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ABSTRACT Evolve-and-resequence (E+R) experiments leverage next-generation sequencing technology
to track the allele frequency dynamics of populations as they evolve. While previous work has shown that
adaptive alleles can be detected by comparing frequency trajectories from many replicate populations, this
power comes at the expense of high-coverage (.100x) sequencing of many pooled samples, which can be
cost-prohibitive. Here, we show that accurate estimates of allele frequencies can be achieved with very
shallow sequencing depths (,5x) via inference of known founder haplotypes in small genomic windows.
This technique can be used to efficiently estimate frequencies for any number of bi-allelic SNPs in pop-
ulations of any model organism founded with sequenced homozygous strains. Using both experimentally-
pooled and simulated samples of Drosophila melanogaster, we show that haplotype inference can improve
allele frequency accuracy by orders of magnitude for up to 50 generations of recombination, and is robust
to moderate levels of missing data, as well as different selection regimes. Finally, we show that a simple
linear model generated from these simulations can predict the accuracy of haplotype-derived allele fre-
quencies in other model organisms and experimental designs. To make these results broadly accessible for
use in E+R experiments, we introduce HAF-pipe, an open-source software tool for calculating haplotype-
derived allele frequencies from raw sequencing data. Ultimately, by reducing sequencing costs without
sacrificing accuracy, our method facilitates E+R designs with higher replication and resolution, and thereby,
increased power to detect adaptive alleles.
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Amajor barrier to understanding the genetic basis of rapid adaptation has
been the lack of robust experimental frameworks for assaying allele fre-
quency dynamics. Recently, evolve and re-sequence (E+R) experiments

(Long et al. 2015), which leverage next-generation sequencing tech-
nology to track real-time genome-wide allele frequency changes dur-
ing evolution, have become a powerful step forward in studying
adaptation (Burke 2012). In most E+R studies, replicate populations
are evolved over tens to hundreds of generations in an artificial or nat-
ural selection regime and allele frequency measurements from mul-
tiple time-points are used to identify genomic targets of selection.
To date, E+R approaches have already been successfully applied in a
variety ofmodel systems, including RNAmolecules, viruses, Escherichia
coli, Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila
melanogaster (Barrick et al. 2009; Burke et al. 2014; Pitt and Ferré-
D’Amaré 2010; Orozco-terWengel et al. 2012; Wichman et al. 1999;
Chandler 2014). The ability to concurrently observe both phenotypic
and genomic changes across multiple systems offers the potential to
answer long-standing questions in molecular evolution. Careful analysis
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of the patterns and magnitude of allele frequency change may reveal
the extent of the genome that is under selection, how interacting
alleles contribute to adaptive traits, and the speed of adaptation in
different evolutionary regimes.

Crucially, however, the power to address such questions depends
on the replication, time-resolution, and accuracy of allele frequency
trajectories, with tradeoffs between these often incurred due to high
sequencing costs. Recommended E+R schemes with even minimal
power to detect selection involve sampling tens to hundreds of indi-
viduals from at least three replicate populations over a minimum of ten
generations (Kofler and Schlötterer 2014; Schlötterer et al. 2016). Since
individual-based, genome-wide DNA sequencing at sufficient cover-
ages is generally cost-prohibitive, most E+R studies rely instead on
pooled sequencing (Burke et al. 2010; Illingworth et al. 2011; Graves
et al. 2017; Barghi et al. 2017) of all individuals sampled from a given
time-point and replicate. While this approach sacrifices information
about individual genotypes and linkage, pooled sequencing has been
shown to provide a reliable measure of population-level allele frequen-
cies (Zhu et al. 2012; Fracassetti et al. 2015). Still, forward-in-time
simulations suggest that each pooled sample must be sequenced at a
minimum of 50x coverage to detect strong selection (s. 0.1) and even
higher coverage to detect weaker selection (s = 0.025) (Schlötterer et al.
2016). Given that optimized experimental designs often involve .100
samples, total costs for D. melanogaster E+R experiments that achieve
reasonable detection power can reach well above $25,000 at current
sequencing costs. Thus, achieving sufficient accuracy remains a major
limiting factor in capitalizing on the promise of E+R.

The short timescales for which E+R is most appropriate may,
however, facilitate ways to reduce sequencing costs without sacrificing
experimental power. First, there is a growing body of evidence that in
sexual populations, the bulk of short-termadaptation, especially in fairly
small populations, relies on standing genetic variation rather than new
mutations (Graves et al. 2017; Burke et al. 2014). Many E+R schemes
involve experimental populations derived from a fixed number of in-
bred founder lines (Orozco-terWengel et al. 2012; Turner and Miller
2012; Jha et al. 2015), so the identity, starting frequency, and haplotype
structure of all segregating variants are often either already well-known
or can easily be obtained by sequencing each founder line. Track-
ing only the frequencies of these validated variants can still provide
enough power to detect selection, while no longer requiring the
high depths of sequencing needed to differentiate new mutations
from sequencing errors.

Second, at short timescales haplotype structure can be leveraged
to provide more accurate allele frequency estimates. In the time frame
of most E+R experiments, recombination does not fully break apart
haplotype blocks and disrupt linkage, and thus genomes in an evolving
population are each expected to be a mosaic of founder haplotypes. In
this scenario, recentlydevelopedhaplotype inference tools (Cao andSun
2015; Q. Long et al. 2011; Pirinen 2009; Jajamovich et al. 2013; Kessner
et al. 2013; Franssen et al. 2017) can integrate information from se-
quencing reads acrossmultiple nearby sites to efficiently infer the relative
frequency of each founder haplotype within small genomic windows.
These haplotype frequencies can then be used as weights to calcu-
late pooled allele frequencies for local segregating variants. With this
approach, the accuracy of an allele frequency estimate depends less on
the number of mapped reads at the individual site, and instead relies
on the discriminatory power of all mapped reads in the surrounding
genomic window when inferring haplotype frequencies. Haplotype
inference methods such as harp (Kessner et al. 2013) have been shown
to accurately predict haplotype frequencies at coverages as low as 25x,
and simulations of pool-seq data from a small genomic region at fixed

read depths indicate that the use of haplotype frequency information
increases the power to detect selection compared to raw allele fre-
quencies alone (Lynch et al. 2014). However, these tools have not yet
been used to infer allele frequencies from real pooled samples in an
E+R framework, nor has a thorough analysis been performed to fully
examine how the accuracy of haplotype-derived allele frequency es-
timates scales with empirical pooled coverage, across many parame-
ters relevant for E+R.

Here, we focus on defining the accuracy of haplotype-derived allele
frequencies (HAFs) specifically in the context of E+R experiments, in
which populations are generally initiated from tens of founder lines and
are evolved for tens of generations. Since haplotype inference will be
affected by 1) read depths throughout genomic windows, 2) recombi-
nation events, and 3)missing founder genotypes,we begin by leveraging
both simulated and experimental data from D. melanogaster to assess
how the accuracy of HAFs scales with each of these parameters. To do
so, we introduce a new metric, ‘effective coverage’, that equates the
error from HAF estimates to the expected error from binomial sam-
pling during pooled sequencing at a given read depth. We find that
haplotype inference can significantly increase the accuracy of allele
frequency estimates over multiple generations of recombination with
selection and with varying completeness of founder genotype knowl-
edge. Finally, we extend these simulations to accurately predict effective
coverage in other model organisms, such as C. elegans. We show as
a proof of principle that a simple linear model can predict effective
coverage with an R2 value of 0.875 and only requires four parameters:
generations of recombination between population founding and sam-
pling, average recombination rate, percent of unknown founder geno-
types, and empirical read depth of the sequenced sample. Additionally,
to facilitate the use of haplotype inference in E+R experiments, we
introduce a software tool to calculate HAFs, HAF-pipe (https://
github.com/petrov-lab/HAFpipe-line), and a shiny app for predicting
HAF accuracy in any model organism (https://ec-calculator.shinyapps.io/
shinyapp/). We conclude our findings by offering recommendations
about the most powerful way to integrate haplotype inference into
E+R experimental schemes.

MATERIALS AND METHODS

Establishment and sequencing of founder set
207 iso-female Drosophila melanogaster lines were established from
wild individuals sampled from Maine and Pennsylvania (Behrman
et al. 2018), and inbred for �20 generations of full-sibling mating to
produce viable, fertile inbred lines. 30-50 individuals from each line
were pooled for DNA extraction. Whole flies were homogenized with
lysis buffer and 1mm beads, and DNA was precipitated from the ho-
mogenate before resuspension in TE buffer. Libraries were prepared
with a modified Nextera protocol (Baym et al. 2015). All samples were
indexed with Illumina’s TruSeq Dual Index Sequencing Primer Kit
(PE-121-1003) and pooled equimolarly into 3 sets of�70 samples each.
Each set of pooled DNA libraries were purified using Ampure XP and
size-selected to 450-500 bp with a SizeSelect E-Gel. After an additional
5 rounds of PCR, DNA libraries were purified using Ampure XP beads,
quantified, and diluted to the appropriate concentration before se-
quencing on the HiSeq 3000. All sequences were deposited in SRA
(BioProject PRJNA383555). Adapter sequences were trimmed (Trim-
momatic v0.33) and overlapping reads were merged (PEAR v0.9.6),
then reads were mapped (bwa v 0.7.9) to the D. melanogaster reference
genome (v5.39) using default parameters. PCR duplicates were re-
moved using PicardTools (v1.12). Base quality score recalibration, indel
realignment, and novel SNP discovery were carried out using GATK’s
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HaplotypeCaller. Only bi-allelic SNPs segregating in the 99 lines pooled
for resequencing in this study were used to generate a founder SNP
table, simulate reads, and estimate haplotype frequencies.

Generating experimentally pooled samples
One male each was selected from each of 99 inbred strains, and all
99 individuals were pooled for re-sequencing. A second biological
replicatewas constructed from99 additional individuals.DNA isolation
was performed as described above. Three separate libraries were pre-
pared from each of the two biological replicates using different library
prep methods: [1] according to protocols described in Nextera DNA
Library Prep Reference Guide (15027987 v01); [2] a modified Nextera
protocol (as described above) and [3] a Covaris shearing protocol. Final
results from the 3 library prep methods were similar. All libraries were
size-selected andPCRamplifiedusing two replicatePCR reactions anda
high volume of template DNA to prevent PCR-jackpotting. DNA was
purified, quantified, and diluted before sequencing on the HiSeq 3000.
Raw, 150bp pair-end reads were trimmed for adapter sequences with
Skewer (version 0.1.127). Read merging, mapping, and PCR duplicate
removal was performed as above.

Generating simulated pooled samples
150-bp paired end pre-aligned reads were simulated from a table of
founder genotypes and the D. melanogaster reference genome with
simreads, a software tool included with the harp package (Kessner
et al. 2013). All reads were simulated with an error rate of 0.2%
(Schirmer et al. 2016), with simulated sequencing errors receiving a
lower simulated base quality score. No read trimming or PCR duplicate
removal was done. All SNP tables with missing genotypes were im-
puted before read simulation.

Haplotype frequency estimation
All haplotype frequencies were estimated with harp - Haplotype Anal-
ysis of Reads in Pools (Kessner et al. 2013) in a two-step process in
which 1) a likelihood model is built by probabilistically assigning all
reads to haplotypes, and 2)maximum likelihood estimates of haplotype
frequencies are calculated in discrete chromosomal windows, given
local read assignments. An assumption of this method is that there
are no recombination breakpoints within a window used for haplotype
frequency estimation. However, with a fixed window size, this assump-
tion breaks down as the lengths of unrecombined fragments decrease.
The distribution of fragment lengths at a given generation can be
modeled as an exponential distribution with rate l, which can be
calculated with:

l ¼ L�R�Gþ 1
L

where L is chromosome length, R is recombination rate, and G is the
number of generations of recombination between the initiation of the
founding population and sampling. The qth quantile of this distribu-
tion can then be calculated in R with the function qexp(q, l).

We allowed window sizes to shrink over successive generations of
recombination, such that only 18% of sampled unrecombined fragment
lengths were expected to be smaller than the window length. Various
quantiles from 5-25 were tested before choosing this parameter (Figure
S4). Note that haplotype frequencies for fully unrecombined chromo-
somes (Figure 2) were evaluated in 1000kb, 100kb and 10kb windows.
To further reduce error, we used overlapping inference windows, with a
step size equal to 10% of the window size. Thus, the vast majority of
sites fall within 10 separate overlapping inference windows. Finally, in

order to balance local relevance with maximal information, we created
likelihood models in sliding windows 10x the size of frequency estima-
tion windows, with a step size equal to half the likelihood window size.

For reference, inferring haplotype frequencies for 99 founder lines
at 283k segregating sites on chromosome 2L in 1000kb windows took
8 min and required 450Mb RAM for samples sequenced at 5x
empirical coverage and took 15 min and required 860Mb RAM for
samples sequenced at 10x. Using 100kb windows took 9.5 min / 70Mb
and 17.5 min / 132Mb for 5x and 10x samples, respectively.

HAF estimations
The haplotype-derived allele frequency (HAF) for a given biallelic site
was calculated by summing founder haplotypes containing the alternate
allele, each weighted by their average estimated haplotype frequency in
all haplotype inference windows overlapping the site. Founder haplo-
types with missing genotypes were given a fractional alternate allele
count equal to the proportion of genotyped founders with alternate
alleles.

Accuracy estimations using effective coverage
Effective coveragewasused as ametric to assess the accuracyof allHAFs
and raw AFs. For a given set of allele frequency estimates pestimated at n
sites, for which true frequency ptrue is known, we first calculate the root
mean squared error (RMSEestimated) across all sites, where

RMSEestimated ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP​ �
pestimated 2 ptrueÞ2

�
n

s

Next, we solve for the coverage Ceffective at which RMSEtheoretical from
binomial sampling would be equal to RMSEestimated, where

RMSEtheoretical ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP​ �
ptrue ð1 2 ptrue

��
ceffective�n

vuut
Solving for Ceffective yields,

Ceffective ¼
P​ �

ptrue ð1 2 ptrue
��

P​ �
pestimated 2 ptrueÞ2

�
which is the theoretical coverage at which binomial sampling of reads
would be expected to contain the observed amount of error from
estimated frequencies.

Recombination
Forward-in-time simulations of recombinationwere performedwith
the software tool forqs (Kessner and Novembre 2014) using a
D. melanogaster recombination map (Comeron et al. 2012). forqs
simulates recombination of haplotype chunks for chromosomes of
user-specified lengths for a randomly mating population, using a
user-supplied recombination map, and non-overlapping generations.
As a conservative metric, in our simulations we referred to the female
D. melanogaster recombination rate. Since male D. melanogaster do
not undergo recombination, our estimates of the number of recom-
bination events per generation are higher than that expected in real
populations and our estimates of effective coverage serve as a lower
bound on effective coverage for the same number of generations in
real populations. Three rounds of simulation were performed for each
selection regime. In each round, an initial population of 1,000 indi-
viduals was created, with each individual assigned to a randomly
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selected homozygous founder strain. 5-10 sites were randomly chosen
to be under selection and the genotypes of each individual (deter-
mined by the genotype of the corresponding founder strain) at these
sites was supplied to forqs via an ms file. Homozygous reference,
heterozygous, and homozygous alternate genotypes were assigned fit-
ness advantages equal to 0, s, or 2s respectively, where s was a specified
selection coefficient (either s = 0.025 or s = 0.1 in our simulations). The
chosen loci each contributed independently to a single additive trait,
with environmental variance equal to 0.01. At each generation, a fitness
value was calculated by forqs for each individual based on their geno-
types at the selected sites, with fitness decaying linearly with distance
from the optimum trait value of 1. Individuals were selected to con-
tribute to the next generation probabilistically based on their fitness
value. Recombination breakpoints were simulated for evolutionary tra-
jectories up to 50 generations in 5 replicate populations with a constant
population size of 1,000 individuals. Within each round, each replicate
contained the same selected sites and selection coefficient. At specific
generations, 100 sets of recombination breakpoints (each represent-
ing a pair of evolved ‘chromosomes’) were randomly selected from
the forqs output and were used to reconstruct ‘sampled chromosome
genotypes’ from corresponding segments of the 99 founder genotype
calls. This set of sampled genotypes was used to directly calculate
‘true’ allele frequencies for the sampled pool and was also used as
input for read simulations with simreads. The resulting reads were
then used for HAF calculation.

Generating a predictive model of effective coverage
We plotted the relationship between effective coverage (EC), and two
key simulation parameters: the average number of sequencing reads
overlapping SNP sites in each haplotype inference window (Rwin),
and the percent of founder genotype calls that were missing (M)
(Figure S7). While we observed non-linear relationships between
effective coverage and both parameters, the log-log relationships were
fairly linear. This suggested that a reasonable simple model would
have the following format:

log10ðECÞ ¼ a�   log10ðRwinÞ þ b�   log10ð1þMÞ þ c

We used the R function ‘nls’ to solve for the coefficients a, b, and c
in this formula, using all D. melanogaster simulations described in
Results.

HAFS with an alternate founder set
For theDGRPfounder set, SNPinformationwasobtained for205strains
initially isolated fromRaleigh,NCthatwere independently sequenced as
part of freeze 2 of the Drosophila Genetic Reference Panel (DGRP)
(Huang et al. 2014). Genotype data were downloaded directly from
http://dgrp2.gnets.ncsu.edu. For the C. elegans founder set, a soft-
filtered VCF file (v. 20170531) of genotype calls for 249 sequenced
strains (Cook et al. 2017) was downloaded from the CeNDR website
(https://www.elegansvariation.org/data/release/20170531), and was
converted to a SNP table including genotypes for 100 randomly
selected lines at all segregating biallelic SNP sites.

After constructing the appropriate SNP table, read simulation,
haplotype inference, and effective coverage calculations were car-
ried out as described in the sections above.

Code accessibility
Scripts to calculateHAFs are available at https://github.com/petrov-lab/
HAFpipe-line. At minimum, the pipeline requires a) a vcf file or table
of called genotypes at biallelic variants from sequenced founder lines,

and b) mapped reads from one or more pool-seq samples. The
pipeline uses harp for haplotype inference. Founder genotype data
are additionally available at https://github.com/petrov-lab/HAFpipe-
line/blob/master/99.clean.SNP.HARP.segregating.gz.Codeused togen-
erate the simulated data are provided at https://github.com/petrov-lab/
HAFpipe-line/tree/master/simulations.

Data availability
File S1 contains a BAM file from pooled sequencing of the 99 inbred
D. melanogaster lines. File S2 contains the founder genotypes from
individual sequencing of the same set of 99 inbred lines (raw sequenc-
ing data available at SRA BioProject PRJNA383555). File S3 and File S4
contain SRA accessions and bam files of each of the 99 founder lines.
Strains are available upon request. Supplemental material available at
figshare: https://doi.org/10.25387/g3.9888008.

RESULTS

Overview of HAF calculation method
Using haplotype inference for E+R experiments requires a genotyped
founder set of inbred lines. Here, we begin by focusing on populations
derived from a founder set of 99 sequencedD.melanogaster inbred lines
(see Methods, ‘Establishment and sequencing of founder set’), and for
simplicity limit our analysis to the 283,437 known segregating bi-allelic
sites on chromosome 2L. In the analyses below, we estimate raw and
haplotype-derived allele frequencies (referred to as raw AFs and HAFs,
respectively) for real and simulated pools of�100 individuals sampled
from populations derived from these founder haplotypes.

Each sample is first subjected to pooled sequencing and all reads are
mapped to the D. melanogaster reference genome. Raw AFs at each of
the 283k sites are simply calculated as the fraction of mapped reads
containing the alternate allele, after removing reads with neither the
reference nor the alternate allele. To calculate HAFs, we performed
haplotype frequency estimation with harp (Kessner et al. 2013), a hap-
lotype inference tool that uses sequence identity and base quality scores
from each sequenced read in a bam file, as well as a table of founder
genotypes, to obtain maximum likelihood estimates of haplotype fre-
quencies in discrete chromosomal windows.We determined that miss-
ing calls in the founder genotype table can bias haplotype frequency
estimation, and therefore, we first impute all missing genotypes before
running harp (Supplemental Text, Figure S1). The frequency of each
founder haplotype is inferred within sliding genomic windows (Fig-
ure 1,Methods) with extensive overlap tomitigate erroneous haplotype
frequency assignments at the edges of inference windows. After infer-
ring founder haplotype frequencies, we calculate HAFs at each SNP site
by taking the weighted sum of local haplotype frequencies for founders
containing the alternate allele (Figure 1, Methods).

To determine the accuracy of HAFs and raw AFs, estimated allele
frequencies were compared to ‘true’ allele frequencies derived from
the known composition of founder haplotypes in the sample.
Chromosome-wide accuracy of HAFs and raw AFs was quantified
using a new metric, effective coverage, which represents the theoretical
coverage at which the root-mean-square error (RMSE) from binomial
read sampling equals the RMSE from observed allele frequency esti-
mates (Figure S2).While expected error from extreme allele frequencies
is lower than that of intermediate allele frequencies under a binomial
model, by taking the ratio of the expected error and the observed error
for the same set of true allele frequencies, effective coverage values do
not depend on the underlying allele frequency spectrum (Methods).
Note that while this metric specifically focuses on variance from the
sampling of reads from pooled chromosomes, in practice, the ability of
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bothHAFs and rawAFs to accurately reflect true population-level allele
frequencies will also depend on variance from the sampling of individ-
uals from the population. This independent source of error has how-
ever been well-treated elsewhere (Feder et al. 2012; Kolaczkowski et al.
2011) and will not be impacted by haplotype inference.

In the following sections, we explore how the accuracy of HAFs
differs from rawAFs, andhow it scales with empirical coverage, number
of generations of recombination, and missing founder genotypes.

Haplotype inference significantly increases the accuracy
of allele frequency estimations
We begin by analyzing the very simplest scenario, in which a sample
consists of un-recombined chromosomes, one from each founder line.
To examine the accuracy of HAFs and AFs in this scenario, we created
two biological replicate samples of 99D. melanogaster individuals, each
from a different homozygous inbred strain (Methods) and performed
high-coverage pooled sequencing of each sample. True allele frequen-
cies for each sample were then calculated, incorporating estimates of
uneven pooling during sequencing (Figure S3, Supplemental Text).

The accuracy of HAFs depends on the power to estimate haplotype
frequencies, which in turn is affected by the coverage of mapped reads
throughout the genomic window used for haplotype inference. In order
to compare the accuracy of HAFs to raw AFs and test how each scales
with empirical coverage, reads from the two biological replicates orig-
inally sequenced at �140x were down-sampled to chromosome-wide
empirical coverages of 1x to 100x, and then used to calculate the effec-
tive coverage of estimated allele frequencies for each replicate (Figure 2).
Haplotype inference was initially performed using 100kb sliding win-
dows, and accuracy was assessed only at the 27k sites with known
genotype information for every founder. As expected, effective coverage
of both HAFs and raw AFs is similar within the two biological repli-
cates, and increases with higher chromosome-wide empirical coverage.
Yet for all empirical coverages tested, HAFs have strikingly higher
effective coverages than rawAFs. This substantial gain in accuracy from
haplotype inference was most prominent at lower empirical coverages,
with a .40-fold increase in accuracy at 10x empirical coverage (from
10x to effectively .400x). At higher empirical coverages, haplotype
inference appears to produce diminishing returns and effective cover-
age begins to plateau.

We next tested the effect of using smaller (10kb) or larger (1000kb)
windowsforhaplotype inferenceatempiricalcoveragesupto10x.Wefind
that as expected, larger window sizes produce the most accurate HAFs,
since more reads are available to infer haplotype frequencies in each
window. Specifically, 1000kbHAFs derived from empirical coverages of
1x and5x reachedeffective coverages of.400xand.900x, respectively.

We also confirmed that similar results would be achieved by
simulated samples with known sources of error. To do so, we simulated
pooled synthetic readswith a standard Illumina sequencing error rate of
0.002 (Schirmer et al. 2016) and corresponding base quality scores
(Kessner et al. 2013) from the same proportions of the 99 founder lines
included in both biological replicates, and calculated effective coverage
with the same empirical coverages and window sizes as above. Effective
coverages for these simulated samples closelymirror effective coverages
obtained from matched experimental samples (Figure 2A-B). Slight
differences at higher empirical coverages and larger window sizes are
most likely caused by compounded experimental error from DNA ex-
tractions, PCR reactions and sequencing, as well as ambiguity in the
‘true’ genotypes estimated for individually sequenced lines. We explore
the effects of founder genotype ambiguity further below (see “HAF
accuracy is impacted by missing founder genotypes”).

Together, these results suggest that HAFs derived from multiple
biological samples sequenced at lowempirical coverages canbeorders of
magnitude more accurate than raw AFs, and that simulated samples
capture the magnitude of this effect quite well. In the following analyses
we focus on simulated data from these 99 founder lines in order to
precisely and reliably test how recombination and missing founder
genotypes affect HAFs in realistic E+R scenarios.

Incorporation recombination and selection over short
time scales
In the first section we showed that HAFs are accurate for samples of
unrecombined chromosomes with very similar allele frequencies to
the founder population. However, in a realistic E+R scenario sampled
chromosomes will be recombined mosaics of the founders and selec-
tion may substantially shift allele frequencies over time. Thus, in the
remainder of our analyses, we incorporate selection and recombination
using a forward-in-time simulator, forqs (Kessner andNovembre2014).
We simulated recombination for 50 generations in a population of
1,000 randomly-mating individuals using a D. melanogaster recombi-
nation map (Comeron et al. 2012), and tracked the breakpoints and
haplotype of origin for all recombined segments at every generation. At
specific generations, we randomly selected 200 recombined chromo-
somes (i.e., 100 diploid individuals) from the simulated population and
reconstructed the full sequences of these ‘sampled’ chromosomes from
corresponding segments of the 99 individually sequenced founder hap-
lotypes. Reads were simulated from the pooled set of 200 reconstructed
chromosomes.

We tested the accuracy of HAFs in three different selection regimes:
five randomly chosen sites with selection strength s = 0.025 (i.e., weak
selection), 10 randomly chosen sites with selection strength s = 0.025,

Figure 1 Overview of HAF calculation
method. In an evolve-and-resequence
experiment, the evolving population
at any time point can be considered a
mosaic of founder genomes. If foun-
der genotypes are known, the relative
frequency of each founder haplotype
can be inferred within small geno-
mic windows by leveraging pooled
sequencing data and existing bioin-
formatic tools (i.e., harp (Kessner et al.
2013)). Allele frequencies can then be
calculated from the weighted sum of
founder haplotypes, rather than directly
from mapped reads at each site.

Volume 9 December 2019 | Haplotype Inference in E+R Experiments | 4163



and 5 randomly chosen sites with selection strength s = 0.1 (i.e., strong
selection). In each case, the selected sites contributed additively to a
single quantitative trait (Methods). We ran each simulation in three
rounds, picking a different set of selected sites in each round, and
simulated 5 replicate populations for each round. We calculated HAFs
for each simulated sample, adjusting the window size for haplotype
inference each generation based on the expected length of unrecom-
bined haplotype blocks (Methods, Figure S4). As recombination pro-
ceeds, these windows become smaller, with fewer reads available to
inform haplotype frequency estimation, and thus we expect that accu-
racy will decline.

Our results show thatwhile accuracydoesdecline over time,HAFs in
general maintain.100x effective coverage even after 50 generations in
the presence of 5-10 selected sites per chromosome (Figure 3A). We
note that the three selection regimes tested all perform comparably well,
though effective coverage is slightly higher withmore selected sites (i.e.,
10 vs. 5) and larger selection coefficients (i.e., s = 0.1 vs. s = 0.025). To
assess the utility of HAFs for longer-term experiments, we also con-
ducted three separate simulations with weak selection and 5 selected
sites for 200 generations, and note that effective coverage of HAFs
remains above the 100x threshold for detecting strong selection across
100-150 generations of recombination (Figure S5). Overall, we find that
increasing empirical coverage has a diminishing returns effect on ac-
curacy, while decreasing the generations of recombination has an ap-
proximately linear effect on accuracy.

HAF accuracy is impacted by missing founder genotype
In addition to the effects of recombination and selection on HAF
accuracy, ambiguity in the genotypes of founders (either due to miss-
ing genotype information or residual heterozygosity) can also present
challenges. We tested how setting founder genotypes to be ambiguous

(i.e., from a called ‘A’ allele to an uncalled ‘N’) influences the accuracy
of HAFs. For each simulation, 1–10% of all genotype calls in the foun-
der table were randomly selected to be assigned as ‘N’. Genotypes at
these sites were then imputed prior to estimating haplotype frequencies
(Supplemental Text). For each percentage of missing calls tested, three
rounds of simulation were performed.

We find that missing genotype calls can significantly reduce effec-
tive coverage (Figure 3B). However, the vast majority of the parameter
space tested — 73.3% of all simulations — still yielded effective cov-
erage values greater than 100x. Furthermore, 92.1% of simulations with
less than 10% missing genotypes and fewer than 50 generations of
recombination yielded effective coverage values greater than 100x.

Importantly, these high overall chromosome-wide effective cover-
ages extend to the selected sites themselves. Evenwithmoderate levels of
missing founder calls (up to 3% of missing sites), HAFs at selected sites
still track closely with true allele frequencies; this is crucial for correctly
detecting alleles under selection in E+R (Figure S6).

Estimating effective coverage with different founder
sets and other model organisms
Finally,weexploredhowtheutilityofHAFsmayextendtoother founder
sets with known SNPs and known recombination rates. Specifically, we
tested whether a simple linear model based on the simulations above
could accurately predict effective coverage for other experimental designs
and other model organisms. The regimes tested in the simulations above
can be collapsed into two independent parameters that affect HAF
accuracy: 1) the number of reads used for haplotype inference in each
windowand2) thepercentof foundergenotypes thataremissing.Thefirst
parameter is a combinationofSNPdensity, readdepth, andwindowsize–
while the window size itself is a function of the recombination rate and
the number of generations of recombination since population initiation.

Figure 2 Accuracy of HAFs and raw AFs for biological and simulated samples. A) Effective coverage of allele frequencies estimated with and
without haplotype inference for the two biological replicates down-sampled to empirical coverages from 1-100x. (R1 = replicate 1, R2 = replicate
2; HAFs calculated with 100kb inference windows) B-D) Effective coverages of HAFs for biological replicates (blue) and simulated samples (red)
using 10kb, 100kb, or 1000kb inference windows at empirical coverages of 1-10x. Orange line indicates a zoomed-in section of the same
biological replicate values as shown in A. In all panels, a dashed line of 100x indicates the accuracy threshold required to detect strong selection
(Kofler and Schlötterer 2014).
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We calculated regression coefficients of a log-linear model (Figure
S7) using all simulations described in the sections above, which focused
on a single founder set across many experimental regimes. To test
whether this model could accurately predict HAF accuracy for other
founder sets, we simulated three rounds of evolutionary trajectories
(with 5 weakly selected sites in each round) for two entirely different
founder sets composed of 1) a widely-used reference panel of 205 D.
melanogaster lines known as the DGRP (Huang et al. 2014), and 2)
100 genotyped C. elegans strains from a reference panel known as
CeNDR (Cook et al. 2017). For each founder set we simulated pooled
samples for various generations and empirical coverages and calculated
HAFs with various levels of missing founder information. We then
used our model (trained only on the original simulations) to predict
effective coverage for each of these new samples (Figure 4A).

We find that across all samples tested, our simple two-parameter
model has an R2 value of 0.875. Predicted effective coverage values for
simulations with the original 99-lines founder set differ from true ef-
fective coverage values by 25% on average, with the largest source of
error due to random effects between simulation rounds. Overall accu-
racy for DGRP and CeNDR samples was slightly lower, with average
deviations of 37% in both founder sets. We confirmed that the model
does not systematically over- or under- predict the effective coverage of
DGRP samples or CeNDR samples nor any other set of parameters
included in our simulations (Figure 4B). This suggests this model is
broadly applicable for predicting HAF accuracy across many founder
sets. Thus, given a set sequencing budget and a founder set with known
sequencing quality, this model may be useful as a guideline for devising
experimental schemes and distribution of resources that wouldmaximize
detection power. To this end, we have created a shiny app to help exper-
imentalists predict effective coverage for their particular set of parameters
(freely available at https://ec-calculator.shinyapps.io/shinyapp/), as well
as a table of requirements for HAF estimation (Figure 5).

DISSCUSSION
E+R experiments have become a powerful tool to assay the underpin-
nings of rapid adaptation by tracking allele frequency trajectorieswithin
populations over time. Previous studies have shown that the greatest
power to detect adaptive variants comes from an optimized experimen-
tal design that tracks allele frequencies inmultiple replicate populations,
samples each replicate population at multiple timepoints, and maxi-
mizes the coverage of each pooled sample. Incorporating all of these

factors into an E+R framework, however, can present significant finan-
cial challenges. Here, we offer a way to mitigate these high sequencing
costs without sacrificing statistical power.

Our framework uses haplotype inference to increase the accuracy of
pooled allele frequency estimates at low coverages. Since the accuracy of
haplotype-derived allele frequencies relies on the total informative value
of reads across a genomic window, rather than coverage at a single site,
this approach allows us to sequence less but still maintain high accuracy
in allele frequency estimations. In this vein, the window-based tech-
niques used by HAFs have an advantage over raw AFs in that the
accuracy of an individual SNP with low read depth will benefit from
reads at surrounding sites in thewindow.Overall, ourmethod is capable
of achieving the same accuracy as would be expected from sequencing
each sample at 100x (as recommended in order to reliably detect strong
selection), while only requiring empirical coverageof 1xor less, bringing
total sequencing costs from .$25,000 down to less than $200.

There are, however, limitations to this approach. First, as presented,
this framework requires the founder population to be derived entirely
from fully-inbred lines. As a result, the population dynamics of loci
under selection may differ slightly from trajectories in natural popula-
tions due to the genetic diversity lost in the inbreeding process (i.e.,
natural haplotypes, homozygous lethalmutations, and rare variants), as
well as higher levels of linkage disequilibrium compared to non-inbred
lines. Reconstituting an outbred population using inbred lines, how-
ever, can be an effective way to mitigate the effects of the inbreeding
process, and has been experimentally shown to have negligible bias and
effect on adaptive dynamics (Nouhaud et al. 2016). Additionally, in
reality even with many generations of inbreeding, residual heterozy-
gosity may still exist. In our HAF calculation method, we treat hetero-
zygous sites as missing calls, and impute the genotype as reference or
alternate based on called genotypes before inferring haplotype frequen-
cies. While we test the impact of these missing calls in our simulations
by placing them randomly across the genome, in reality heterozygous
sites are often non-randomly dispersed which in turn, could lead to
variation in effective coverage not accounted for here. Fortunately,
both of these issues may be addressed in futures studies with more
sophisticated founder sequencing approaches that incorporate phasing.
Newer long-read technologies may already make this an achievable
reality for a number of systems.

Second, this approach requires a reliable andcomprehensive account
of the variants present in each founder line. Since previous studies

Figure 3 Effective coverage for recombination simulations with 99 inbred founder lines. In each simulation, recombination was simulated for a
population of 1,000 individuals initiated from a panel of 99 fully sequenced inbred D. melanogaster lines, with a randomly chosen set of selected
sites from among the 283,437 segregating sites on chromosome 2L. At multiple generations, 100 recombined individuals were sampled in silico
from each population for simulated sequencing, HAF calculation, and error estimation. A) 5 or 10 sites were under weak or strong selection
(panels), all sequencing was simulated at 5x, and HAFs were calculated with no missing genotypes. B) 5 sites were under weak selection,
sequencing was simulated at multiple read depths (panels), and HAFs were calculated with various fractions of missing founder genotypes (color).
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recommend upwards of 100 founders, sequencing each individual
founder line to a sufficiently high depth (in our work, we have found
sequencing coverages.10x to be sufficient)may present a high upfront
cost. However, this cost represents a one-time investment, which can be
applied toward all future experiments using the same set of founders.
Furthermore, a number of consortiums alreadymaintain publicly avail-
able stocks of large numbers of Drosophila lines and other model or-
ganisms with full, high-quality genome sequences (Lack et al. 2016;
Huang et al. 2014; Cook et al. 2017). We anticipate that these resources
will continue to rapidly expand, facilitating experiments with even
greater haplotype diversity at minimal costs.

In addition, this approach is limited to studying short-term
adaptation on the scale of tens of generations. In fact, an assumption
of our method is that within an inference window, recombination
breakpoints minimally affect the ability to accurately call haplotype

frequencies. For a given window size however, this assumption
becomes less valid as recombination proceeds and haplotypes blocks
decay. Conversely however, decreasing the window size reduces the
information used for haplotype inference, which at the extreme
renders HAFs no more accurate than raw AFs. In our pipeline, we
attempt to balance these effects by scaling window sizes at any
generation by the expected average unrecombined fragment length.
While our results here demonstrate that even with this scaling
procedure, recombination will limit the ability to detect adaptation
on timescales of more than tens of generations, the short-term
adaptive dynamics that best fit E+R studies fall well within this
range. Furthermore, it is at these short timescales, when large numbers
of replicate populations are critical to reliably detect selection, that the
cost savings associated with haplotype inference methods will be most
beneficial.

Figure 4 Observed effective coverage
vs. effective coverage predicted by a
simple 2-parameter log-linear model.
A) A model built on samples from the
simulated experimental evolution of
99 inbred Drosophila melanogaster
lines described in the sections above
was used to predict effective cover-
age in the simulated experimental
evolution of different founder panels
(205 DGRP lines) and different foun-
der species (100 CeNDR lines). B) Ef-
fective coverage was well-predicted
across a range of simulation parame-
ters, including read depth, number of
generations, percent missing founder
genotypes, and selection regimes.
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Finally, this approach relies on tracking the trajectories of known
bi-allelicpolymorphismsderivedfromthefounderpopulation,andthus,de
novo mutations will not be assayed in this framework. Nonetheless our
approach should sufficiently capture the salient features of short-term
adaptive dynamics, as there is a growing body of experimental evidence
suggesting that selection acts primarily on standing genetic variation in
sexual organisms, and that de novo beneficialmutations donot play a large
role in rapid adaptation (Burke et al. 2014; Teotónio et al. 2009; Sheng
et al. 2015; Turchin et al. 2012). Additionally, by tracking only known
well-validated polymorphisms, the approach is largely robust to
error from small non-SNP chromosomal variants such as indels.

Despite the above limitations, collectively our results show that in-
tegrating haplotype inference into future E+R experiments is a cost-
effectiveway toachieve accuracy in allele frequencyestimates,whichwill
directly improve the ability to detect genome-wide signatures of adap-
tation. Consequently,we offer specific recommendations for futureE+R
experimental schemes that take advantage of this approach. First, each
founder line should be initially sequenced to a sufficient depth that
minimizes any missing genotypes. If missing genotype calls do exist in
founder lines, imputing sites prior to haplotype inference can mitigate
some of this error.

Together, these guidelines and the analysis above form a framework
for achieving effective coverages of close to 100x with empirical cover-
ages as low as 1x even after 50 generations of recombination in
D. melanogaster, reducing sequencing costs by 100-fold. Ultimately,
these cost savings, which can be extended to experiments with a variety
of model organisms, will facilitate E+R frameworks that can incorpo-
rate large numbers of replicate populations. These improvements may
be crucial to the statistical power to distinguish between beneficial and
neutral alleles (Kessner and Novembre 2015; Baldwin-Brown et al.
2014) and ultimately the future of E+R as a practical and reliable
experimental tool.
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