankEv_M — 0.0001272 20.000407 —

Humidity MinRelH_M — 20.0001270 0.000406 —

Radiation SolRad_M — 0.0001267 20.000402 —

Wind Wind_V 20.005108 — — 0.00766

tropical japonica

Coefficient

Type Variable GY PHR GC PH

Temperature MinTemp_V — — — 20.014
MaxTemp_V 0.0102 — — 20.015
MeanTemp_V — — — 20.016
DegDayRice_V — — — 20.016
MaxTemp_R 20.0125 — — —

AvTemp_M 20.0101 — — —

Precipitation PpitDay_R — — — 0.014
EfPpit_M — 0.013 0.018 —

AccumPpit_M — 20.013 — —

Evaporation PicheEv_V — 0.013 — —

Humidity MinRelH_M — 20.015 0.019 —

Radiation Sunhs_M — 0.013 20.018 —

SolRad_M — — 20.017 —

RelSun_M — — 20.017 —

Wind Wind_V 20.0103 — — —

Wind_R 20.0126 — — —
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(Burgueño et al. 2012): CV1, which tests the performance of lines
that have not been evaluated in any of the observed environments,
and CV2, which tests the performance of lines that have been
evaluated in some environments but not in others. These two
scenarios have the disadvantage of training and validating the
models with the same data, which could lead to an overestimation
of the prediction accuracy the model would attain if it had been
applied in an independent test dataset. Predicting new environ-
ments is a more difficult task but could represent a good validation
strategy because the performance of prediction models is assessed
in an independent dataset. In this work we used a cross-validation
scheme for prediction in untested environments, represented by
years, a component of G·E that is not easy to reproduce. This is a
very relevant type of prediction for a small plant breeding pro-
gram, where data from multiple locations is either limited or ab-
sent, and the need is to predict which lines are more likely to
perform better in future environments. The use of EC to model
the environment component explicitly has been previously shown

to increase prediction accuracies for untested environments
(Malosetti et al. 2016, Jarquín et al. 2017), and this situation also
applies to our work.

For prediction, we compared twomodeling approaches that differ in
the way thatmultiple and correlated variables are handled: 1) a variance
components approach that allows modeling the main and interaction
effects of markers and EC using covariance structures, and 2) a PLS
approach thatmodels genotype andenvironment effectsby identifying a
linear combination of all the explanatory variables, providing latent
vectors that optimally predict the response variable. We found that the
PLS-GWmodel was in all cases superior to or not different from PLS-G
and reaction norm models in both datasets. Although the variance
explained by the G·E component in the indica population, shown in
Table 3, was comparable in some cases to the variance explained by the
genotype and/or the year main components, the proportion of variance
explained jointly by the genotype, environment and G·E components,
was never superior to 50% of the total variance. This could explain the
lower prediction accuracies obtained in this population compared to

Figure 1 Correlations between predicted vs. observed values for the “leave one year out” prediction scenario for Grain Yield (GY), Head Rice
Percentage (PHR), Grain Chalkiness percentage (GC) and Plant Height (PH) for predicting untested years with the G, G+W, G+W+GW, PLS-G and
PLS-GW for the indica rice breeding population. G = genotypic main effect modeled with marker covariates, W = Environmental main effect
modeled with EC, GW = interaction between genotypic and environmental effects, PLS-G = Partial least squares using marker covariates as
predictors, PLS-GW = Partial least squares using marker covariates and EC as predictors.

1526 | E. Monteverde et al.



the japonica population. It is possible that the EC used in this study
explained only a limited proportion of the across environment inter-
action in the indica dataset, and for this reason reaction norm models,
when fitting covariance matrices for the environment and marker by
environment interaction, did not improve prediction accuracies in
comparison to the simpler GBLUP model. In the japonica population,
the proportion of the total variance explained by G·E was very low
compared to the main genotype and environment components, which
also explains why modeling a specific interaction covariancematrix did
not give better results than modeling the main genotype and environ-
ment covariance matrices alone. In this population, the main environ-
ment effect was better represented by the EC, and thus, prediction
accuracies, when including an EC covariance matrix (W) or the EC
in the PLSmodel, were higher than when using a Gmatrix ormolecular
markers alone.

Besides the ability of handling numerous and correlated predictors,
an additional advantage of using PLSmodels is that we can detectwhich

covariates are themost explanatory inourmodelby looking at themodel
coefficients (Wold et al. 2001; Mehmood et al. 2012). Previous studies
have shown the benefits of PLS for identifying the set of EC that best
explain G·E (Vargas et al. 1998; Vargas et al. 1999; Crossa et al. 1999).
In these studies, the G·E component of the trait was used as a response
and regressed to EC only. In our case, we decided to report the results of
the regression of the traitmeans to both EC andmarkers, since regressing
the G·E component to EC resulted in increased MSEP with an
increasing number of components, and thus a poor model fit. For
GY, minimum and average temperature, and effective precipita-
tion during flowering time showed the highest positive coefficients
for indica rice, as shown in Table 4. In regions with a temper-
ate climate, low temperatures during flowering can affect grain
yield by inducing spikelet sterility (Yoshida 1981, Alvarado
2002). The probability of occurrence of temperatures under 15�
during January (when rice usually enters the flowering stage) in
Eastern Uruguay is about 20%, and would be most detrimental for

Figure 2 Correlations between predicted vs. observed values for the “leave one year out” prediction scenario for Grain Yield (GY), Head Rice
Percentage (PHR), Grain Chalkiness percentage (GC) and Plant Height (PH) for predicting untested years with the G, G+W, G+W+GW, PLS-G and
PLS-GW for the tropical japonica rice breeding population. G = genotypic main effect modeled with marker covariates, W = Environmental main
effect modeled with EC, GW = interaction between genotypic and environmental effects, PLS-G = Partial least squares using marker covariates as
predictors, PLS-GW = Partial least squares using marker covariates and EC as predictors.
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indica varieties, which are best adapted to tropical climates. In the
tropical japonica population, the two EC that showed the highest
(negative) coefficients for GY were wind speed during flowering,
and maximum temperature during grain filling. Both wind speed
and high temperatures during reproduction have been proven to
negatively affect GY due to pollen dehydration and consequent
spikelet sterility (Marchezan and Aude 1993; Raju et al. 2013).

For the grain quality traits, EC related to humidity, solar radiation
and sunshine duration during grain ripening were among the most
important in both datasets. The positive coefficients for solar radiation,

and the negative coefficients for humidity reflect the relative effects
of these variables on milling quality, as previously reported
(Siebenmorgen et al. 2012; Edwards et al. 2017). Many studies have
reported negative effects of high temperatures on grain chalk and
percent head rice (Tashiro and Wardlaw, 1991, Lyman et al. 2013).
For example, for japonica cultivars, temperatures higher than
26� Can cause chalky grain appearance (Chen et al. 2016), but
maximum daytime temperatures higher than 33� Cause dramatic
changes in the distribution of head and broken rice, and increase
the proportion of chalky grain (Ambardekar et al. 2011; Lyman
et al. 2013). In Eastern Uruguay, maximum temperatures during
February-March, the period in which rice kernels usually develop,
rarely reach 32�. In our own dataset, the average maximum tem-
peratures were never higher than 30�, so it is probable that in the
absence of high stress-inducing temperatures in sub-tropical rice
growing areas, other variables such as humidity and solar radiation
are more important, as is reflected in our results.

QTL detection and interaction With
environmental covariates
For this part of the analysis we used mixed-models to analyze QTL
by EC interactions because of their flexibility, and the possibility of
modeling genetic correlations between environments. We first
performed an association mapping analysis for each of the four
traits in each environment in both populations. In the case of PH,
Rosas et al. (2017) performed a GWAS analysis on these same
populations using the mean across environments and found a
major effect QTL corresponding to the sd-1 gene which was seg-
regating in the japonica population, but fixed in the semi-dwarf
indica population (Rosas et al. 2017). When we performed a single
environment scan we could not find any other QTL in either
population, other than a major-effect QTL corresponding to the
sd-1 gene in japonica.

Of the 23 QTL we found for PHR and GC in both populations in
Table 5, 8 were coincident with QTL reported by Quero et al. (2018) in
the same populations using the mean across environments. For PHR
in indica, we found evidence of one genomic region, located in chro-
mosome 2 that is affected by humidity, one of the main environmental
factors that affect milling quality in rice (Table 6) (Cooper et al. 2008,
Zhao and Fitzgerald 2013).

Two putative QTL in tropical japonica were co-located on chromo-
some 6: S6_27834772 for PHR and S6_27402260 for GC. These two
QTL are in LD with qPHR.j.6.1 and qGC.j.6.2 previously found by
Quero et al. (2018), and contain genes related to starch metabolism,
such as OsBEI (LOC_Os06g51084). It is known that the expression of
starch branching enzymes, like OsBEI, can be affected by temperature
(Yamakawa et al. 2007; Sreenivasulu et al. 2015). According to our
results, QTL S6_27402260 showed interaction with low tempera-
ture, precipitation, sunshine duration and solar radiation for GC, as
shown in Table 7. Other researchers have shown that periods of

n Table 6 QTL responses to EC for percentage of head rice (PHR) in the indica rice population. Suffixes R and Mmean Reproductive stage,
and Maturation stage respectively

Trait Marker Chromosome Position EC a b

PHR S2_24210614 2 24210614 PpitDay_M 0.09 20.03�

RelH_M 0.08 20.04�

MinTemp_R 0.10 20.04�

a: QTL main effect.
b: Slope parameter for the QTL·EC parameter.
� significance level at a = 0.05.

n Table 5 Marker-trait associations for percentage of head rice
(PHR) and percentage of chalky grain (GC) traits in indica and
tropical japonica rice breeding populations. Chromosome position
(bp), year, effect of the alternative allele, and score (-log10(p-value))
are shown in the table

indica

Marker Chr Position Year Alt allele effect (%) Score

PHR

S1_1015065 1 1015065 2010 21.62 4.98
S2_24210614 2 24210614 2012 2.95 7.20
S3_8880979 3 8880979 2010 1.32 4.60
S3_10247958 3 10247958 2010 22.12 9.97
S3_15365726 3 15365726 2010 21.85 7.19
S4_29728982 4 29728982 2010 1.30 4.68

2012 2.37 5.66
S6_829223 6 829223 2010 1.76 5.04
S6_11022101 6 11022101 2012 22.10 5.30
S6_13215923 6 13215923 2010 21.24 5.47
S6_21327503 6 21327503 2012 2.63 5.54
S7_14798606 7 14798606 2010 1.25 5.05
S10_6737554 10 6737554 2010 2.40 5.64
S11_24425810 11 24425810 2010 1.92 4.70

GC

S1_1066894 1 1066894 2011 1.33 4.06
S1_22492066 1 22492066 2012 1.45 5.74
S3_16037360 3 16037360 2011 0.72 4.07
S4_22480721 4 22480721 2011 1.24 4.14

tropical japonica

PHR

S1_38686312 1 38686312 2013 2.0 3.20
S2_27660046 2 27660046 2013 21.0 4.41
S3_1395165 3 1395165 2011 1.0 6.18
S6_27834772 6 27834772 2011 22.0 4.89

2013 21.0 3.44
S8_23380395 8 23380395 2013 22.0 4.11

GC

S6_27402260 6 27402260 2011 2.00 4.62
2013 2.00 3.94
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intense solar radiation and high humidity during the ripening stage
can increase the incidence of chalky grains (Wakamatsu et al. 2009,
Zhao et al. 2016). But these reports do not constitute proof that
there is a causal relationship between the expression of these QTL
and the EC, because many EC are correlated in a complex way and
not all EC were observed. In temperate climates, where day and
night temperatures are never as high as in the tropics, other envi-
ronmental factors such as humidity and solar radiation can affect
milling quality in a negative way. These findings should be con-
firmed by analyzing more lines in more environments to properly
quantify QTL main and environment-specific effects.

The approach of mapping QTL by environment interaction used in
this study requires a QTL to have a strong effect in a specific environ-
ment. This poses the limitation that QTL with smaller effects in indi-
vidual environments but capable to explain larger proportions of the
observed phenotypic G·E may be overlooked. In our datasets, the
proportion of phenotypic variance explained by the G·Y component
is low in the tropical japonica dataset (1.8–7.96%, Table 3), but
higher in the indica dataset (4.12–20%). However, approaches for
testing for genotype by year interaction at each SNP were performed
and no significant QTL were found.

In this work we used PLS, multiplicative reaction norm and mixed
models to analyze our data, predict genotypic performance for yield,
height and milling quality traits, and detect QTL by EC interactions. In
all these analyses we assumed that the relationships between molecular
markers and EC were linear, which constitutes a major limitation since
interactions between genes and environmental conditions may take
many different forms. A next step would be to fit statistical models with
more biological realism, using models that could accommodate non-
linear and more complex responses over a more extensive number of
environments. Crop growth models also hold promise as a way to
integratemorecomplexbiological knowledge into thepredictionprocess
of G·E (Malosetti et al. 2016). Although rather small, our two datasets
allowed us to extract some broad conclusions about the nature of G·E
in the Uruguayan mega-environment. Additional research, including
more environments and modeling non-linear relationships between
genes and EC, will be of particular value to better understand and
predict the nature of G·E for commercially relevant traits of rice grown
in temperate regions. Results from PLS and QTL by EC interactions
suggest that in temperate and subtropical regions, humidity and solar
radiation may have a stronger influence on milling quality traits than
temperature, due to the fact that temperatures in these regions are never
as high as in the tropics.
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