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Chlamydia trachomatis (Ct) is an intracellular energy-parasitic bacterium that requires ATP
derived from infected cells for its growth. Meanwhile, depending on the O2 concentration,
the host cells change their mode of ATP production between oxidative phosphorylation in
mitochondria (Mt) and glycolysis; this change depends on signaling via reactive oxygen
species (ROS) produced by NADPH oxidases (NOXs) as well as Mt. It has been proposed
that Ct correspondingly switches its source of acquisition of ATP between host-cell Mt
and glycolysis, but this has not been verified experimentally. In the present study, we
assessed the roles of host-cell NOXs andMt in the intracellular growth of CtL2 (L2 434/Bu)
under normoxia (21% O2) and hypoxia (2% O2) by using several inhibitors of NOXs (or the
downstream molecule) and Mt-dysfunctional (Mtd) HEp-2 cells. Under normoxia,
diphenyleneiodonium, an inhibitor of ROS diffusion, abolished the growth of CtL2 and
other Chlamydiae (CtD and C. pneumoniae). Both ML171 (a pan-NOX inhibitor) and
GLX351322 (a NOX4-specific inhibitor) impaired the growth of CtL2 under normoxia, but
not hypoxia. NOX4-knockdown cells diminished the bacterial growth. SB203580, an
inhibitor of the NOX4-downstream molecule p38MAPK, also inhibited the growth of CtL2
under normoxia but not hypoxia. Furthermore, CtL2 failed to grow in Mtd cells under
normoxia, but no effect was observed under hypoxia. We conclude that under normoxia,
Ct requires functional Mt in its host cells as an ATP source, and that this process requires
NOX4/p38MAPK signaling in the host cells. In contrast to hypoxia, crosstalk between
NOX4 and Mt via p38MAPK may be crucial for the growth of Ct under normoxia.
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INTRODUCTION

The obligate intracellular bacterium Chlamydia trachomatis (Ct),
which is an energy parasite, is the leading cause of bacterial
sexually transmitted infections, with an estimated 131 million
new cases of infection annually worldwide (O’Connell and
Ferone, 2016). The normal O2 concentration at the infection
site is around 5% (Juul et al., 2007), and Ct also provokes an
inflammatory response that consumes O2, resulting in hypoxia
(Eltzschig and Carmeliet, 2011). Ct clearly favors hypoxia, and
activates phosphatidylinositol-3 kinase (PI3K)/protein kinase B
(AKT) in its host, which prompts glycolysis (Rupp et al., 2007;
Thapa et al., 2020). However, Ct can grow well in host cells
regardless of O2 conditions (Shima et al., 2011; Jerchel et al.,
2014; Thapa et al., 2020).

Ct matures in infected host cells via a unique developmental
cycle consisting of an infectious form (the elementary body, EB)
and a replicating form (the reticular body) (Cossé et al., 2018).
The successful maturation of Ct occurs in a customized plasma
membrane, referred to as an inclusion body (Elwell et al., 2016);
sufficient ATP is critical for the maturation. Because Ct possesses
an incomplete tricarboxylic acid cycle (Tipples and McClarty,
1993; Harris et al., 2012), the maturation of Ct in the host cells
absolutely relies on a stable supply of ATP derived from the host
regardless of O2 conditions. However, the mechanism by which
Ct acquires ATP from infected cells regardless of the O2

concentration is not well understood.
Mitochondria (Mt) are the main power plant in eukaryotic

cells, responsible for generating ATP in an O2-dependent
manner (Sousa et al., 2018). However, when O2 levels become
low, the cells shift ATP production from Mt to glycolysis (Lunt
and Vander Heiden, 2011). The molecular mechanism
responsible for the switch is gradually becoming clear from
research into cancer cells, and reactive oxygen species (ROS)
generated by NADPH oxidases (NOXs) as well as Mt are a key
factor (Kang et al., 2015; Phadwal et al., 2021). Specifically,
studies have demonstrated that changes in the amount of ROS
in the cells play a crucial role in switching cellular signals
between p38MAPK signaling, which is responsible for the
stabilization of Mt (Corbi et al., 2013), and AKT signaling,
which is responsible for the activation of glycolysis (Xie et al.,
2019; Kim et al., 2020; Vaupel and Multhoff, 2021). Furthermore,
crosstalk between NOXs and Mt via p38MAPK has been
proposed to be a crucial mechanism for prompting survival
processes such as angiogenesis and tissue repair demanded more
energy ATP (Fukai and Ushio-Fukai, 2020), which presumably
also supports the intracellular growth of Ct under normoxia.
However, the roles of Mt and NOXs in the intracellular growth of
Ct and its response to O2 concentration and the associated
signals have not yet been verified. Moreover, it has not yet
Abbreviations: Ct, Chlamydia trachomatis; Cp, Chlamydia pneumoniae; Mt,
mitochondria; NOX, NADPH oxidase; DPI, diphenyleneiodonium; AKT,
protein kinase B; EB, elementary body; ROS, reactive oxygen species; q,
quantitative; RT, reverse transcription; PCR, polymerase chain reaction; EtBr,
ethidium bromide; TEM, transmission electron microscopy; GFP, green
fluorescent protein; TBS-T, Tris-buffered saline and 0.1% Tween 20.
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been determined whether Ct in infected cells requires Mt as
the site of ATP acquisition depending on O2 condition.

In the present study, we thus compared the roles of NOXs and
Mt in the intracellular growth of Ct under normoxia (21% O2)
and hypoxia (2% O2) by using Mt-dysfunctional (Mtd) human
epithelial (HEp-2) cells and several inhibitors of NOXs and
p38MAPK, which is a NOX4-related molecule.
RESULTS AND DISCUSSION

Cytotoxicity of the Inhibitors Used,
Expression Levels of NOXs, and the Effect
of Diphenyleneiodonium on the Growth
of Chlamydiae
Four inhibitors were used in this study—they block the diffusion of
ROS (DPI) (Iacovino et al., 2020), or the activation of NOXs or
related molecules (ML171, pan-NOXs; GLX351322, a NOX4
specific inhibitor; and SB203580, a p38MAPK-specific inhibitor)
(Zhou et al., 2010; Cifuentes-Pagano et al., 2012; Anvari et al., 2015).
No cytotoxicity of DPI, ML171, GLX351322, and SB203580 on
HEp-2 cells was seen at ≤5 nM, ≤20 mM, ≤20 mM, and ≤20 mM,
respectively (Figure 1). On the basis of these results, the inhibitors
were used in our experiments at a concentration where no
cytotoxicity was observed. Next, the expression levels of NOXs in
the immortal human epithelial (HEp-2) cells used were examined
by quantitative (q) reverse transcription (RT)-polymerase chain
reaction (PCR). The expression level of NOX4 was the highest
among the NOXs, at least 10 times that of the other NOXs (Figure
S1A), indicating that, among NOXs, NOX4 could play the most
important role in the growth of Ct. Furthermore, the effect of DPI
on the growth of other chlamydiae [CtL2 (267, see Methods) and
CtD (D/UW3/CX)] was assessed by using qPCR targeting the Ct
16S rDNA gene. DPI significantly suppressed the growth of the Ct in
a similar way (Figure S1B), indicating that Ct relies on ROS derived
form NOXs for growth via a mechanism that might be conserved.

Although DPI at low concentrations suppressed the growth of
various Chlamydiae, at ≥10 nM it showed strong cytotoxicity
toward HEp-2 cells. DPI not only suppresses the activity of
various NOXs (Iacovino et al., 2020) but also strongly inhibits
the activities of cytochrome P-450 reductase (Chakraborty and
Massey, 2002), xanthine oxidase (Sanders et al., 1997), nitric
oxide synthase (Stuehr et al., 1991), and NADH-ubiquinone
oxidoreductase (Majander et al., 1994). Overall, such pleiotropic
effects are considered to be the cause of the strong cytotoxicity.
Therefore, experiments with more selective inhibitors are needed
to validate the role of NOXs in chlamydial intracellular growth.

As noted above, we found high expression of NOX4 in HEp-2
cells compared with that of other NOXs (Figure S1B). This
result was consistent with the previous finding that, in contrast to
other NOXs, NOX4 is highly expressed in cellular membrane in
vascular cells or endothelial cells (Ago et al., 2004; Griendling,
2004). NOX4 is constitutively active, involving the control of
cytoskeletal integrity (Lyle et al., 2009; Nisimoto, 2010), required
for the growth of Ct. Furthermore, NOX4-dependent ROS is
involved in many physiological functions, including immune
May 2022 | Volume 12 | Article 902492
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host defense and the activation of multiple cellular signaling
pathways such as SAPK/JNK, ERK1/2, and p38MAPK, which are
responsible for ATP energy production via Mt) (Irani, 2000).
Some of these pathways have already been reported to be targets
of Ct (Shima et al, 2011; Jerchel et al., 2014; Thapa et al., 2020).
Thus, we hypothesized that NOX4 is one of the targets of Ct for
its successful intracellular growth under normoxia; if so, that
would impact the production of ROS from NOXs as well as Mt.

CtL2 Uses NOX4/p38MAPK Signaling for
Its Growth Under Normoxia
To test this hypothesis, the effect of more specific NOX inhibitors
(ML171 and GLX351322) on the growth of CtL2 under
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
normoxia (21% O2) and hypoxia (2% O2) was compared. In
contrast to hypoxia, both inhibitors significantly inhibited the
growth of CtL2 under normoxia in a concentration-dependent
manner (Figure S2 and Figure 2). The growth of CtL2 was also
significantly suppressed in NOX4-knockdown cells treated with
small interfering RNA (siRNA) against NOX4 under normoxia
(Figure S3). Thus, NOX4 clearly plays a crucial role in the
growth of Ct under normoxia, but not under hypoxia. Next, the
role of p38MAPK, which is a NOX4-related molecule (Corbi
et al., 2013), on the growth of CtL2 was assessed using a
p38MAPK-specific inhibitor, SB203580. Similar to the effects
of ML171 and GLX351322, the presence of SB203580
significantly diminished the intracellular growth of CtL2 under
FIGURE 1 | Viability of HEp-2 cells in the presence of inhibitors (DPI, ML171, GLX351322, and SB203580). The cells were cultured with or without inhibitor for 24 h,
and then the cell viabilities were assessed using Cell Counting Kit-8 (see Methods). Data show means ± SD (n = 6) as a relative value of the cell-only
(dimethylsulfoxide-treated) viability (which is defined as 100%). *p < 0.05 vs. dimethylsulfoxide-treated. Dotted lines show IC50 values.
May 2022 | Volume 12 | Article 902492
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normoxia, but not under hypoxia (Figure 3). Thus, as expected,
our findings indicated that CtL2 relies on NOX4/p38MAPK
signaling for its growth under normoxia, but not under hypoxia.

As supported by several studies (Irani, 2000; Basuroy et al.,
2011; Lee et al., 2014; Ribeiro-Pereira et al., 2014; Beretta et al.,
2020), NOX4-dependent ROS has an important role as second
messengers associated with cellular survival under normoxia.
The mechanism involves the stabilization of mitochondrial
function, which is responsible for the stable supply of ATP, via
cross-talk between NOX4 and Mt (Dan Dunn et al., 2015). The
exposure of cells to ROS can activate p38MAPK, which is a
NOX4-related molecule (Bedard and Krause, 2007). Thus, ROS
may play an important role in the requirement of NOX/
p38MAPK for the intracellular growth of CtL2 under normoxia.

The inhibitors ML171, GLX351322, and SB203580,
however, had no effect on the growth of Ct under hypoxia.
Unlike under normoxia, the energy source of Ct in low O2

conditions is ATP produced by glycolysis in the infected host
cells following the activation of PI3K/AKT (Jerchel et al., 2014;
Lavu et al., 2020; Thapa et al., 2020) In fact, several studies have
reported that Ct activates PI3K, which regulates glycolysis, by
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
phosphorylating AKT (Zou et al., 2019; Thapa et al., 2020;
Huang et al., 2021).

CtL2 Relies on Host-Cell Mt for its Growth
Under Normoxia, but Not Under Hypoxia
According to a previous report (Yu et al., 2007), Mtd-HEp-2 cells
were successfully established by the passage of HEp-2 cells for 6
months in the presence of ethidium bromide (EtBr) at low
concentration (50 ng/ml) with subsequent cloning (Figure S4A);
five strains (P52-B3, P52-B10, P52-C7, P52-E2, P52-H8) were
established. The mitochondrial genome consists of 37 genes,
including tRNAs (Nicholls and Minczuk, 2014). The Mtd-HEp-2
cells that we generated had lost theD-loop, which is associated with
replication of the mitochondrial genome, and COXII, which
encodes a component of respiratory chain Complex IV (Figure
S4B). Compared with HEp-2 cells without EtBr exposure, the
amounts of NADH and NADPH significantly increased in the
Mtd-HEp-2 cells under normoxia, indicating an activation of
aerobic glycolysis, referred to as the Warburg effect (Figure S4C)
(Vaupel and Multhoff, 2021). Confocal laser fluorescence imaging
and transmission electron microscopy (TEM) observations
A B

FIGURE 2 | Effect of NOX4-specific inhibitor GLX351322 on the intracellular growth of green fluorescent protein (GFP)-expressing CtL2 (236) under normoxia (A)
and hypoxia (B). HEp-2 cells were infected at a multiplicity of infection (MOI) = 5 with GFP-expressing CtL2 (236) in the presence or absence of the drug, and
cultured for 48 h. Representative images show inclusion bodies (green) formed in infected HEp-2 cells. Bars = 100 mm. The number of bacteria was calculated by
inclusion-forming unit (IFU) assay of infected cells cultured for 48 h. Data show means ± SD obtained from at least three experiments. *p < 0.05 vs. the value for
each control (Cont).
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revealed that in Mtd-HEp-2 cells, the Mt swelled (Figure 4A),
corresponding to the observations in the previous report (Yu et al.,
2007) (Figure 4B). Together, these findings showed that in Mtd-
HEp-2 cells, the Mt became dysfunctional, indicating that this cell
line was a useful tool for verifying the effects of Mt on the
intracellular growth of Ct. Under normoxia, Ct growth was
significantly inhibited in Mtd-HEp-2 cells; under hypoxia, there
was no growth inhibition (Figure 5). Thus, under normoxia, Ct
relies on functional Mt as a source of ATP, consisting with the
previous studies showing the presence of crosstalk between Ct
metabolism and mitochondria (Szaszák et al., 2011; Chowdhury
and Rudel, 2017).

EtBr selectively binds to DNA and its accumulation causes
mutations and deletions in DNA (Hayashi et al., 1994). The
damage to DNA is more pronounced in mitochondrial DNA,
whose repair mechanism is fragile, compared with genomic
(nuclear) DNA. Thus, the application of EtBr can selectively
induce cells with dysfunctional Mt (Yu et al., 2007; Luo et al.,
2013). As expected, the Hep-2 cells serially passaged with EtBr
exposure here showed morphological changes of the Mt and the
Warburg effect. We therefore concluded that Mtd-HEp-2 cells
were successfully established (Yu et al., 2007). Meanwhile,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
subculture of the cells in the absence of EtBr for >1 week
decreased the amount of NADH and NADPH (data not
shown), which showed restoration of normal mitochondrial
function, indicating that not all of the Mt in the cells were
completely dysfunctional. However, because the culture period
of the infected cells without EtBr in our experiments was only 2
days, the effect of mitochondrial restoration was minimal.

Although no difference was observed under hypoxia, under
normoxia, the growth of Ct in Mtd-HEp-2 cells was significantly
decreased compared with that in the parental HEp-2 cells. This
finding indicates that under normoxia, Ct relies on Mt as its
source of ATP. We also found that NOX4/p38MAPK signaling,
which is involved in the control of mitochondrial function
(Bedard and Krause, 2007; Dan Dunn et al., 2015), plays a
critical role in the intracellular growth of Ct under normoxia.
Furthermore, it is evident that the amounts of ROS generated
from NOXs is increased under normoxia compared with hypoxia
(Basuroy et al., 2011; Lee et al., 2014; Ribeiro-Pereira et al., 2014;
Beretta et al., 2020), and crosstalk between NOXs and Mt has
been proposed to be a crucial mechanism for cellular survival
(Fukai and Ushio-Fukai, 2020), as well as being responsible for
maintaining a stable supply of ATP to Ct. Thus, under normoxia,
A B

FIGURE 3 | Effect of NOX4-downstream molecule p38MAPK-specific inhibitor SB203580 on the intracellular growth of GFP-expressing CtL2 (236) under normoxia
(A) and hypoxia (B). The HEp-2 cells were infected at MOI = 5 with GFP-expressing CtL2 (236) in the presence or absence of the drug, and cultured for 48 h.
Representative images show inclusion bodies (green) formed in infected HEp-2 cells. Bars = 200 mm. The number of bacteria was calculated by IFU assay of
infected cells cultured for 48 h. Data show means ± SD obtained from at least three experiments. *p < 0.05 vs. the value of each control (Cont).
May 2022 | Volume 12 | Article 902492
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Ct require functional Mt with the activation of NOX4/p38MAPK
signaling, presumably via ROS as a second messenger. Crosstalk
between NOX4 and Mt via p38MPAK may be crucial for
supporting the intracellular growth of Ct in the presence of O2.

Under hypoxia, Ct obtains ATP from glycolysis by the activation
of PI3K/AKT signaling (Zou et al., 2019; Thapa et al., 2020; Huang
et al., 2021). We therefore speculate that Ct switches its energy
source betweenMt and glycolysis in response to change in the ATP-
production site in the infected cells, which in turn depends on the
cellular O2 concentration. We also expect that Ct modifies host cell
signaling using effector molecules that are injected into the
cytoplasm via the type III secretion system (Dai and Li, 2014).
Meanwhile, further study is needed to verify this in detail and to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
establish the switching mechanism and effectors. Also, there was a
limitation of the used cell line producing ATP mainly via glycolysis
that should be addressed by additional experiments.
CONCLUSIONS

In contrast to hypoxia, CtL2 requires functional Mt with NOX4/
p38MAPK-mediated signaling for its growth under normoxia.
Crosstalk between NOX4 and Mt via p38MAPK may be crucial
for the growth of Ct under normoxia. These findings provide
novel insight into the complicated biology and pathogenesis
of Chlamydia.
A

B

FIGURE 4 | Morphological features of mitochondria (Mt) in HEp-2 cells with or without ethidium bromide exposure. (A) Representative confocal laser microscopy
images showing the localization and morphology of Mt in Mtd-HEp-2 (P52-C7) cells and parental HEp-2 cells stained using MitoTracker (see Methods). Bars = 5 mm.
(B) Representative transmission electron microscopy images showing the detailed morphology of Mt in Mtd-HEp-2 (P52-C7) cells and parental HEp-2 cells. Scale
bars = 1 mm.
May 2022 | Volume 12 | Article 902492
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METHODS

Bacteria and Human Cells
Chlamydiae [CtL2 (L2 434/Bu) and CtD (D/UW3/CX)] and
immortal human epithelial HEp-2 cells were used for this study.
The bacteria were propagated into HEp-2 cells in Dulbecco’s
Modified Eagle’s Medium (Sigma, Burlington, MA) containing
10% fetal calf serum and antibiotics (10 µg/ml gentamicin, 10 µg/
ml vancomycin, and 1 µg/ml amphotericin B) at 37°C under
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
normoxia, and then stored at −80°C, according to a previously
described protocol (Thapa et al., 2020). CtL2 were transformed
using green fluorescent protein (pGFP)::SW2 with a promoter
(p) derived from Neisseria meningitidis replaced with p-CT236
(hypothetical gene) or p-CT267 (hypothetical gene), both of
which can bind more efficiently to the ribosome (as determined
using a ribosome binding site calculator) than the original
promoter (Howard, 2011), according to the protocol for
chlamydial transformation (Bauler and Hackstadt, 2014).
A

B

FIGURE 5 | Growth kinetics of GFP-expressing CtL2 (236) in Mtd-HEp-2 (P52-C7, P52-E2, P52-H8) cells and parental HEp-2 cells under normoxia (A) and hypoxia
(B). The cells were infected with GFP-expressing CtL2 (236) at MOI = 5 and then cultured for 48 h under normoxia or hypoxia. Bacterial numbers were determined
at 7, 20, 30, and 43 h by IFU assay and qPCR. Magnification for images, ×200. The quantities of chlamydial 16S rDNA were normalized to that of b-actin. Data
show the means ± SD obtained from at least three experiments. *p < 0.05 vs. the value of each control (white bar).
May 2022 | Volume 12 | Article 902492
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Establishment of Mtd-HEp-2 Cells
As shown in Figure S4A, Mtd-HEp-2 cells (P52-B3, P52-B10,
P52-C7, P52-E2, and P52-H8) were established by the passage of
HEp-2 cells for 6 months in the presence of EtBr (50 ng/ml) with
supplements [sodium pyruvate (100 mg/ml) and uridin (50 ng/
ml)] and subsequent cloning with a limited dilution method,
according to previous report (Yu et al., 2007). The dysfunctional
state of Mt was confirmed by the loss of two genes (D-loop and
COXII) from the mitochondrial genome by qPCR, increased
amounts of NADH/NADPH (aerobic glycolysis, Warburg
effect), and changed mitochondrial morphology (see below).

Establishment of NOX4-Knockdown Cells
Transient NOX4-knockdown HEp-2 cells were established by 24-h
transfection of cells with NOX4 siRNA (sc-41586; Santa Cruz Bio).
Non-targeting scramble RNA (sc-37007; Santa Cruz Bio) was used
as a control. Transfection of siRNA (or scramble RNA) into cells
was performed with Lipofectamine™ RNAiMAX Transfection
Reagent (Thermo Fisher), according to the manufacturer’s
protocol. The amount of the complex brought into the culture
system was 250 ml [Cont-siRNA (250) and NOX4-siRNA (250)] or
50 ml [Cont-siRNA (50) and NOX4-siRNA (50)] (see Figure S3).

Assessing Inclusion-Forming Units
The number of infectious progeny (EB) was determined as IFU
by counting chlamydial inclusion bodies formed in epithelial
cells using a fluorescein isothiocyanate-conjugated anti-
chlamydial monoclonal antibody specific to Chlamydia
lipopolysaccharide (Denka Seiken, Tokyo, Japan), as described
previously (Thapa et al., 2020). Cells were observed using an
Olympus culture microscope, model CKX41.

Infection and Culture
Cells were infected at an appropriate multiplicity of infection (MOI)
with Ct (some expressing GFP as described above) or Cp, and then
cultured in 10% FCS-RPMI medium with or without inhibitors of
NOXs [DPI (anti-ROS: 0.4-10 nM), ML171 (anti-NOXs: 2-10 mM),
GLX351322 (anti-NOX4: 2-10 mM), or SB203580 (anti-p38MAPK:
2.5-10 mM)] for 48 h under normoxia (21%O2) or hypoxia (2%O2).
Hypoxia was established using a dedicated MIC-101 chamber
(Billups-Rothenberg) to which mixed gas containing 2% O2, 5%
CO2, and 93% N2 was supplied, as previously described (Thapa
et al., 2020). O2 conditions were continuously monitored using an
oxygen meter.

Assessing Amounts of NADH and NADPH
The total amounts of NADH/NADPH in cultures were
quantified by using the Cell Counting Kit-8 (Dojindo),
according to the manufacturer’s protocol. The values were
calculated from measurements of OD450 nm.

Imaging of Mt
Cells were stained with MitoTracker® Red CMXRos, and then
fixed with 4% paraformaldehyde in phosphate-buffered saline
(PBS), following the manufacturer’s protocol (Cell Signaling).
The stained cells were observed using a confocal laser
fluorescence microscope (TCSSP5, Leica) or a conventional
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
fluorescence microscope (BZX800, Keyence). Furthermore,
infected cells were fixed using 3% glutaraldehyde in PBS. The
cells were immersed in alcohol for dehydration after washing
with PBS and then embedded in Epon 813. Ultrathin sections
were obtained and stained with lead citrate and uranium acetate,
followed by TEM observation (JEM-1400Flash, JEOL Ltd.), as
described previously (Matsuo et al., 2008).

DNA and RNA Extraction
Total DNAs and RNAs were extracted from cells using an
Instagene kit (Bio-Rad, Hercules) and High Pure RNA
Isola t ion Ki t (Roche) , respec t ive ly , fo l lowing the
manufacturers’ protocols. The reverse transcription of total
RNA to cDNA was performed with ReverTraAce qPCR RT
Master Mix (Toyobo).

Quantitative PCR
Amplifications of DNA or cDNA were quantified by CFX
Connect (Bio-Rad) with SYBR Green (KOD SYBR qPCR Mix,
TOYOBO) targeting D-loop (forward: 5′- CCT GTC CTT GTA
GTA TAA AC -3′; reverse: 5′- TTG AGG AGG TAA GCT ACA
T -3′) (Yu et al., 2007), COXII (forward: 5′- TTC ATGATC ACG
CCC TCA TA -3′; reverse: 5’- CGG GAA TTG CAT CTG TTT
TTA -3’) (Yu et al., 2007), chlamydial 16S rDNA (forward: 5′-
CGG CGT GGA TGA GGC AT-3′; reverse: 5′-TCA GTC CCA
GTG TTG GC-3′), or b-actin (forward: 5′- GAC CAC ACC TAC
AAT GAG -3′; reverse: 5′- GCA TAC CCC TCG TAG GG -3′)
(Ishida et al., 2014). The quantities of D-loop, COXII, and
chlamydial 16SrDNA were normalized to that of b-actin.

Western Blotting
Cells were lysed in RIPA buffer containing 0.1% sodium dodecyl
sulfate (SDS; Nacalai Tesque). The proteins in each sample were
separated by 8% SDS-polyacrylamide gel electrophoresis. The
separated proteins were transferred to a polyvinylidene difluoride
membrane by semi-dry electroblotting using the Trans-Blot®

Turbo™ blotting system (Bio-Rad). After blocking with 3% skim
milk in Tris-buffered saline and 0.1% Tween 20 (TBS-T),
membranes were incubated with primary antibody [anti-NOX4
(Abcam): ×2000; anti-tubulin (Santa Cruz Bio): ×2000] overnight at
4°C. After washing with TBS-T, membranes were incubated with
secondary antibody for 4–6 h at 4°C. After washing, membranes
were developed with Clarity™ Western ECL substrate (Bio-Rad)
and visualized using a Chemi Doc™ XRS (Bio-Rad).

Statistical Analyses
Comparisons among group values were performed by using the
Bonferroni/Dunn test. A p-value of < 0.05 was considered
statistically significant.
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1–4) (A) and effect of diphenyleneiodonium (DPI; 0.08–5 nM) on the growth of
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Chlamydiae (B). Gene expression was assessed by quantitative (q) reverse
transcription (RT) polymerase chain reaction (PCR), and expressed as a value of
2D;D;−Ct. The quantities of NOXs were normalized to that of b-actin. Data show
averages from duplicate experiments. HEp-2 cells were infected at an appropriate
multiplicity of infection [MOI; GFP-expressing CtL2 (267) MOI 5; CtD: MOI 5] and
cultured for 72 h. The number of bacteria in cultures was then determined by qPCR
assay. The quantities of chlamydial 16S rDNA were normalized to that of b-actin.
Data show means ± SD from at least three experiments. *p < 0.05 vs. the value of
each positive control (PC).

Supplementary Figure 2 | Effect of ML171 (2 and 10 mM) on the intracellular
growth of green fluorescent protein (GFP)-expressing CtL2 (236) in HEp-2 cells
under normoxia (A) and hypoxia (B). The HEp-2 cells were infected at MOI 5 with
CtL2 (236), and then cultured for 48 h. Representative images show inclusion
bodies (green) formed in infected HEp-2 cells. Bars = 100 mm. The number of
bacteria was calculated by inclusion-forming unit (IFU) assay of infected cells
cultured for 48 h. Data show means ± SD from at least three experiments. *p < 0.05
vs. the value of each PC.

Supplementary Figure 3 | The growth of GFP-expressing CtL2 (236) in NOX4-
knockdown HEp-2 cells and confirmation of the NOX4 knockdown by western
blotting. Transfected cells were infected with CtL2 (236) for 48 h, and the numbers
of IFU were verified. The upper images show inclusion bodies in the knockdown
cells [NOX4-siRNA (250)] with Cont-siRNA (250) used as the control (seeMethods).
The graph shows the number of IFU 48 h after infection. Data show means ± SD
from five fields per well from a single experiment. *p < 0.05 vs. each control [Cont-
siRNA (250) or Cont-siRNA (50)]. The lower images show the amount of NOX4
protein in the knockdown cells (with a-tubulin used as a loading control).

Supplementary Figure 4 | The establishment of Mtd-HEp-2 cells using ethidium
bromide (EtBr). (A) Culture schedule of HREp-2 cells in the presence of EtBr. (B) The
image (left) shows expression levels of the D-loop and COXII genes in the cells and the
graph (right) shows the quantified amount of COXII gene expression. (C) The image (left)
shows color changes indicating the amount of NADH and NADPH in the cells, and the
graph (right) shows the amounts of NADH/NADPH in the culture of Mtd-HEp-2 cells. The
controls were medium and parental (non-EtBr-treated) HEp-2 cells. *p < 0.05 vs.
parental HEp-2 cells.
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