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Drug of abuse (DOA) consumption is a growing problem worldwide, particularly with

increasing numbers of new psychoactive substances (NPS) entering the drug market.

Generally, little information on their adverse effects and toxicity are available. The direct

detection and identification of NPS is an analytical challenge due to their ephemerality on

the drug scene. An approach that does not directly focus on the structural detection of

an analyte or its metabolites, would be beneficial for this complex analytical scenario and

the development of alternative screening methods could help to provide fast response

on suspected NPS consumption. A metabolomics approach might represent such an

alternative strategy for the identification of biomarkers for different questions in DOA

testing. Metabolomics is the monitoring of changes in small (endogenous) molecules

(<1,000 Da) in response to a certain stimulus, e.g., DOA consumption. For this review,

a literature search targeting “metabolomics” and different DOAs or NPS was conducted.

Thereby, different applications of metabolomic strategies in biomarker research for DOA

identification were identified: (a) as an additional tool for metabolism studies bearing

the major advantage that particularly a priori unknown or unexpected metabolites can

be identified; and (b) for identification of endogenous biomarker or metabolite patterns,

e.g., for synthetic cannabinoids or also to indirectly detect urine manipulation attempts

by chemical adulteration or replacement with artificial urine samples. The majority of

the currently available literature in that field, however, deals with metabolomic studies

for DOAs to better assess their acute or chronic effects or to find biomarkers for drug

addiction and tolerance. Certain changes in endogenous compounds are detected for all

studied DOAs, but often similar compounds/pathways are influenced. When evaluating

these studies with regard to possible biomarkers for drug consumption, the observed

changes appear, albeit statistically significant, too small to reliably work as biomarker for

drug consumption. Further, different drugs were shown to affect the same pathways.
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In conclusion, metabolomic approaches possess potential for detection of biomarkers

indicating drug consumption. More studies, including more sensitive targeted analyses,

multi-variant statistical models or deep-learning approaches are needed to fully explore

the potential of omics science in DOA testing.

Keywords: metabolomics, biomarker, NPS, drugs of abuse, urine adulteration, indirect, metabolism

CURRENT CHALLENGES IN ANALYTICAL
(FORENSIC) TOXICOLOGY

Forensic toxicology is a field of science dedicated to the
application of accepted and validated scientific methods and
practices in toxicology to cases and issues where drug effects
may have administrative or medico-legal consequences, and
where the results are likely to be used in court (The Forensic
Toxicology Council, 2010). Main questions are related to
behavioral or human performance toxicology such as impaired
driving assessment or drug facilitated crimes, postmortem
toxicology, abstinence control or workplace drug testing
(Wyman, 2012). Primarily, forensic toxicology encompasses
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Standards and Technology; NMR, nuclear magnetic resonance; NPS, new
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PCA, principle component analysis; PCC, pyridinium chlorochromate; PLS-DA,

partial least-square–; discriminant analysis; PMI, postmortem interval; PP, protein

precipitation; QC, quality control; qTOF, quadrupole time-of-flight; RP, reversed-

phase; SPE, solid phase extraction; SRM, selected reaction monitoring; SST, system

suitability test; TCA, tricarboxylic acid; TOCSY, total correlation spectroscopy;

TOF, time-of-flight; UDP-GlcNac, uridine diphosphate-N-acetylglucosamine;

UNODC, United Nations Office on Drugs and Crimes; US, United States of

America; VIP, variable importance in projection; ZIC, zwitterionic.

the qualitative and quantitative analysis of ethanol, drugs
of abuse (DOA), prescription drugs or poisons in biological
matrices, mainly blood or urine, and the interpretation of the
respective results. Commonly, routine laboratory procedures
include the use of prescreen immunoassays (IA) to test for
the most relevant DOAs—often followed by confirmatory
analyses such as hyphenated chromatographic techniques;
e.g., gas chromatography (GC)—mass spectrometry (MS) or
liquid chromatography (LC)-MS (Drummer, 2007; Maurer,
2007, 2010). Furthermore, so-called general unknown screening
approaches using GC-MS, LC-MS/(MS) or LC-high resolution
(HR) MS are applied. In order to assess the level of exposure,
positive results from the qualitative screening analyses are
subsequently confirmed and quantified, if the compounds were
found to have relevant toxic potential. With recent developments
on the (il)legal drug market, such as the constant appearance
of new psychoactive substances (NPS) or easily available drug
masking agents and procedures, the field of forensic toxicology
currently faces a variety of new challenges.

More than 800 NPS have been reported to the United
Nations Office on Drugs and Crimes (UNODC) Early Warning
Advisory as of December 2017, making their use and misuse
a global problem [United Nations Office on Drugs and Crime
(UNODC) (2018)]. Of these, 68% were synthetic cannabinoids
and stimulants, which make up the largest fraction of newly
reportedNPS in 2017. Generally, little information on the adverse
effects and toxicity of NPS are available posing a growing problem
worldwide. In addition, their direct detection and identification
remains an analytical challenge due to their ephemerality on
the drug scene. Common IAs are usually unable to reliably
pick up whole classes of NPS which makes the development
of comprehensive screening approaches mandatory for their
detection. While being very sensitive, targeted methods applying
e.g., multiple reaction monitoring (MRM) constantly need to be
updated and require reference standards that are often missing or
are associated with high costs. HRMS has shown strong potential,
as the need for method adjustment is omitted and it allows for
retrospective data evaluation (Grabenauer et al., 2012; Shanks
et al., 2012). Accurate mass facilitates compound identification,
but the use of HRMS instruments leads to limitations concerning
sensitivity and dynamic range. Further, data processing of HR
data for unknowns is still very laborious and time consuming.

An alternative approach would be the development of
novel screening methods, that are not directly targeting the
analyte’s or its metabolite’s chemical structures. This could be
highly beneficial to provide fast response on suspected NPS
consumption and aid in the overall resolution of this complex
analytical scenario. A first approach was presented in a recent

Frontiers in Chemistry | www.frontiersin.org 2 May 2019 | Volume 7 | Article 319

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Steuer et al. Metabolomics in Clinical/Forensic Toxicology

work from Cannaert et al. showing that it is possible to
develop an assay that detects synthetic cannabinoids and their
metabolites based on their activity and interaction with the
cannabinoid receptors (Cannaert et al., 2017). Such an activity-
based screening assay might complement conventional analytical
methods (targeted and untargeted) and serve as a front-line
screening tool of urine. Despite the fact that it is impossible
to positively identify specific synthetic cannabinoids with this
approach, it potentially reduces the number of false negative
results compared to targeted approaches, where a compound is
missed if not included in the candidate list (Bijlsma et al., 2018).

The incentive for drug users to switch to NPS is often
not solely based on getting high legally, but potentially also
to circumvent positive results in drug-screening tests. The
latter is particularly relevant, where drug abstinence needs
to be proven, e.g., driving liability testing, certain psychiatry
or prison settings or in workplace drug testing procedures
(EMCDDA, 2009; Bijlsma et al., 2018). In abstinence control
settings, urine still represents the matrix of choice (Verstraete,
2004; Phan et al., 2012; Fu et al., 2014). Hence, it is
critical for laboratories to detect urine adulteration attempts
that might aim at circumventing positive drug testing results
(Wu et al., 1999). Common manipulation procedures involve
dilution of authentic urine, substitution with artificial urine
or chemical adulteration. The use of a variety of different
chemicals has been reported due to their known masking
effects during drug detection. Generally applicable for chemical
urine adulteration are common household chemicals such as
peroxidase and peroxide (H2O2), hypochlorite-based bleach
(NaOCl) or pyridinum chlorochromate (PCC), potassium nitrite
(KNO2), and iodine (I2) (Uebel and Wium, 2002; Jaffee
et al., 2007; Fu et al., 2014). Commercialized products for
urine adulteration are particularly prevalent in the US, where
products such as Stealth R© (containing peroxidase and H2O2)
(Valtier and Cody, 2002), Klear R© (containing KNO2) (Peace
and Tarnai, 2002) or Whizzies R© (containing sodium nitrite)
(Dasgupta et al., 2004) and “Urine Luck” (containing PCC)
(Wu et al., 1999; Paul et al., 2000) are readily available via
the internet (Dasgupta, 2007; Jaffee et al., 2007; Fu et al.,
2014). The same applies for commercially available artificial
urine products (Goggin et al., 2017; Kluge et al., 2018).
While it should be mandatory for toxicological laboratories
to screen for the large selection of chemical adulterants and
artificial urine products, time, costs, and resources often prevent
comprehensive testing. A time- and cost-effective alternative are
spot and dipstick tests, integrity testing or integrated sample
checks to commercially available IA systems. However, these
are often associated with high rates of false negative or false
positive results (Edwards et al., 1993; Fu et al., 2014; Matriciani
et al., 2018). Ideally, a drug testing workflow would include
drug detection with simultaneous screening for adulteration
attempts within the very same run, in particular during high-
throughput testing.

To cope with these recent developments, methods which
are not focused directly on the analyte or adulterant in
question are an attractive approach. Next to the described
indirect activity-based screening approach, the application of

metabolomics or metabolomics-related techniques (applying
common metabolomics data analysis and statistics) represents
such an alternative strategy for the identification of biomarkers
useful for the (indirect) detection of drug consumption
or manipulation attempts. The aim of the present review
is to summarize available data on the search of potential
biomarkers for drug consumption and sample adulteration as
well as their interpretation utilizing metabolomics approaches.
Therefore, a PubMed search has been conducted targeting
“metabolomics” along with different DOAs or NPS or
urine adulteration.

METABOLOMICS

Metabolomics (also known as metabolic profiling or
metabonomics) is the study of the metabolism and metabolites
in an organism and is one of many “omics” sciences such
as exposomics (the study of the complete collection of
environmental exposures), microbiomics (the study of the
microbiome), proteomics, genomics, and transcriptomics.
Metabolome studies target the qualitative and quantitative
characterization of small molecules (<1,000 Da) with changes
appearing in organisms in response to a certain stimulus. The
metabolome is unique, dynamic and related to the phenotype
(Dinis-Oliveira, 2014; Wishart, 2016). In contrast to the other
“omics”-sciences, metabolomics is able to link both gene
and environmental interactions. It not only represents the
downstream output of the genome but also the upstream input
from the environment and is therefore positioned at the bottom
of the “omics” cascade as represented in Figure 1 (Wishart, 2016;
Zaitsu et al., 2016). In recent years, metabolomics approaches
were applied to various fields, due to the ability to detect subtle
changes in a large dataset with comprehensive metabolite
measurements. The question which metabolites are actually
considered to be part of the “metabolome” is still controversial,
resulting in partly confusing definitions. The metabolites present
in biological systems and defined as the metabolome in the
strict sense, include endogenously derived biochemicals e.g.,
carbohydrates, lipids, amino acids, fatty acids, steroids, or
vitamins. However, metabolomic analyses also allow for the
detection of exogenously derived metabolites from xenobiotics
and/or their phase I and phase II metabolites; this can be referred
to as the xenometabolome (David et al., 2014). Particularly
difficult is, however, the differentiation of studies focusing on
(xenobiotic) drug metabolism, without applying metabolomics
techniques. For example, a study published by Patton et al. is
named “Targeted Metabolomic Approach for Assessing Human
Synthetic Cannabinoid Exposure and Pharmacology” but is
actually focusing on conventional approaches for chiral analysis
of JWH-018 and AM2201 metabolites (Patton et al., 2013).
Some recent review articles on different drugs—also entitled
“metabolomics of” actually contain more information on the
drug’s metabolism and pharmacodynamics than changes of
the metabolome as defined above (Dinis-Oliveira, 2016a,b).
To avoid confusion, the following review will focus on
either metabolomic studies targeting endogenous compounds
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FIGURE 1 | Overview of different omics-sciences such as genomics, transcriptomics, and proteomics. Metabolomics represents the downstream output of the

genome but also the upstream input from the environment and is therefore positioned at the bottom of the “omics” cascade.

or applying metabolomic techniques and statistics for the
elucidation of the xenometabolome.

In general, metabolomics is a valuable tool in different
disciplines such as drug discovery (Lu and Chen, 2017; Mercier
et al., 2018), biomarker research (Klein and Shearer, 2016; Wang
et al., 2016b; Zhang et al., 2016; Ambati et al., 2017), studies
of diseases (Klein and Shearer, 2016; Ren et al., 2016; Wurtz
et al., 2016), and metabolic pathways confirmation (Ren et al.,
2016; Zhang et al., 2016). It involves both the identification of
endogenous substances in different biological samples as well
as the statistical analysis of differences between two or more
conditions. Fields in whichmetabolomics studies have previously
been reported include clinical trials, toxicology, pharmacology,
and nutrition (Brignardello et al., 2017; Korsholm et al., 2017;
Cornelis et al., 2018; Wu et al., 2018). However, within the
field of forensic (toxicology) this approach is rather new, with
little human data available so far. Nevertheless, metabolomics
approaches in forensics become more and more popular as they
were found to be a helpful tool for a variety of forensic questions,
e.g., in postmortem investigations (Castillo-Peinado and Luque
de Castro, 2016). For the estimation of the postmortem interval
(PMI), metabolomics studies found elevated levels of amino
acids and creatinine postmortem (Castillo-Peinado and Luque
de Castro, 2016) and decreasing levels of sterol sulfates and
very-long-chain fatty acids within the postmortem period (Wood
and Shirley, 2014). Additionally, biomarker research within
the field of forensic toxicology might successfully be used
to investigate consumption behavior, to distinguish between
acute or chronic drug consumption or to find the underlying
mode of toxicological action in humans (Wang et al., 2016a).
Thereby, different applications of metabolomics strategies in

biomarker research for DOA identification were proposed: (a)
as an additional tool for metabolism studies bearing the major
advantage that particularly a priori unknown or unexpected
metabolites can be identified; and (b) for identification of
endogenous biomarker or metabolite patterns, e.g., for synthetic
cannabinoids or also to indirectly detect urine manipulation
attempts such as artificial urine samples or chemical adulteration.
The majority of the currently available literature deals with
metabolomic studies for DOAs to better assess their acute
or chronic effects or to find biomarkers for drug addiction
and tolerance.

Analytical Techniques in Metabolomics
In principle, two major kinds of metabolomic analyses can be
applied—targeted and untargeted—which are in detail reviewed
elsewhere (Chen et al., 2007; Dettmer et al., 2007; Dunn,
2011; Monteiro et al., 2013; Zhang et al., 2016; Cuykx et al.,
2018; Ghanbari and Sumner, 2018; Kind et al., 2018). While
targeted analysis will focus on an a priori known number
of defined metabolites, untargeted metabolomics or discovery
metabolomics aims to capture all metabolomic information
in a sample. In the latter, features of interest are filtered
after data acquisition applying different uni- and multi-variate
statistical methods followed by their identification. A schematic
of an untargeted metabolomics workflow, the method of
choice for biomarker search, is given in Figure 2. A wide
variety of targeted and untargeted methods have already been
reported in the literature for the separation and quantification
of components belonging to the metabolome. However, it
was found that no single analytical platform is capable of
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capturing all metabolomics information in a single run (Dinis-
Oliveira, 2014). LC- and GC-MS, nuclear magnetic resonance
(NMR) spectroscopy, and LC with electrochemical detection
are all used (Ning et al., 2018), but the most widespread
analytical instruments utilized are MS and NMR spectroscopy.
The advantages and disadvantages of MS or NMR use within
the field of metabolomics have been extensively discussed
in corresponding reviews (Schlotterbeck et al., 2006; Pan
and Raftery, 2007). In summary, MS shows much better
sensitivity and resolution and the ability for high-throughput
applications, while NMR profits from a comprehensive coverage
of chemical species (Chen et al., 2007). NMR analysis certainly
provides several advantages in metabolome studies, however,
GC- and LC-MS platforms are more widely available in
forensic toxicological laboratories (Drummer, 2007; Maurer,
2010; Peters, 2011; Meyer et al., 2014). For introducing a
prepared biological sample into a mass spectrometer, GC,
LC, direct injection or capillary electrophoresis can be used
(Dettmer et al., 2007). In recent years, LC-MS techniques
gained importance having the advantage of simpler sample
preparation approaches compared to e.g., GC techniques
where one- or two-step derivatization is usually mandatory.
Avoiding numerous, tedious sample preparation steps can
reduce overall measurement variations and will result in more
reliable and comparable metabolomics data. Reversed-phase
(RP) methods using C18 stationary phases in combination
with mobile phases consisting of water (A) and methanol or
acetonitrile (B), with additional formic acid (FA), are often the
preferred choice due to their non-specific retention mechanism.
Although this method is powerful in separatingmany—especially
lipophilic metabolites such as steroids (Marcos et al., 2014)
or endocannabinoids (Pastor et al., 2014), use of this single
platform is non-optimal, lacking retention for polar metabolites
and resolution for many apolar metabolites. Hydrophilic liquid
interaction chromatography (HILIC), capillary electrophoresis,
and ion-pairing reversed-phase chromatography are solutions
often described in metabolomic applications to increase the
separation of polar metabolites (Cuykx et al., 2018). For
targeted analysis, all kind of MS devices, including triple
quadrupole instruments, can generally be applied. For untargeted
screening approaches, MS instruments with high-resolution
mass measurements, such as time-of-flight (TOF), quadrupole
TOF (qTOF) or Fourier transformation (FT) e.g., Orbitrap
mass spectrometers, are preferred. Generally, some kind of
MS/MS data acquisition, mostly based on data-dependent
acquisition (DDA), is used to generate further MS information
for identification. Data independent acquisition can increase
totality of MS/MS information, but at present cannot be handled
by many (commercial) software solutions for data analysis
(Boxler et al., 2018a). Knowledge of accurate masses provides
the basis for peak identification across different samples as it
allows for calculation of empirical formulae and facilitates feature
identification using online or commercially available databases
such as METLIN (Guijas et al., 2018), the Human Metabolome
Database (Wishart et al., 2007) (HMDB, V4.0), NIST (Linstrom
and Mallard, 2001), and Lipidblast (Kind et al., 2013) as well as a
priori unknown identification.

Quality Control and Compensation of
Variations in Untargeted Metabolomics
If no reference material is available for the metabolites of
interest—as will be the case in untargeted metabolome studies—
comparison between groups and/or conditions will be performed
on the basis of relative abundances. Reproducible measurements
thereby are a prerequisite for reliable data processing and
analysis. It is evident, that method validation in the classical
sense is impossible for untargeted metabolomics. Nevertheless,
quality control (QC) is essential and needs to be implemented
(Dunn et al., 2012; Cuykx et al., 2018). Different strategies—
at best in combination—are generally accepted: addition of
internal standards (IS) into each analyzed sample; continuous
measurement of system suitability tests (SST) over the whole
analytical batch containing a defined number of metabolites
ideally evenly distributed over the chromatographic run; and
inclusion of QC pool samples prepared from all experimental
samples, hence representing the average of the data set (Dunn
et al., 2012; Broadhurst et al., 2018). Further, randomization
of the samples at least for analysis is an important step
in untargeted metabolomics to prevent technical/instrumental
biases (Dunn et al., 2012).

Typically, all samples of one metabolome experiment—ideally
collected and stored under the same controlled conditions—will
be measured within the same batch in order to avoid bias caused
by sampling, storage or day to day variations in instrument
performance. Recently, Nielsen et al. performed an untargeted
metabolome experiment on a retrospective dataset collected
for forensic toxicology routine analysis. There, a subgroup
of samples positive for 3,4-methylenedioxymethamphetamine
(MDMA) was compared to a negative control group. Only
small retention time shifts were observed across all sample
chromatograms, despite the fact that data was collected over a
long period of time. Normalization by the NOMISmethod which
utilizes variability information from multiple IS compounds to
find an optimal normalization factor for each individual feature
(Sysi-Aho et al., 2007), also enabled the distinction between
biological variation from obscuring variation related to sample
preparation and ion source variation. The fact that MDMA
and its phase I and II metabolites were positively identified
and clearly up-regulated in MDMA users (specified by almost
all applied methods) proved successful overall data-analysis.
These findings suggest that analysis of retrospective data is
generally possible, e.g., if samples are initially collected in the
same sampling tubes, sample storage and preparation is highly
standardized, and routine methods are quality controlled as is
typically the case in routine forensic analysis (Nielsen et al., 2016).
Mollerup et al. successfully applied a similar strategy to search for
new markers/metabolites of valproic acid ingestion amenable to
positive electrospray ionization (ESI) (Mollerup et al., 2019).

Data Processing and Statistics in
Untargeted Metabolomics
Metabolomics platforms generate large and complex data
highlighting the need for appropriate data processing tools that
allow the preparation of chromatographic and spectral data for
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FIGURE 2 | Schematic of a typical untargeted metabolomics workflow including data analysis, feature detection (peak picking), statistical evaluation and

compound identification.

multivariate data analysis (Katajamaa and Oresic, 2007). Often
procedures like data condensation and reduction (by means
of centroiding and deisotoping mass spectra), chromatographic
alignment (to prevent misinterpretations due to retention time
variations), filtering (for removal of noise or background signals)
and peak recognition, and collection [by applying threshold
windows for mass (m/z) and retention time] are used in this
context. Details on different options of data processing can
be found e.g., in a recent publication of Cuykx et al. (2018).
To achieve minimal influence of systematic and sample biases
(e.g., degree of urine dilution), it is recommended to normalize
MS data either by the parameters of the whole dataset (e.g.,
total ion count, median ion count, etc.) or by the intensities
of multiple or single ISs (Sysi-Aho et al., 2007). Data of
biological origin is often skewed and commonly quantitative data
are mean-centered, log-transformed, and normalized (unless
absolute quantification is carried out). As every data processing
step (for example filtering, scaling, peak picking, missing value
imputations, and normalization) can have a significant impact
on the interpretation of experimental results, it needs to be
adequately described in the method sections (Yin and Xu, 2014;
Alonso et al., 2015).

Different kinds of statistical tests—uni- and multi-variate—
are usually performed for data interpretation. Univariate
tests (t-test; ANOVA) are straightforward and compare the
intensities of single features between different groups. While
the interpretation of these tests is very clear, the need for
multiple repetitions for hundreds of variables in metabolomic
studies increases the risk for detection of false positive
features (Broadhurst and Kell, 2006; Kim and van de Wiel,
2008). This should ideally be accounted for by applying false
discovery corrections (e.g., Bonferroni or Benjamini–Hochberg
correction). The most widely used unsupervised multivariate
technique in science is principal component analysis (PCA). It
projects the maximum variance of a multi-dimensional space
in principal components and summarizes the data set in a
limited number of components. PCA is mainly used as an

exploratory technique as it is unsupervised and hence does not
explicitly account for class-based separations. In contrast to this,
(orthogonal) partial least-square discriminant analysis [(O)PLS-
DA] is a supervised multivariate technique, which describes the
greatest variance to differentiate between experimental classes,
with the aim to find the metabolic patterns that are most
important for the classification. Based on S-plots or variable
importance in projection (VIP) values, the metabolites that
have a large impact on the projection are selected. Supervised
multivariate approaches are prone to overfitting to irrelevant or
noisy features. Therefore, cross-validation procedures need to be
carried out (Broadhurst and Kell, 2006; Gromski et al., 2014;
Cuykx et al., 2018).

APPLICATIONS OF METABOLOMICS FOR
FORENSIC (TOXICOLOGY) PURPOSES

As already stated above, the steadily increasing number of NPS
and general changes of the (il)legal drug market represent a
major challenge for forensic toxicology laboratories. Applying
metabolomics or metabolomics-related techniques might be
a beneficial alternative strategy to overcome some of the
resulting issues. In general, available literature on metabolomics
in the field of forensic toxicology can be grouped into
four different categories: (a) biomarker search by screening
for new (exogenous) drug metabolites applying metabolomics
techniques; (b) search for endogenous biomarkers indicative for
acute drug intake or sample manipulation; or (c) search for
endogenous biomarkers for addiction or to assess the severity
of intoxications. A last group (d) includes studies that aim
to elucidate the mechanisms of drug action, e.g., to improve
existing or establish new therapy options. While the studies
of the latter two groups were initially not designed to identify
biomarkers potentially improving analytical detection in forensic
toxicology, they might serve as a basis to further evaluate the
general applicability of metabolome changes as biomarkers. In
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the following, these 4 groups are discussed in detail and a
table for each group summarizes methodological and analytical
characteristics of the references discussed.

Metabolomics for Drug Metabolism
Studies
Knowledge on a drug’s biotransformation is of major importance
for a variety of questions. For urine screening approaches,
particularly if the parent compound itself remains undetectable
in urine specimens, effective detection of drug intake will only
be possible over one or several of its (unique) metabolites.
Usually, focusing on highly abundant/major metabolites will be
sufficient. However, in case of common major metabolites for
several structurally related compounds, other minor metabolites
might be necessary to finally prove intake of a particular drug.
Also, if metabolism studies are performed in other than human
species (e.g., rats or mice), investigation of minor metabolites in
these studies is very important, as different excretion patterns
in humans are likely. Hence, a minor metabolite in an animal
study could become a major metabolite for human excretion.
One major challenge in urine drug metabolism studies represents
the definite identification of xenobiotic metabolites considering
that urine contains a large variety of chemical species. Common
strategies to identify metabolites involve the use of processing
filters to exclude expected metabolites. For instance, typically
occurring mass differences derived from prevalent, described
metabolic reactions such as oxidation (+16) or demethylation
(−14) can be extracted in a targeted manner. Additionally,
thorough evaluation of MS/MS data or typical MS/MS patterns
can be the basis for structure elucidation of new metabolites
(Kim et al., 2018). However, the major disadvantage of these
strategies is their restriction to a priori known, typical changes.
More individual biotransformation e.g., dealkylation, hydrolysis,
peroxidation or structural rearrangements are typically not
covered (Guengerich, 2001; Chen et al., 2007; Kim et al., 2018).
Untargeted metabolomics techniques were used as an alternative
approach to detect new (uncommon) drug metabolites. A review
by Chen et al. extensively describes and discusses the use of
metabolomics in drug metabolism research (Chen et al., 2007).
An overview on DOAs or compounds of forensic interest
applying these techniques is given in Table 1.

Steuer et al. used an untargeted metabolome approach to
search for new biomarkers of gamma-hydroxybutyric acid (GHB)
intake. GHB’s use as a knockout drug in cases of drug facilitated
crimes makes it particularly important in forensic toxicology.
The detection of GHB and particularly differentiation between
exogenous intake and endogenous base levels remain challenging
because of its extremely short detection windows (only up to
12 h in urine) caused by a fast metabolism. In contrast to many
other DOAs, for GHB no metabolite has been identified so
far, that allows for longer GHB detection compared to using
the parent compound itself. Analysis of urine samples collected
4.5 h after GHB or placebo intake of a randomized, double-
blind, placebo-controlled crossover study in 20 men allowed
identification of novel GHB metabolites GHB carnitine, GHB
glycine, and GHB glutamate as exemplified in Figure 3. However,

more studies addressing quantitative values, pharmacokinetics,
and stability are demanded for a final conclusion on the routine
applicability of these markers (Steuer et al., 2018c). Mollerup
et al. performed an interesting omics-based retrospective analysis
to identify potential markers of valproic acid in blood that
should allow the detection of valproic acid intake using the
commonly applied positive ESI-MSmode. The antiepileptic drug
valproic acid represents an important compound in forensic
toxicological analysis, but can only be detected with negative
ionization techniques or by GC-MS (Mollerup et al., 2019). A
retrospective data evaluation of routinely measured samples on a
qTOF instrument in ESI positive mode were performed forming
a valproic acid positive group (determined by an additional
targeted valproic acid method) and a negative reference group.
The authors were able to identify eight potential (indirect) targets
for valproic acid (Mollerup et al., 2019).

Metabolomics for Biomarker Search of
Acute Drug Intake or Manipulation
Application of alternative screening methods not directly
targeting the analyte’s or its metabolite’s chemical structures
but e.g., aim on certain endogenous biomarkers, seem to be a
desirable approach that would facilitate the complex analytical
scenario to detect NPS or chemical adulteration. Different
strategies have been applied so far and are summarized in
Tables 2, 3: (a) search for analytical, endogenous markers
after a certain stimulus such as drug intake; (b) finding
markers which derive from a common drug preparation,
e.g., herbals used for “spice” products or non-physiological
ingredients of artificial urine products; (c) search for
endogenous markers that can level out inter-individual
variations; (d) search for markers of urine manipulation
attempts; and (e) identification of stable/unchanged markers
that can proof integrity of a urine sample. Overall, data on
such approaches for actual NPS are scarce and only few
studies are available on common DOAs. Such studies—
particularly in humans require highly controlled conditions
which are of course ethically restricted for illegal drugs in
many countries.

Search for Analytical, Endogenous Biomarkers of

Drug Intake
New strategies for GHB detection and differentiation between
endogenous and exogenously consumed or administered GHB
is still of high interest in forensics. Also, metabolomic studies
were recently performed in order to find endogenous markers
that might be able to prolong the detection window of
GHB (Palomino-Schatzlein et al., 2017; Steuer et al., 2018c).
Palomino-Schatzlein et al. used an NMR-based metabolomics
approach to identify changes caused by GHB in a controlled
administration study in human urine. As indicated by urine
OPLS-DA analysis and S-plots derived from recorded 1H
metabolic data gave an indication for highest influence on
separation for GHB itself, glycolate and succinate. Glycolate
as well as succinate have been previously associated with the
metabolism of endogenous GHB. Further evaluation of the
potential usefulness of succinate and glycolate as surrogate
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TABLE 1 | Summary of studies applying untargeted metabolomics approaches for the elucidation of xenobiotic drug metabolism.

Parent compound Newly identified

metabolites

Experimental

setup

Sample

preparation

Analytical conditions Data evaluation Reference

CBD HO-CBD (3 isomers)

Di-HO-CBD

CBD oxidation

3
′′
-carboxy-dinorCBD

2
′′
-carboxy-trinorCBD

Untargeted

Rat brain

Placebo vs. CBD

n = 5 per group

Homogenization

SPE for

phospholipid removal

LC-HRMS

Poroshell 120 EC-C18

(100 × 3.0mm, 2.7µm)

H2O, 0.1% FA

ACN, 0.1% FA

ESI pos/ne.g.,-qTOF

Fullscan

DDA auto MS/MS function

XCMS online

Metaboanalyst 3.0

Citti et al., 2018

GHB GHB-carnitine

GHB-glycine

GHB-glutamate

Untargeted

Human urine

Controlled

administration

Placebo vs. GHB

Crossover design

n = 19 per group

Authentic samples

n = 10

Dilution/filtration LC-HRMS

XSelect HSST RP-C18

(150mm × 2.1mm, 2.5µm)

10mM NH4COOH, 0.1% FA

MeOH, 0.1% FA

Merck SeQuant ZIC HILIC

(150mm × 2.1mm, 3.5µm)

25mM NH4Ac, 0.1% HOAc

ACN, 0.1% HOAc

ESI pos/neg-qTOF

Fullscan

Additional run in MS/MS

mode (DDA)

Progensis Qi

Metaboanalyst 4.0

Steuer et al., 2018c

Sildenafil Reduced sildenafil

Deethylation/oxidation

Deethylation/

demethanamine

Demethylation/oxidation

Demethylation/oxidation

Mono-oxidation

untargeted

Human liver

microsomes

With/without

cosubstrates

n = 3 per group

PP LC-HRMS

Kinetex C18

(150 × 2.1mm, 2.6µm)

H2O, 0.1% FA

ACN, 0.1% FA

ESI pos/Orbitrap

Fullscan

DDA MS/MS

MZmine 2

SIMCA 14.0

STATISTICA 7.0

Kim et al., 2018

Valproic acid 3-hydroxy-4-en-valproic

acid

Valproylcarnitine

6 unidentified metabolites

Untargeted

Human whole

blood

Exploration data

set

n = 68 (28%

valproic acid pos)

Test set

N = 37 (32%

valproic acid pos)

PP LC-HRMS

Acquity HSS C18

(150 × 2.1mm, 1.8µm)

5mM NH4COOH, FA (pH 3)

ACN, 0.1% FA

ESI pos /qTOF

MSE mode (DIA)

UNIFI

Python 3.6

Mollerup et al., 2019

biomarkers of GHB intake was performed by quantitative
1H-NMR experiments, checking for time-related changes of
their normalized relative concentrations (at −10min and 1,
2, 6, 14, 20, 24, and 30 h postdose). As demonstrated in
Figure 4, GHB and succinate concentrations were shown to
drop to baseline levels already after 6 h post intake, while
glycolate concentration declined at a much slower rate with
small differences compared to baseline even after 24 h. In
this context, glycolate has been discussed by the authors as a
potential biomarker exceeding the window of detection of GHB
itself (Palomino-Schatzlein et al., 2017). A similar study using
HRMS based metabolomics on endogenous changes in urine
after controlled GHB administration in humans was recently
published by Steuer et al. Next to the identified conjugates
of GHB with carnitine and amino acids, in accordance with
the former study, significant changes in succinylcarnitine and
glycolate could be observed in samples collected (only) 4.5 h
after GHB intake. While significant differences (in controlled,

paired samples, placebo vs. GHB intake) could be observed
(Figure 3), the authors considered the observed increases in
glycolate, succinate or succinylcarnitine as insufficient to provide
reliable proof of GHB intake under highly variable inter-
individual physiological conditions (Steuer et al., 2018c). Despite
the fact, that other DOAs such as methamphetamine (MA)
show better pharmacokinetic properties and can be easily
measured over longer time frames in biological matrices, there
is a certain interest in alternative (indirect) markers of their
consumption. For instance, Shima et al. used an untargeted
metabolomics approach with GC-HRMS for the analysis of
rat plasma and urine. While their primary objective was to
elucidate the underlying mechanism of several intoxication
effects, they also evaluated the usefulness regarding indirect
analytical detection of MA intoxication. The study proposed the
following endogenous compounds to be considered as potential
markers of MA intoxications: 5-oxoproline, saccharic acid,
uracil, 3-hydroxybutyrate (3-HB), adipic acid, glucose, glucose
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FIGURE 3 | Box plots for promising analytical targets of GHB consumption representing observed changes between placebo and GHB intake [shown as analyte peak

area to creatinine peak area ratios (n = 19 each)]. Statistical evaluation was carried out using a paired t-test (p < 0.05; ****p < 0.0001). Reprinted (adapted) with

permission from Steuer et al. (2018c). Copyright 2018, Wiley.

6-phosphate, fructose 1,6-bisphosphate, and tricarboxylic acid
(TCA) cycle intermediates like fumarate (Shima et al., 2011).
Typical changes observed in TCA cycle intermediates are
exemplified in Figure 5. However, as already discussed above,
it remains questionable whether or not these compounds will
actually serve as sufficient discriminants in random urine
samples. Furthermore, the changes in the identified endogenous
compounds are most likely not specific for GHB or MA as
will be in detail discussed under section Current Limitations
and Discussion.

Search for Markers Which Derive From a Common

Drug Preparation
Instead of focusing on the DOA or NPS itself, another
promising approach might target common base products for
drug preparations. Such a strategy was pursued in order to
find markers for herbal mixtures, which act as the herbal
base for “spice” products. Data were obtained with an
innovative untargeted MS metabolomics approach in human
saliva after smoking of six natural herbal components (Canavalia
maritima, Leonurus sibiricus, Althaea officinalis, Turnera diffusa,
Verbascum Thapsus, and Calendula officinalis). Combined with
appropriate statistical analysis, two markers [scopoletin and
N,N-bis(2-hydroxyethyl)dodecylamine] could be highlighted as
indicated in the S-plot in Figure 6 and structurally elucidated.
The ratio of marker 1 over marker 2 allowed the differentiation
of non-smokers from herb consumers. Of course the current
data still needs to be considered as preliminary, but nevertheless
appears promising for further studies concerning time frames

and changes, significance of the markers (e.g., their role in the
herbal blends), method validation, etc. (Bijlsma et al., 2018).

Similar to the focus on herbal constituents instead of active
ingredients, markers for artificial or “fake” urine products were
evaluated. Goggin et al. aimed to discriminate fake urine samples
from authentic ones through identification of unique substances
present only in commercially available synthetic urine specimen
and unexpected in biological samples. Benzisothiazolinone (BIT)
and ethylene glycols [triethylene glycol (E3G), tetraethylene
glycol (E4G)] were shown to identify a sample as being
non-biological (Goggin et al., 2017). Other patterns of (high
molecular) polypropylene glycols identical to those of purchased
fake urine samples were identified by Kluge et al. (2018).

Search for Endogenous Biomarkers Leveling Out

Inter-individual Variation
A large obstacle in interpretation, e.g., for GHB markers such as
GHB-glucuronide or GHB-sulfate is their high inter-individual
variation. This is one of the major issues that make distinction
between GHB consumption vs. GHB control group via a defined
cut-off level nearly impossible. In sports doping testing, analyte
specific normalization is a well-established method, for instance
for testosterone, to find concentrations above the expected
physiological limits. Here, the testosterone concentration is
evaluated not only as an absolute concentration level but
additionally as the ratio to the epitestosterone concentration
(Mareck et al., 2008). Similar to the strategies applied in
doping testing, Piper et al. aimed to use an MS metabolomics-
based approach to screen a reference population for possible
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TABLE 2 | Summary of studies applying metabolomics for biomarker search of acute drug intake or manipulation.

Parent

compound

Changed

endogenous

metabolites

Experimental setup Sample

preparation

Analytical conditions Data evaluation Reference

MA 5-oxoproline

Saccharic acid

Uracil

3-hydroxybutyrate

Adipic acid

Glucose

Glucose-6-

phosphate

Fructose

1,6-bisphosphate

TCA

cycle intermediates

Untargeted

Rat plasma and urine

MA vs. control

n = 6 per group

LLE

Derivatization

CH3-O-NH2

MSTFA

GC-HRMS

CP-SIL 8

(30m × 0.25mm i.d.,

0.25-um)

He

TOF

CE-MS/MS

FunCap-CE type S

50mM NH4Ac (pH9)

QTrap

MetAlign

SIMCA-P +

Shima et al., 2011

GHB glycolate

succinate

creatinine

Untargeted

Human urine

Controlled

administration

Before/after design

n = 12 per group

Lyophilization NMR

Bruker AVANCE II 600

14.1 T

1D 1H NMR

2D 1H-1H COSY

2D 1H-1H TOCSY

2D 1H- 13C HSQC

2D 1H-13C HMBC

SIMCA 14

Metaboanalyst

Palomino-Schatzlein

et al., 2017

GHB b-citryl

glutamic acid

Untargeted

Human urine

Random GHB and

reference samples

n = 3 GHB

n = 100 reference

LC-HRMS

Eclipse XDB C18

(150 × 4.6mm, 5 um)

H2O, 0.1% FA

ACN, 0.1% FA

ESI pos/neg-qTOF

Agilent Profinder

Agilent Mass

Profiler

Professional

R version 2.11.1

Piper et al., 2017

GHB Glycolate

Succinylcarnitine

Untargeted

Human urine

Placebo vs. GHB

controlled, crossover

n = 19 each

Authentic samples

n = 10 GHB

n = 20 control

Dilution/filtration LC-HRMS

XSelect HSST RP-C18

(150mm × 2.1mm,

2.5µm)

10mM NH4COOH, 0.1%

FA

MeOH, 0.1% FA

Merck SeQuant ZIC

HILIC (150mm ×

2.1mm, 3.5µm)

25mM NH4Ac, 0.1%

HOAc

ACN, 0.1% HOAc

ESI pos/neg—qTOF

Fullscan

Additional run in MS/MS

mode (DDA)

Progensis Qi

Metaboanalyst 4.0

Steuer et al., 2018c

Synthetic

cannabinoids/

herbal blends

Scopoletin

N,N-bis

(2-hydroxyethyl)

dodecylamine

Untargeted

Human saliva

Tobacco vs. 6 different

herbal mixtures

n = 3 per group

PP LC-HRMS

CORTECS® C18

(100 × 2.1mm, 2.7-µm)

H2O, 0.01% FA

MeOH, 0.01% FA

ESI pos/qTOF

MassLynx

XCMS in R

EZinfo 2.0

Bijlsma et al., 2018

endogenous compounds correlating significantly with GHB-
glucuronide and GHB-sulfate changes to normalize their urinary
concentrations (Piper et al., 2017). Beta-citryl glutamic acid was
identified as the most promising candidate for normalization.
The ratio between GHB-glucuronide and beta-citryl glutamic
acid indicated high correlation in the extraction pattern for two
tested chronical GHB consumers. On the other hand, a first-time
GHB user provided a completely different profile (Piper et al.,

2017). Further research on the suggested approach especially
with higher numbers of GHB positives will be necessary prior to
final evaluation.

Search for Markers of Urine Manipulation Attempts
An additional question addressed by metabolomics-like
approaches was the identification of endogenous biomarkers
or markers formed from those as indirect indicators for
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TABLE 3 | Summary of studies applying metabolomics for biomarker search of urine manipulation attempts.

Investigated

matrix

Changed endogenous

metabolites

Experimental setup Sample

preparation

Analytical conditions Data evaluation Reference

Artificial urine Urine integrity marker:

Phenylalanine

Tryptophan

Propionyl-carnitine

Butyryl-carnitine

Isovaleryl-carnitine

Hexanoyl-carnitine

Heptanoyl-carnitine

Octanoyl-carnitine

Indoleacetylglutamine

Phenylacetylglutamine

Marker for artificial urine:

Tetrapropylene glycol

Pentapropylene glycol

Hexapropylene glycol

Heptapropylene glycol

Octapropylene glycol

Nonapropylene glycol

Decapropylene glycol

Undecapropylene glycol

Untargeted acquisition

Targeted data

evaluation

Random human Urine

n = 550

PP LC-MS/MS

EC100/3 Nucleoshell

RP18plus

(100mm × 2.1mm;

2.7µm)

10mM NH4COOH, 0.1%

FA

ACN, 0.1% FA

ESI pos/Ion trap

DDA MS n

TF ToxID 2.1.1

Library

assisted identification

Kluge et al., 2018

Artificial urine BIT

ethylene glycols

(E3G, E4G)

Untargeted

Artificial urine products

Artificial vs. authentic

n = 8

Authentic urine

samples

n = 4,000

Dilution LC-HRMS

Waters ACQUITY® HSS

C18

(150 × 2.1mm, 1.8µm)

5mM NH4COOH

ACN

ESI pos/qTOF

Manual

data comparison

Goggin et al., 2017

Marker for

chemical

urine adulteration

Acetylneuraminic acid

dimethyllysine

Dimethyluric acid

Glutamine

Histidine

Methylhistidine

Methyluric acid

Trimethyllysine

Uric acid

5-HO-isourate

5-Hydroxy-2-oxo-4-ureido-

2,5-dihydro1H-imidazole-5-

carboxylate

Imidazole lactate

Methylimidazole lactate

Untargeted

Human urine

Untreated vs. treated

n = 10 each

Targeted marker testing

Authentic urine

samples

n = 100

PP LC-HRMS

XSelect HSST RP-C18

(150mm × 2.1mm;

2.5µm)

10mM NH4COOH, 0.1%

FA

MeOH, 0.1% FA

ESI pos/qTOF

Full scan

DDA MS/MS

XCMSPlus

Metaboanalyst 3.0

Steuer et al., 2017

Steuer et al., 2018a,b

chemical urine adulteration. An ideal time- and cost-efficient
workflow to test for urine adulteration—particularly for high
throughput analyses—would allow integration of adulteration
testing in the same analytical run applied for drug screening
or quantification. Considering the chemical property of the
adulterant to oxidize a drug and thereby cause massive decreases
in sensitivity (until its potential un-detectability), oxidation of
other (endogenous) urinary constituents appears likely as well.
In contrast to classic discovery metabolomics, where changes
in physiological pathways are evaluated, this approach aimed
to identify changes caused by in vitro manipulation/oxidation
of urine samples outside the body. Nevertheless, the applied
workflows were exactly the same as in classical metabolome
studies. In a first untargeted approach it was possible to identify
several potential biomarkers exemplified for adulteration

attempts with KNO2 using HRMS (Steuer et al., 2017). Further
targeted metabolome studies utilizing a validated method for
the selected markers provided promising results for uric acid
(specificity 1.0, sensitivity 0.9) and two of its oxidation products,
indolylacryloylglycine (specificity 0.9, sensitivity 1.0), and
acetylneuramic acid as markers for KNO2 (Steuer et al., 2018a)
and four other chemical adulterants (Steuer et al., 2018b).

Identification of Stable/Unchanged Markers
In contrast to classic metabolomics studies, a differing approach
was conducted to identify stable markers in a large cohort
of samples to differentiate treated or changed samples from
control samples. For instance Goggin et al. and Kluge
et al. defined and tested a number of endogenous urinary
metabolites to accurately identify a tampered urine sample
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FIGURE 4 | Boxplots of normalized relative concentrations of GHB, glycolate, and succinate at different time points after GHB-intake. p-values from ANOVA are

indicated. Reprinted (adapted) with permission from Palomino-Schatzlein et al. (2017). Copyright 2017, American Chemical Society.

FIGURE 5 | Anionic metabolites identified in a 0–24 h urine samples using CE-MS. *p < 0.05, **p < 0.01 methamphetamine (MA) vs. saline (SAL). Reprinted

(adapted) with permission from Shima et al. (2011). Copyright 2011, Elsevier.

e.g., an artificial urine (Goggin et al., 2017; Kluge et al.,
2018). For example, detection of less than six markers out of
initially 10 present in authentic urine samples with a likelihood
of >95% (phenylalanine, tryptophan, propionyl-carnitine,
butyryl-carnitine, isovaleryl-carnitine, hexanoyl-carnitine,
heptanoyl-carnitine, octanoyl-carnitine, indoleacetylglutamine,
phenylacetylglutamine) could be considered as a hint for urine
adulteration (Kluge et al., 2018).

Metabolomics for Biomarker Search of
Drug Addiction
Metabolomics combined with DOAs did not only focus on
biomarkers indicating acute drug consumption but also on
identification of hints for drug addiction, the severity of drug
addiction or the interpretation of the severity of a given
intoxication. While these studies certainly do not help in terms
of new strategies for NPS detection, they can be useful in
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FIGURE 6 | (A) Representation of all features from OPLS-DA, shown as S-plot. Marker features are indicated in squares. (B) Boxplot depicting peak area ratios

between marker 1 and marker 2 in saliva samples; separated as blank, after herb smoking and after tobacco smoking (n = 24, 18, 6, respectively). Reprinted

(adapted) with permission from Bijlsma et al. (2018). Copyright 2018, Springer.

interpretation of clinical or forensic analytical results. Currently
available literature focused on cocaine, crack, heroin, and MA.
An overview of the analytical methods used and potential
markers identified is given in Table 4.

For example, Costa et al. performed 1H NMR-based
metabolomics analysis of crack users’ serum samples aiming to
investigate whether drug dependency changes the endogenous
profile and to further identify potential biomarkers that might
be linked to brain dysfunction. The rationale of the study was
the current lack of reliable diagnostic tools for crack dependency
that at present mainly relies on self-reporting, medical history
and physical examination. Early diagnosis should, however, result
in better treatment outcomes. Serum samples of two groups
were compared, crack users on the one hand against healthy
individuals with similar age, gender and body mass index on
the other hand. Differences were observed particularly in lactate,
acylcarnitines, histidine, tyrosine, and phenylalanine which
according to the author’s opinion could be linked to altered brain
functions. PLS-DA obtained 89.8% accuracy in differentiation of
crack users from healthy controls. However, these observations
must be considered cautiously due to confounding factors such
as medical treatment of some crack users and the small sample
size of drug users examined in general (Costa et al., 2018).

An untargeted metabolome analysis using GC-MS in rats

receiving heroin for 10 days followed by a withdrawal of 4

days indicated increased myo-inositol-1 phosphate levels and
decreased threonate concentrations in serum. In contrast to other
biomarkers observed, these levels did not restore to baseline even
after heroin withdrawal for 4 days. Therefore, these compounds
were discussed as potential indicators of heroin abuse even when
the consumer has been abstinent from heroin for some days.
An even more sensitive marker would be the ratio of myo-
inositol-1-phosphate to threonate. The drug morphine, which is
also the main metabolite of heroin, interestingly did not result

in the same changes as described for heroin itself. This, in
the author’s opinion, might potentially allow a differentiation
of heroin addiction from morphine dependency (Zheng et al.,
2013). However, so far, these findings have never been confirmed
in larger (human) studies.

As already described in the Search for Analytical, Endogenous
Biomarkers of Drug Intake, Shima et al. identified 5-oxoproline,
saccharic acid, uracil, 3-HB, adipic acid, glucose, glucose
6-phosphate, fructose 1,6-bisphosphate, and TCA cycle
intermediates like fumarate, as potential biomarkers helpful
to assess the severity of MA-induced intoxications (Shima
et al., 2011). A follow-up study on chronic MA intake and MA
addiction to proof the initial findings to be specific for acute MA
toxicity resulted in quite different results compared to previously
found acute effects. As a conclusion, different metabolomic
changes can be observed depending on the MA tolerance—either
acute or chronic consumption. MA tolerance after chronic
consumption could have resulted in several adaptations with no
significant changes in the metabolite levels (Zaitsu et al., 2014).

Metabolomics to Study Acute and Chronic
Toxicity Mechanisms
The last and major group of currently available metabolome
approaches linked to DOAs include studies primarily aiming to
elucidate the mechanisms of drug action. While these studies
were not designed to identify biomarkers, they might serve as a
basis to further evaluate the general applicability of metabolome
approaches for biomarker discovery. For example, they might
provide first hints or estimates to assess the specificity for
a particular DOA, the time frames of observed effects or
confounding factors caused by other drugs or diseases. Observed
metabolome changes, study design and analytical conditions
of these studies are summarized in Table 5. A good summary
can also be found in three recent review articles on DOAs
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TABLE 4 | Summary of studies applying metabolomics for biomarker search of drug addiction.

Parent

compound

Changed endogenous

metabolites

Involved biological

pathways

Experimental setup Sample prep Analytical

conditions

Data

evaluation

Reference

Cocaine N-methylserotonin

Guanine

Hypoxanthine

Anthranilate

Xanthine

Tryptophan metabolism

Purine metabolism

Targeted

Human plasma

Cocaine-dependent

(n = 18) vs. healthy

controls (n = 10)

PP Electrochemical

detection

electrochemical

array

platform LCECA

R Patkar et al., 2009

Crack Lactate

Long chain fatty acids

acylated carnitines

Histidine and tyrosine

Nutritial behavior Untargeted

Human serum

Crack-dependent vs.

control group

n = 44 per group

Dilution NMR
1H-NMR

(1D, 600.173 MHz)

T2-edited spectra

of 1H NMR

HSQC

experiments for
1H–
13C correlations

Costa et al., 2018

Heroin myo-inositol-1-P

threonate

9-z-hexadecenoic acid

hydroxyproline

Untargeted

Rat serum/urine

Control vs.

heroin-treated

n = 6 per group

PP

Derivatization

CH3-O-NH2

MSTFA

GC-MS

DB5-MS

(10m × 0.18mm)

He

EI/TOF

Fullscan

SIMCAP 11 Zheng et al., 2013

MA Acute: Alanine

Glycine

Ornithine

Asparagine

Valine

Isoleucine

Leucine

Serine

Proline

Threonine

Methionine

Citrulline

Tryptophan

Glutamine

Glutamate

Asparate

Lysine

Citrate

2-ketoglutarate

Succinate

Fumarate

Malate

Pyruvate

Long term (5 days):

Alanine

Glycine

Lysine

Threonine

Ornithine, hydroxyproline

citrulline

Fumarate

Pyruvate

Succinate

Citrate

3-hydroxybutyrate

5-hydroxyindoleacetic

2 days after withdrawal

Isoleucine

Palmitic acid

Creatinine

Citrate

2-ketoglutarate

Lactate

Energy metabolism

Amino acid metabolism

TCA cycle

Lipids and free

fatty acids

Untargeted

Rat serum/urine

Control vs. MA-treated

n = 6 per group

PP

Derivatization

CH3-O-NH2

MSTFA

GC-MS

RTx-5MS column

(30m × 0.25mm)

He

EI

Fullscan

SIMCA-P 13 Zheng et al., 2014
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and metabolomics (Dinis-Oliveira, 2014; Zaitsu et al., 2016;
Ghanbari and Sumner, 2018). For a more detailed discussion
on the mechanistic effects, the interested reader is referred to
these works. The current review will just use results from the
publications that appear helpful in the context of biomarker
detection and evaluation of their general applicability.

As can be seen in Table 5, certain changes in endogenous
compounds are detected for all studied DOAs. However, the
observed changes, albeit statistically significant, appear rather
small (Figure 5), particularly when they should allow for
differentiation in a non-controlled setting such as drug testing
of random subjects. Furthermore, very often similar compounds
or in general the same pathways e.g., the energy metabolism or
the TCA cycle, are affected. From a pharmacological point of
view this is not surprising. As stated e.g., by Ning et al. neuronal
activity is extremely energy demanding, and the brain energy
supply requires oxidative metabolism of glucose in mitochondria
and demands lactic acid from glycolytic processes (Ning et al.,
2018). However, albeit e.g., MA and GHB act at different
pharmacological targets both were shown to influence succinate
concentrations (Zheng et al., 2014; Palomino-Schatzlein et al.,
2017). It remains to be determined whether or not the observed
changes might ever be able to specifically indicate consumption
of a particular DOA/NPS or substance groups or drug use in
general. Most likely, changes of single endogenous metabolites
will be too unspecific for a certain drug or even drug class.
Evaluating fingerprints or changes in particular metabolic
pathways appear more promising, but currently lack sufficient
studies to support or reject this hypothesis.

Also, other confounding factors need to be considered such as
underlying diseases. For example, Mannelli et al. found elevated
levels of N-methylserotonin in plasma of human opioid abusers.
N-methylserotonin is an analog to serotonin and similar to the
derivative bufotenine, both are known for their hallucinogenic
and psychotropic effects. However, also in terms of psychiatric
disorders associated with hallucinations and altered perceptions
elevated levels of e.g., serotonin can be found (Takeda, 1994;
Takeda et al., 1995; Mannelli et al., 2009).

The kind and state of drug consumption of course
also influences the outcome on the metabolome. Addiction,
withdrawal and relapse can also change the metabolome in partly
similar ways as acute drug consumption (Zheng et al., 2013,
2014). In some studies, however, drug addiction/chronic drug use
may change and/or eliminate the observed effects as e.g., shown
for MA (Zaitsu et al., 2014) (see Metabolomics for Biomarker
Search of Drug Addiction).

Well-designed controlled studies in rats can give first
insights into the duration of the metabolome effects. For
example, multivariate analysis (PLS-DA plots) showed that after
withdrawal from MA for 2 days (after initial 5 days intake)
metabolite values of those rats clustered close to the values of the
control group, yet not overlapping with the control data. This
is suggestive of an efficient restoration of urine metabolites to
baseline levels after withdrawal (Zheng et al., 2014). In contrast
to MA, metabolic changes induced by heroin recovered more
slowly and were more pronounced (Zheng et al., 2013, 2014).
For instance, heroin withdrawal for 4 days did neither restore

elevated serum myo-inositol-1phosphate levels nor decreased
serum threonate to values prior to heroin consumption. Similar
findings were observed for 9-(z) hexadecenoic acid in serum and
hydroxyproline in urine with little effect of heroin withdrawal on
their concentration levels (Zheng et al., 2013).

The currently available knowledge is of course too preliminary
to draw any final conclusion. It definitely needs to be considered
that all studies mentioned here were performed for a totally
different aim. An overall, critical discussion on these studies as
well as the few studies performed for actual biomarker research
will be provided in section Current Limitations and Discussion.

CURRENT LIMITATIONS AND DISCUSSION

Metabolomics to identify potential biomarkers that can act as
indirect indicators of drug consumption would be an interesting
approach to tackle the problem of the increasing number of
new drugs flooding the market. At present, only few studies
have been performed, nevertheless showing promising first
results to identify analytical biomarkers by metabolomics-related
techniques. However, far more studies will be necessary for a
final conclusion on the general suitability of metabolomics in
drug testing. From the current state of knowledge several critical
points and limitations can be deduced that shall be discussed in
the following and might help to effectively plan further studies.

From the analytical point of view, untargeted analysis is
considered most promising to identify a priori unknown
metabolites and pathways which are reflected in the current
literature (see, Tables 1–5). While these approaches cover a
broad range of compounds allowing identification of a number
of different pathways, they lack sensitivity particularly for low
abundant metabolites. Up to now, targeted studies considering
first results from untargeted analysis are rarely performed but
might help to identify more reliable biomarkers as shown in
recent studies by Olesti et al. They applied targeted metabolome
approaches mainly focusing on neurotransmitters to successfully
predict the pharmacological profile of NPS (Olesti et al.,
2019a,b). Also improvement of statistical methods, commercial
or customized software solution including e.g., deep-learning
approaches (Asakura et al., 2018; Grapov et al., 2018) will
improve marker finding in the future.

Up to now many studies were performed with rather small
sample sizes and lack comparability in terms of used species,
matrices, experimental set-up, time-frames, etc. This limits
common conclusions of the available results. For example for
MA, contradictory results were obtained by two independent
studies. While associations with the TCA cycle (fumarate, malate,
succinate) was found in both studies, one study found reduced
levels in comparison to controls and interpreted this as a
reduction in energy metabolism (Shima et al., 2014), whereas in
the second study levels were found to be increased (McClay et al.,
2013). Most likely these differences can be related to different
study set-ups in terms of administered doses and/or time and
duration of administration and subsequent sample collection. As
highly controlled conditions are mandatory to actually identify
potential biomarkers, the majority of the current research was
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done in animal models. Data on how the results transfer to
humans are still missing.

Finally, the metabolome is highly variable which means that
many confounding factors, e.g., from food or exercise, but also
from other drugs, prescription drugs and underlying diseases will
need to be evaluated. At present, there are several untargeted
metabolome studies but follow-up studies actually proving
the suitability of the proposed markers under inter-individual
variations in routine work in terms of sensitivity/specificity
are largely missing. However, if actually performed, general
suitability of markers identified in global approaches could be
confirmed (Steuer et al., 2018a; Mollerup et al., 2019).

CONCLUSION

In conclusion, metabolomic approaches possess, in general,
great potential for detection of biomarkers indicating drug
consumption. It is also an interesting approach in drug
metabolism research (xenometabolomics)—particularly for
seldom or unusual metabolites. Changes observed so far on

the endogenous level currently appear rather small and partly
unspecific andmight be insufficient on the level of single markers
to reliably prove drug consumption. But, most importantly, more
studies, including more sensitive targeted follow-up analyses
as well as multivariate statistical models or deep-learning
approaches are strongly needed to fully explore the potential of
omics science in DOA testing. Future studies need to be highly
controlled with reasonable sample sizes and require, in the
authors opinion, targeted, proof-of-concept studies including
the evaluation of confounding factors, and sensitivity/specificity
assessment subsequent to the initial global profiling approaches.
Progress in analytical techniques as well as in deep learning
approaches will facilitate the more and more complex data
evaluation necessary for studies including huge numbers of
analytes and samples.
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