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The present paper examines the viability of a radically novel idea for brain–computer

interface (BCI), which could lead to novel technological, experimental, and clinical

applications. BCIs are computer-based systems that enable either one-way or two-way

communication between a living brain and an external machine. BCIs read-out brain

signals and transduce them into task commands, which are performed by a machine.

In closed loop, the machine can stimulate the brain with appropriate signals. In recent

years, it has been shown that there is some ultraweak light emission from neurons within

or close to the visible and near-infrared parts of the optical spectrum. Such ultraweak

photon emission (UPE) reflects the cellular (and body) oxidative status, and compelling

pieces of evidence are beginning to emerge that UPE may well play an informational role

in neuronal functions. In fact, several experiments point to a direct correlation between

UPE intensity and neural activity, oxidative reactions, EEG activity, cerebral blood flow,

cerebral energy metabolism, and release of glutamate. Therefore, we propose a novel

skull implant BCI that uses UPE. We suggest that a photonic integrated chip installed on

the interior surface of the skull may enable a new form of extraction of the relevant features

from the UPE signals. In the current technology landscape, photonic technologies are

advancing rapidly and poised to overtake many electrical technologies, due to their

unique advantages, such as miniaturization, high speed, low thermal effects, and large

integration capacity that allow for high yield, volume manufacturing, and lower cost.

For our proposed BCI, we are making some very major conjectures, which need to

be experimentally verified, and therefore we discuss the controversial parts, feasibility

of technology and limitations, and potential impact of this envisaged technology if

successfully implemented in the future.

Keywords: ultraweak photon emission, brain-computer interface, photonic interferometry, pattern recognition,

integrated photonic circuit, on-chip photon detection, quantum technology
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1. INTRODUCTION

Brain–computer interface (BCI), or generally brain–machine
interface (BMI), is a computer (machine)-based system that
maps brain signals into computer (machine) commands or
actions. This mapping may involve intermediate analysis and
processing. Moreover, a closed-loop BCI is also possible, whereby
the brain is stimulated via relevant neuro-bio-signals. The most
common brain signals used in BCIs are electromagnetic, that is,
of classical/non-quantum origin. Herein, we turn attention to
an exciting and emergent literature that reveals the brain also

emits “photons,” which are quanta of electromagnetic waves.
The intensity of these emissions varies from a few photons
to several hundred photons per second per square centimeter,
mainly with spectral range of 200–800 nm (Salari et al., 2015).
A caveat is that most single-photon sensitive detectors used in
the experiments were only sensitive up to about 900 nm. Hence,

observations with detector platforms that are sensitive in the
900–1,600 nm range, such as superconducting nano-wire single-
photon detectors (SNSPDs) (Marsili et al., 2013), which also can
be shaped as arrays (Wollman et al., 2019), may reveal hidden
obscured about the UPE light.

The body of evidence for ultraweak photon emission

(UPE) is fast growing and is being independently observed
by different scientific communities/labs. Due to infancy of
the research field, many different terms are used to describe
this phenomenon, including biophotons, ultraweak photon
emission, ultraweak bioluminescence, self-bioluminescent
emission, photoluminescence, delayed luminescence, ultraweak
luminescence, spontaneous chemiluminescence, ultraweak glow,
biochemiluminescence, metabolic chemiluminescence, dark
photobiochemistry, etc. (Salari et al., 2017; Esmaeilpour et al.,
2020). In this report, we will henceforth adopt the term UPE. It
has been evidenced that neurons and other living cells (e.g., in
plants, animals, and humans) have spontaneous UPE (Cifra and
Pospisil, 2014; Pospisil et al., 2014) mediated via their metabolic
reactions associated with physiological conditions. In 1967, it
was first reported that electric pulses in neurons can induce weak
photon emission (in the visible region of the EM spectrum) due
to chemical reactions accompanying pulses, while a dead-neuron
does not exhibit any photon emission (Artem’ev et al., 1967).
In 1984 (Imaizumi et al., 1984) and 1985 (Suzuki et al., 1985),
it was demonstrated experimentally that after the induction
of hypoxia states in a rat brain, UPE increases. Isojima et al.
(1995) showed that there is a correlation between the intensity
of UPE and neural metabolic activity in the rat hippocampal
slice. In 1997, Zhang et al. (1997) revealed that the intensity of
UPE from intact brains isolated from chick embryos was higher
than the medium in which the brain was immersed. In 1999,
Kobayashi et al. (1999b) detected spontaneous UPE in the rat’s
cortex in vivo without adding any chemical agent or employing
external excitation and found that the UPE correlates with the
electroencephalography (EEG) activity, cerebral blood flow,
and hyperoxia, and the addition of glutamate increases UPE,
which is mainly originated from the energy metabolism of the
inner mitochondrial respiratory chain through the production
of reactive oxygen species (ROS). Kataoka et al. (2001) detected

spontaneous UPE from cultured rat cerebellar granule neurons
in the visible range and demonstrated that the UPE depends on
the neuronal activity and cellular metabolism. Then, a fascinating
experimental discovery by Sun et al. revealed that photons can
be conducted along neuronal fibers. In 2011, Wang et al. (2011)
show-cased in vitro experimental evidence of spontaneous
UPE and visible light-induced UPE (delayed luminescence)
from freshly isolated rat’s whole eye, lens, vitreous humor, and
retina. Subsequently, in 2014 (Tang and Dai, 2014) Tang and
Dai provided experimental evidence that the glutamate-induced
UPE can be transmitted along the axons and in neuronal circuits
in mouse.

These observations raise the following intriguing question:
what are the underlying physiological processes that underpin
UPE? Specifically, in the brain what are the associated
neurophysiological processes? Although a complete picture has
not been provided, it has been shown that the origin of UPE is
in direct connection with the ROS. Moreover, its intensity has a
direct correlation with thermal, chemical, and mechanical stress,
the mitochondrial respiratory chain, cell cycle, neural activity,
EEG activity, cerebral blood flow, cerebral energy metabolism,
and release of glutamate. Experiments also show that cells can
absorb photons by photochemical processes and slowly release
these photons as delayed luminescence (Scordino et al., 2014).
Interestingly, it has been shown that delayed luminescence
emitted from the biological samples provide valid and predictive
information about the functional status of biological systems
(Musumeci et al., 2005; Niggli et al., 2005, 2008). All this
opens novel exciting mathematical and physical questions at
the interface of quantum biology. For example, if we consider
UPE in the context of metabolism, then there has been efforts
to propose quantum-metabolism (Demetrius, 2003). As it is
well-known, biological systems are essentially isothermal and as
such energy flow in living organisms is mediated by differences
in the turnover time of various metabolic processes in the
cell, which occur cyclically. The mean cycle time (τ ) of these
metabolic processes (turnover of essentially redox reactions) are
related to the metabolic rate (g), that is, the rate at which the
organism transforms the free energy of nutrients into metabolic
work. This is related to two coupled chains (electron-proton
transport) of the ATP system in the mitochondria. In quantum-
metabolism the main variables are metabolic rate, the entropy
production rate, and the mean cycle time. Then the fundamental
unit of energy is given by E(τ ) = gτ , where g is related to
the electron–proton transport. Noteworthy, this is in contrast,
but has some correspondence to quantum thermodynamics,
where the thermal energy per molecule is given by E =
KbT, which relates specific heat, Gibbs–Boltzmann entropy, and
absolute temperature T. The difference is that biological systems
work far from thermodynamic equilibrium, hence in quantum-
metabolism the variables depend on fluxes (rates of change
of energetic values). On top of this, Albrecht-Buehler (1995)
hypothesized that the electron–proton transport releases photons
(E = hν, where E is the photon energy, h is plank constant,
and ν photons frequency). Other researchers have contemplated
at why UPE displays wide variety of frequencies, with Popp
suggesting that these are coherent and mediated by DNA, thus
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it may regulate life processes of an organism (Popp et al., 1984,
1988). However, the coherence idea of UPE is still under debate
(Salari and Brouder, 2011) and it is yet unclear if UPE is just a by-
product in biological metabolism or it has some informational or
functional role.

So far, UPE signals have only been studied in the context
of basic science and has not been considered for experimental
and clinical applications or novel technologies such as BCIs.
The present article takes that first step forward and propose
an implant BCI chip based on UPE. Since UPE is correlated
to several sub-cellular, cellular, and neural tissue processes,
there is also the potential that it can be used as a novel
technological probe/bio-marker for both normal brain function
and pathological conditions. In the subsequent sections, we will
first briefly review the traditional classical methods in BCI and
then we will focus our discussion toward UPE detection and
pattern recognition for the development of a novel UPE-based
skull implant BCI.

2. CLASSICAL BRAIN–COMPUTER
INTERFACE TECHNOLOGY

In traditional BCI techniques, different types of signal acquisition
may be used, depending on the application. In the following, we
briefly review four types of brain signals, their properties, and the
suitable machine interfaces.

• Electroencephalography (EEG) signals

EEG is the most employed method to detect electrical
activity of the brain by use of small electrodes attached to
the scalp (Niedermeyer and da Silva, 2004). These signals are
recorded by a machine for tracing both normal brain function
and diagnosing pathological conditions (e.g., epilepsy). In
stimulus (e.g., visual cue) induced EEG, there is positive
deflection of voltage with a latency (delay between stimulus
and response) of roughly 250–500 ms, which is called event-
related potentials (ERP). Examples of such ERP is the so-called
P300 formed at time 300 ms, which is related to decision
making. Indeed, cognitive impairment is often correlated with
modifications in the P300 (Polich, 2007). It is considered
an endogenous potential, as its occurrence links not to a
stimulus’ physical attributes, but a person’s reaction to it. More
specifically, the P300 is thought to reflect processes involved
in stimulus evaluation or categorization. The presence,
magnitude, topography, and timing of this signal are often
used as metrics of cognitive function in decision-making
processes and hence used in BCIs. The P300 has several
desirable qualities for pattern recognition. First, the waveform
is consistently detectable and is elicited in response to precise
stimuli. The P300 waveform can also be evoked in nearly
all subjects with little variation in measurement techniques,
which help simplify interface designs and permit greater
usability. The speed at which an interface can operate depends
on how detectable the signal is despite “noise.” One negative
characteristic of the P300 is that the waveform’s amplitude
requires averaging multiple recordings to isolate the signal.
This and other post-recording processing steps determine the
overall speed of a BCI interface (Donchin et al., 2000).

• Magnetoencephalography (MEG) signals

MEG is a functional neuroimaging technique monitoring
brain activity via magnetic fields of electrical currents in the
brain, using SQUIDs (superconducting quantum interference
devices), which are very sensitive magnetometers operated
in a cryogenic environment. Another type of magnetometer
is spin exchange relaxation-free (SERF) magnetometer
(Hämäläinen et al., 1993), which can increase portability of
MEG scanners, while it features sensitivity equivalent to that
of SQUIDs. A typical SERF magnetometer is relatively small
and does not require bulky cooling system to operate. It has
been demonstrated that MEG could work with a type of
SERF, i.e., chip-scale atomic magnetometer (CSAM) (Sander
et al., 2012), where its development can be used efficiently
for BCI. Basically, MEG may provide signals with higher
spatiotemporal resolution than EEG, and therefore useful for
an increased BCI communication speed.

• Electrocorticography (ECoG) signals

ECoG uses electrodes placed directly on the surface of the
brain to record electrical activity from the cerebral cortex,
i.e., an invasive technology that involves removing a part of
the skull to expose the brain surface to enable the implant
of an electrode grid on the surface of the brain, i.e., called
craniotomy, which is a surgical procedure performed either
under general anesthesia or under local anesthesia if patient
interaction is required for functional cortical mapping. The
spatial and temporal resolution of the resulting signal is higher
and the signal to noise ratio (SNR) superior to those of EEG
due to the closer proximity to neural activity. Thus, ECoG is
a promising recording technique for use in BCI, especially for
decoding imagined speech or music, in which users simply
imagine words, sentences, or music that the BCI can directly
interpret (Shenoy et al., 2007).

• Functional near-infrared spectroscopy (fNIRS) signals

fNIRS is a non-invasive optical imaging technique that
measures changes in hemoglobin (Hb) concentrations in the
brain by means of the characteristic absorption spectra of Hb
in the near-infrared (NIR) range (Scholkmann et al., 2014).
fNIRS tomography makes use of the fact that light penetrates
up to several centimeters into biological tissue, i.e., a safe
technique that is minimally invasive and which relies on small,
relatively inexpensive easy-to handle technology, and provides
relatively low spatial resolution. The penetration range of light
in tissue limits the size of the target tissue volume. fNIRS can
be used in BCI for the restoration of movement capability for
people with motor disabilities. fNIRS cannot afford high error
rates for safety purposes, and must be fast enough to provide
real-time control. Several fNIRS-BCI studies have tried to
improve classification accuracies and information transfer
rates (Naseer and Hong, 2015).

3. POTENTIAL APPLICATION OF UPE IN
BCI

UPE is largely mediated by cellular metabolism and it is presently
believed that it is merely a by-product (i.e., epiphenomenon). A
tempting question is whether it is possible (or not) to retrieve
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information from stochastic emission of UPE? In previous
sections, we already saw that there are different experimental
reports on significant correlations between UPE emission and
neuronal activity and associated metabolic processes (Isojima
et al., 1995; Kobayashi et al., 1999b; Kataoka et al., 2001; Tang
and Dai, 2013). Therefore, even if UPE is an epiphenomenon,
its intensity can be a proxy for tracking the underlying neural
information that dynamically changes under various conditions.
Indeed, UPE seem to include information for monitoring
physiological variations in a neuronal tissue. Note that for EEG
signals we have a similar scenario. Indeed, EEG signals do not
provide specific information about single neurons. Rather, it
reflects a non-trivial summation of the synchronous activity
of thousands of neurons and not that of a single neuron or
dendrite. Thus, retrieving patterns as information from EEG is
a data-science activity typically involving statistical comparisons
between different brain states (e.g., normal and abnormal
brain states).

Scholkmann (2015, 2016) hypothesized that UPE may be
is used by neurosystems as an additional signal enabling cell-
to-cell communication and coupling. Indeed, Sun et al. (2010)
found that UPE can conduct along the neural fibers. It has
been hypothesized based on numerical simulations that neurons
(or myelinated axons) may act as optical fibers and, hence,
may conduct light associated with UPE (Kumar et al., 2016),
and through these waveguides UPE may even mediate long-
range quantum entanglement in the brain (Kumar et al., 2016;
Zarkeshian et al., 2018; Simon, 2019). These myelinated axons
are tightly wrapped by the myelin sheath, which has a higher
refractive index (Antonov et al., 1983) than the inside of the
axon and the interstitial fluid outside. Myelin is an insulating
layer (sheath) around nerves, which is formed by two types of
specialized glial cells, oligodendrocytes in the central nervous
system (CNS) and Schwann cells in the peripheral nervous
system (Simons and Trajkovic, 2006). Muller glia cells have also
been suggested to guide photons within mammalian eyes (Franze
et al., 2007; Agte et al., 2011; Reichenbach and Bringmann, 2013).
These observations suggest that UPE and bioelectronic activities
are not independent biological phenomena in the nervous
system, and their synergistic action may take on considerable
function in neural (quantum) signal and information processes
(Salari et al., 2016b; Wang et al., 2016).

3.1. UPE Intensity From the Surface of the
Human Brain
The UPE observed to date has been extremely weak. However,
the true UPE intensity within neurons can be significantly higher
than the one expected from the UPE measured a short distance
away from the brain, as was done in all previous observations.
Since photons are strongly scattered and absorbed in cellular
or neural systems, the corresponding intensity of UPE within
the organism or brain can even be two orders of magnitude
higher (Slawinski, 1988; Chwirot, 1992). Based on the data from
experiments with rat brain—employing a 2D photon-counting
tube with a photocathode featuring a minimum detectable
radiant flux density of 9.9× 10−17W/cm2 under 1-s observation

time—the intensity of UPE has approximately 100 counts
sec.cm2 from

the cortex surface (Imaizumi et al., 1984; Adamo et al., 1989;
Kobayashi et al., 1999a,b). Moreover, the limited quantum
efficiency (QE) of the detector may impede the detection of
UPE due to the limited SNR. Regarding the human brain, the
neuronal density in V1 in visual cortex is 60 × 106 Neurons

cm3 in
postmortem human brains (Pakkenberg and Gundersen, 1987),
It should be noted that postmortem studies use fixatives, which
lead to shrinking of the tissue. The result is that the cell density
is overestimated, while the volume of the extracellular space is
underestimated. The reported number can be used only as an
absolute best-case scenario for the interface. The V1 thickness is
about 0.2 cm, and V1 surface area of one hemisphere is about
26 cm2 in adult humans. At least, 106 neurons in object-related
areas and 30×106 neurons in the entire visual cortex are activated
by a single-object image (Levy et al., 2004). Based on a rough
estimation, about 106 free radicals can be produced by each brain
cell per second (Bokkon et al., 2010), which yields 106 × 106 =
1012 free radicals produced by human visual neurons per second
in V1 of one hemisphere during perception of a single-object
image. Since UPE mainly originates from free radicals, the actual
UPE intensity inside neuronal cells is expected to be considerably
higher than the intensity measured by a detector outside [e.g.,
100 counts/(s.cm2)]. If the QE of an ideal photodetector is close
to 100%, we conjecture that it may measure the UPE intensity at
the cortex surface at least on the order of 1,000 counts/(sec.cm2)
for an object visualization.

4. SKULL-IMPLANT SETUP FOR THE
UPE-BASED BCI

We now provide the complete design specification of a radically
novel skull-implant that can facilitate a UPE-based BCI (see
Figure 1). The envisaged BCI is not aimed for deep brain
implants (although possible) but rather for intracranial brain
surface implant (i.e., minimally invasive). The environment
of a closed skull (after surgical implantation) is sufficiently
dark and, therefore, a suitable environment for the detection
of UPE signals. Once the UPE signals are detected, they are
wirelessly relayed to a machine, computer, or smartphone.
We also envisage alternative designs with closed-loop signals
(photons) for modulating the metabolic processes of a neural
tissue. However, herein we will only consider the read-out of
UPE signals. The center-piece of the envisaged technology is the
UPE-based integrated chip, which we will discuss at length in the
subsequent sections. The integrated photonic chip is assembled
from different component parts; specifically, a receiver optical
plane (ROP), optical fibers, a photonic interferometery circuit,
a complementary metal-oxide-semiconductor (CMOS) detector
array, a battery, and a wireless system (see Figure 2). The use of
the implantable CMOS image sensor has been described in recent
years especially for optogenetic imaging (Tokuda et al., 2021).

The UPE photons first enter an ROP on the chip, which is
essentially a photo-receiver array made up of optical fibers of
size of N × N, where N is the number of pixels (or fibers) in
each row or column and each pixel is indeed an optical fiber
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FIGURE 1 | A detector chip can be installed on the interior surface of the skull without touching the brain tissue, i.e., non-invasive. The environment of the closed skull

in the head is sufficiently dark and therefore it is a suitable environment for the detection of UPE with the installed chip. The intensity of UPE is stronger close to the

surface of the brain, which can be captured by chip on the skull.

that couples into a waveguide on the chip, using grating couplers
(Cheng et al., 2020). Alternatively, the UPE light can be directly
coupled to waveguides created by femto-second laser-writing
and since these can be patterned at different depths in the chip
(Nolte et al., 2003), and they can directly facilitate serialization
step. Subsequently, the N × N pixels are serialized into a 1D
vector (where N′ = N × N is the number of optical fibers
connected to the waveguides in the optical interferometer with
N′ input ports in a series and linear 1D form, and therefore
N′ CMOS pixels in a single row as the output port on the
PIC). In fact, the received photons on ROP are guided to the
optical interferometer via optical fibers. The advantage of an
optical interferometer is that it may discriminate the emission
patterns of photons. We estimate that UPE intensity ranges
10–1,000 counts per second per each cm2 of the whole array,
depending on how active a neuron or neural tissue is at a given
time instant. In fact, we expect that similar and non-similar
UPE emissions (in wavelength) generate different detection
distributions, where interference will occur between photons
with similar wavelength (i.e., emanating from the same-type
neural processes). Thus, the detection distributions for similar-
wavelength photons will be closer to an optical interference
pattern, which is uniquely determined by the wavelength of these
interfering photons. In this regard, one of the concerns may
arise from the fact that UPE emission over a broad range of
wavelengths can lead to the observation of different patterns at
the same time, rendering an ambiguous combination of several
independent patterns. Such complexity may bring disadvantages
over the direct detection (i.e., no interferometer), or even could
cause wrong interpretations. This potential problem can be
alleviated by classifying those different wavelength patterns,
again with pattern recognition techniques in machine learning,
such as (PCA) (Jolliffe, 2002), which allows distinguishing the
differences in an ensemble of patterns, and identifying each
pattern according to the respective wavelength, after many

sets of training data. The optical interferometer photons are
then converted into electrical signal via the CMOS array (see
Figure 6 for details). Finally, these signals are wirelessly linked
to a smartphone or computer for pattern recognition/extraction.
Noteworthy, since the number of detected photons is relatively
low and because the data acquisition is in real time, the
recognition of patterns should be done via machine learning
protocols, e.g., convolutional neural networks (CCN), which is
a powerful tool for 2D pattern recognition. We subsequently
discuss in more detail each component part of the UPE-based
electronic chip.

4.1. On-Chip Photonic Integrated Circuits
We base our proposed technology on photonic integrated circuits
(PICs) (Coldren et al., 2012). These are chip that contains
photonic components that operate with light (photons), where
photons pass through optical components such as waveguides
(equivalent to a resistor or electrical wire in an electronic
chip). With electronic integrated circuits arriving at the end
of their integration capacity, PICs have the potential to be the
preferred technology. Nowadays, photonic platforms present
several advantages for quantum information protocols enabling
long coherence times, full connectivity, scalability, and operation
in room temperature. Different photonic degrees of freedom
including polarization, spectral, spatial, and temporal modes can
be used to encode information, providing different experimental
resources for a wide variety of quantum information tasks.

For our application, we consider a PIC containing an optical
interferometer. A linear interferometer can be fabricated through
silica-on-silicon or laser-written integrated interferometers, or
electrically and optically interfaced optical chips (Szameit et al.,
2007; Spring et al., 2012; Carolan et al., 2015), which makes
a simple processor reducing the amount of physical resources
needed for implementation.
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FIGURE 2 | In a brain–computer interface (BCI) proposal, an optical chip is implanted on the interior surface of the skull. A few number of ultraweak photon emission

(UPE) photons interfere in a photonic chip and the results are detected as different single photon distributions at detectors vs. time. This results are communicated via

wireless signals from the detector part of the chip to a receiver (e.g., smartphone or a computer).

4.2. Photons Statistics and Distributions
In the context of optics, coherence is a property of light. In
a simplified picture, coherence is the ability of light to make
interference, e.g., in the double-slit interference experiment light
can create interference patterns (bright and dark bands) for
both a wave (classical) and photon (quantum) picture. Thus,
coherence of light can be both of a classical and quantum
character. For example, thermal states of light can be described
in the classical and the quantum framework, while other states,
such as squeezed states, can only be described in the quantum
framework. One of the essential conditions to show the coherence
property of light is for its intensity/photon-number distribution
to be a Poisson distribution. However, this condition is not
sufficient to conclude that the light is certainly coherent. Other
types of sources may yield a Poisson distribution, e.g., shot noise
and dark noise. In the following paragraphs, we will introduce a
couple of photon-number distributions in order to demonstrate

how this measure provides insight into the nature of the UPE
light being emitted.

The photocount statistics of coherent light is a Poisson
distribution (Cifra and Brouder, 2015).

Pn(t,T) =
〈n〉n

n!
e−〈n〉 (1)

where 〈n〉 is the average number of photons measured between
time t and time t + T. The variance of Poisson distribution is
equal to its mean 〈(1n)2〉 = 〈n〉. The deviation of the photon-
number distribution from the Poisson distribution is measured
by the Fano factor F such that 〈(1n)2〉 = 〈n〉F, or by the Mandel
parameter Q = F − 1. A photocount statistics is said to be
super-Poissonian if F > 1 and Q > 0, and sub-Poissonian (and
therefore non-classical) if F < 1 and Q < 0. Hence, the shift
from a Poisson distribution is a sign of non-classical (quantum)
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FIGURE 3 | (A) Poisson distribution for four different average values of photon counts 〈n〉. (B) Demonstration of thermal field photocount distribution for different

number of thermal modes for the average number of 10 photons. (C) Thermal field photocount distribution (with similar 〈n〉) approaches Poisson distribution for a large

number of modes M.

characteristics of the light (Cifra and Brouder, 2015) while a
Poisson distribution is a sign of classicality.

The photocount statistics of a thermal source with Mmodes is
approximated by the expression

Pn(t,T,M) =
(n+M − 1)!

n!(M − 1)!
)(1+

M

〈n〉
)−n(1+

〈n〉
M

)−M (2)

where 〈n〉 is the average number of photons and M is the
number of field modes (Cifra and Brouder, 2015). An important
characteristic of these states is the relation between the variance
and the mean 〈(1n)2〉 = 〈n〉+ 〈n〉2

M . The coefficientM is generally
very large for chaotic sources. So that the relation between the
variance and the mean is close to that of a coherent state, i.e.,
for large M, Pn(t,T,M) approaches a Poisson distribution (see
Figure 3). In relation to UPE, it is important to know whether
the photocount statistics can distinguish between the coherent
and thermal emissions, because photocount statistics of thermal
light becomes equal to that of a coherent state when the number
of modes M is large. Since the photocount statistics are not able
to discriminate between a coherent and a thermal state with
many modes.

Another type of emission is super-radiance, which is the
coherent emission of light by several sources, and its main
characteristic is the fact that the intensity of the emitted light
can vary with the square of the number of sources because
they can emit in phase. The photocount statistics of super-
radiant emission is sub-Poissonian (Cifra and Brouder, 2015),
and the photon state of a super-radiant system is generally not
a coherent state.

4.2.1. Photon Detection With Interference
The photons collected onto our chip will then be propagated
through a PIC featuring several interference paths and other
components. The model of the effect of the PIC on the incident
photons aims to predict the probability distribution of photons
at the detector following their propagation and interference in
a linear interferometer. The experimental setup only requires
photodetectors and linear optical elements, i.e., beam splitters
and phase shifters. Suppose the chip is injected with an input

state of single photons of UPE, |S〉 = |s1, s2, ..., s′N〉 where sk
are the number of UPE emitted photons in the kth mode and
injected into the chip. The output state of the chip can be written
as |O〉 = |x1, x2, ..., x′N〉. For the sake of simplicity, suppose
that there are four outputs on the chip. Therefore, probabilities
of output detection for N = 1 input photons in case there is
no dissipation in the circuit are P|1000〉, P|0100〉, P|0010〉, P|0001〉,
and for N = 2 input photons the probabilities at the output
are P|1001〉, P|1010〉, P|1100〉, P|0110〉, P|0011〉, P|0101〉, P|2000〉, P|0200〉,
P|0020〉, P|0002〉. Now, we consider a general case for N

′ outputs.
The signal processing and the interpretation of the signals
require machine learning techniques. As the signal acquisition
is performed through an interferometer, different interference
patterns may form. We suggest a pattern recognition approach
via convolutional neural networks (CNNs) (Fukushima, 1980)
for an efficient interpretation of output signals on the photonic
interferometer chip. Here, the conjecture is that a synchronous
activity in a specific region of cortex makes synchronous similar
metabolism with similar chemical reactions producing similar
ROS by-products simultaneously, and therefore the probability
of detection of similar photons (even with a low probability
of interference in the interferometer) during a specific brain
activity is higher than the normal state with stochastic photon
emissions. Discrimination between the interference pattern of
active and normal states will be non-trivial but tractable via
machine learning. This conjecture is expected to be reasonable
based on highly synchronized brain activities for different specific
cognitive tasks. In fact, the photonic chip continuously produces
data under normal and active states of the brain. The patterns
can be recognized by studying the data and classifications via
discrimination between the signals of normal and active states.
In such a state, both supervised and unsupervised learning can be
performed on software. This can be an advantage of the method.

The idea of using UPE signals for BCI applications still
remains at the level of conjecture, relying on a mere fact that
UPE shows correlations with some brain activities. Therefore,
from a BCI point of view, such correlations are very important
because for almost all types of brain signals for BCI applications,
it is hardly possible to extract specific information from the
signals directly. With an analysis of signals over thousands of
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FIGURE 4 | On-chip optical interferometer with N’ inputs and N’ outputs. The

output patterns can be processed for feature extraction via machine learning

techniques. It is expected that for each cognitive task or decision making, a

similar pattern (in average) forms after many runs under training for specific

tasks. The features of the average pattern can be recognized by deep learning

methods, or specifically by convolutional neural networks (CNNs) on a

software.

training trials, it will be possible to obtain an average pattern
with specific features (for feature extraction) that finally make
it easy for a specific algorithm to recognize the pattern in
the next acquisition signals directly. Here, we suggest using
a machine-learning algorithm to discriminate variations and
extraction of features by enhancement of training data. A deep-
learning algorithm becomes stronger in learning with increasing
the training data to a specific level. This is a benefit for
an implanted chip since it is always creating thousands of
patterns easily to be processed by software on a computer or a
smartphone. There is no need to perform separate experiments
each time for training. Therefore, a deep-learning algorithm
can learn how to understand features from UPE signals and
interpret them according to the relevant cognitive task. Thus,
data analysis of the output UPE signals of the chip can be
performed via machine learning in general and deep learning
specifically. For instance, a possibility is via deep learningmethod
called CNN technique, which enables high-resolution pattern
recognition. Since CNNs are ideal for 2D imaging processing,
then the UPE signals detected at the receiver optical plane
pixel-array can be readily adapted for CNN (see Figure 4).
The pattern analysis can be enhanced depending on the details
our architecture. CNN error minimization methods are used to
optimize convolutional networks in order to implement quite
powerful pattern transformations. This is very useful when

the input is spatially or temporally distributed. The first layer
of a CNN generally implements non-linear template-matching
at a relatively fine spatial resolution, extracting basic features
of the data. Subsequent layers learn to recognize particular
spatial combinations of previous features, generating “patterns
of patterns” in a hierarchical manner. If down-sampling is
implemented, subsequent layers perform pattern recognition at
progressively larger spatial scales, with lower resolution. A CNN
with several down-sampling layers enables processing of large
spatial arrays, with relatively few free weights. As we discussed
before, an ensemble of wavelengths may make different patterns
at the same time and obscure the interference patterns, where a
PCA algorithm (Jolliffe, 2002) can find the differences between
different patterns in the overlapped patterns, and classify each
pattern for the relevant wavelength after many sets of training
data.

4.3. Implementation Feasibility
We now discuss the feasibility of fabricating all elements of our
envisaged skull-implant UPE-based BCI (to be followed with
Figure 5).

4.3.1. Chip Ingredients
The design and fabrication of PICs is a mature technology,
which is realized on a variety of material platforms, which
are tailored to the needs and requirements of the application
at hand. Available platforms for lithography-based fabrication
include silicon photonics [Silicon on Insulator (220 nm and
3 µm SOI), Si-based silica on silicon (SiO2, also known as
PLC), and silicon nitride (SiN and TriPleX)], III-V photonics
such as indium phosphide (InP), gallium arsenide (GaAs) and
derivatives, and finally lithium niobate (LiNbO3) and other
more exotic materials (Liang and Bowers, 2009; Washburna
and Bailey, 2011; Fang and Zhao, 2012; Arakawa et al., 2013;
Chrostowski and Hochberg, 2015; Muñoz et al., 2017; Boes
et al., 2018; Zhu et al., 2021). It should be noted that the
SIO platform is not a suitable candidate for the UPE in the
visible spectrum as the relatively small band-gap of silicon
renders it completely opaque below a wavelength of about
1,000 nm. SiN, which, on the other hand, is transparent in
the visible wavelength-range and features compatibility with
CMOS technology (Romero-Garcia et al., 2013), appears to be
a strong candidate as a PIC platform for our proposed BCI.
As an alternative to the lithography-based PIC, femto-second
laser-written waveguides (FLWs) in SiO2 (glass) have in recent
years been used to successfully implement advanced PICs (Davis
et al., 1996; Marshall et al., 2009). The unique advantage of
FLWs is that the ability to define waveguides in three dimensions,
i.e., including at different depths in the chip. This allows more
complex routing, such as the crossing of waveguides (Marshall
et al., 2009).

Choosing the right technology will be the starting point for
having a successful integrated chip. By integrating all devices
into a single chip, complex assembly, alignment, and stabilization
processes are avoided, and packaging and testing are greatly
simplified. Moreover, it is the only way to scale up complexity
when moving over 20–30 components into a single package.
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FIGURE 5 | Feature extraction and pattern recognition of detected ultraweak photon emission (UPE) by a chip composed of complementary

metal-oxide-semiconductor (CMOS) array via convolutional neural network (CNN) on a software installed on a computer, machine, or smartphone; (top) direct UPE

detection without optical interferometer, and (bottom) UPE detection after the interferometer. The existence of optical interferometer is to discriminate UPE

wavelengths, since interference of similar photons (in wavelength) make a different pattern with non-similar photons. One of the advantages of such an interferometer

is to have a simple “spectrometry” over similar wavelengths. However, an ensemble of wavelengths may make different patterns at the same time and obscure the

interference patterns which may not make advantage over a direct detection, but one can classify those ensemble patterns with pattern recognition techniques such

as PCA, which can find the differences between different patterns in the overlapped patterns, and classify each pattern for the relevant wavelength after many sets of

training data. The direct detection of UPE by CMOS array and indirect detection after an optical interferometer both can be used for UPE data acquisition.

The selection of the integration material will then determine
the capabilities and limitations for the technology platform,
making some of them more appropriate for certain applications
than others. This is thus a critical choice and needs to be
carefully evaluated.

4.4. Noise and Loss in the PIC
Design of an PIC, testing and packaging from the beginning
should be done carefully. The steps are device level (optical,
thermal, andmaterial simulations), circuit level (virtual lab to test
performance), system level (PIC connected to a CMOS array),
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FIGURE 6 | A typical on-chip ultraweak photon emission (UPE) detector can be built from an array of optical fibers connected to an integrated photonic circuit, which

has an output gate composed of complementary metal-oxide-semiconductor (CMOS) photosensor array.

layout level (generate the design intent), verification, simulation
of each process step, fabrication, and finally packaging.Moreover,
a software should be designed to process the detected signals.
Here, we would like to estimate the noise magnitude in the
optical section of the PIC. The optical section is composed of
receiver optical plane (ROP), optical fibers (OF), and optical
interferometer (OI).

4.4.1. Noise and Loss in the Receiver Optical Plane
First, we note that blackbody radiation is not a significant
source of photons in the visible wavelength range at body
temperature. On our BCI, photons are directly coupled to the
ROP’s fibers that are very close (approximately in contact)
with the cortex, thereby leading to a minimal coupling loss.
In terms of noise, shot noise [also known as “quantum noise”
(Gardiner and Zoller, 2004) or “photon noise”] is the most
important contribution in the ROP. It describes the fluctuations
of the number of photons received due to their occurrence
independent of each other. Optical detection is said to be
“photon noise limited” as only the shot noise remains. Just as
with other forms of shot noise, the fluctuations in a photo-
current due to shot noise scale as the square-root of the

average intensity:

SN : =|
√

(n− 〈n〉)2 |

4.4.2. Loss in Optical Fibers
The intensity of photons will become lower when traveling
through the core of fiber optic. Thus, the signal strength becomes
weaker. This loss of light power is generally called fiber optic
loss or attenuation. This decrease in power level is described
in dB. There are two types of loss in optical fibers known as
intrinsic fiber core attenuation (mainly due to light absorption
and scattering) and extrinsic fiber attenuation due to bending
loss as well as splicing (or coupling) loss between the fibers
and chip. Given that the length of the fibers are to be in
centimeter scale, the former will be negligible. However, bending
and splicing/coupling loss can be significant depending on the
process of binding the fibers to the photonic chip. For example,
based on subwavelength gratings, it has been shown that it is
possible to couple broadband light with very low coupling losses.
Guiding of visible light in the wavelength range of 550–650 nm
with losses down to 6 dB/cm is feasible using silicon gratings
(having absorption of 13,000 dB/cm at this wavelength), which
are fabricated with standard silicon photonics technology. This
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approach allows one to overcome traditional limits of the various
established photonics technology platforms with respect to their
suitable spectral range (Urbonas et al., 2021).

4.4.3. Noise and Loss in Optical Interferometer
The main elements of an optical interferometer on a photonic
chip are couplers and optical modulators, as illustrated in
Figure 7. There are different types of optical modulators
such as MEMS, liquid crystal on silicon (LCOS), electro-
optic LiNbO3 waveguide, III-IV semiconductor optical amplifier
(SOA), Mach-Zehnder interferometer (MZI), and micro-ring
resonator (MRR) (Stefanov et al., 2020). Compared with the
above technologies, the silicon photonic modulators based
on silicon-on-insulator (SOI) platform attract more attention
because of high device density, whose volume is 1/1,000 of silicon
dioxide devices, functional integration with active photonic
devices and complementary metal oxide semiconductor (CMOS)
circuit, and fabrication process compatible with a mature CMOS
manufacturing technology. One of the state of art of the silicon
photonic modulator engine that is very useful for quantum
interference is MZI. A typical 2 × 2 MZI modulator cell consists
of two 3 dB coupler and a dual-waveguide arm between them.
One of the arms has a phase shifter based on the change of
refractive index. Since the silicon has both strong thermo-optic
(T-O) effect (1.86×10−4 K−1) (Stefanov et al., 2020), the phase
shifter can be categorized as T-O switch with a heater and electro-
optic (E-O) switch with a p-i-n junction diode. The T-O switch
has a response time of microsecond-scale to millisecond-scale,
while the E-O switches have a response time of nanosecond-scale.

The loss in on-chip optical interferometers arise from non-
unity coupling from fiber to the input ports of the chips as well
as attenuation through the waveguides patterned on the chip.
As discussed above, the coupling loss can be significantly less
than 1 dB through the advanced coupling methods. However,
the waveguide propagation loss is given by the chip platform.
Depending on the wavelength, this loss can vary substantially, in
particular in the wavelength range of 300–700 nm, as shown in
Table 1.

4.5. Noise and Loss in the CMOS Sensor
Array
Noise can be produced by fluctuations in signal that makes
uncertainty in detection. Essentially, the signal-to-noise ratio
(SNR) is the ratio of pattern signal to the total noise. For larger
SNR, it is easier to distinguish pattern from noise, which makes a
higher confidence in measurements.

CMOS (Complementary metal–oxide–semiconductor)
primary noise sources are shot (photon) noise (i.e., SN), dark
noise (i.e., DN), and read noise (i.e., RN). Shot noise is due
to physical property of light, regardless of sensor, and it is
SN =

√

Signal. Dark noise is temperature dependent and
higher for global shutter and its magnitude is obtained as

DN =
√
Dark Current. Read noise includes Random Telegraph

Noise (RTN), which is non-Gaussian, and depends on multiply
column and pixel amplifiers, RN = Read Noise. RTN is the most
significant component of CMOS noise. The SNR for CMOS is

FIGURE 7 | Schematic of various of Mach-Zehnder interferometer (MZI)

modulator cells in an optical interferometer. The undesirable attenuation of light

in the waveguides and modulators depends on material of the chip platform as

well as the dimension and structure of modulators (Stefanov et al., 2020),

which determine bending and scattering loss.

obtained as follows:

SNR =
S

√

SN2 + DN2 + RN2
(3)

where S is Signal=Photon flux × time × QE (Dragulinescu,
2012).

Scientific CMOS (sCMOS) sensor is a novel technology with
room to grow, which allows for higher speed operation with
larger pixel arrays than EMCCD and CCDs with similar noise
performance to conventional CCDs.

4.5.1. Quantum Efficiency
QE is defined as

QE =
Converted photons to electrons

Total incident photons

which is a measurement of sensitivity to light. As a ratio, QE is
dimensionless, but it is closely related to the responsivity, which is
expressed in amps (A) per watt (W). Since the energy of a photon
is inversely proportional to its wavelength, QE is often measured
over a range of different wavelengths to characterize a detector
efficiency at each photon energy level.

The photodetector matrix consist of CMOS-compatible
photodiodes (formed between drain diffusion and p-well) with
associated readout and sensor selection circuits. The spectral
measurements of the photodiode have exhibited a QE better than
60% at 650 nm, and better than 40% between 500 and 850 nm
(Dragulinescu, 2012).

A chip design for UPE detection can be inspired by retina
implants, but with bigger array size and significantly higher
QE. The irradiance on the retina even under a bright daytime
illumination does not exceed 1 µWmm−2. At such illumination
a 20 µm diameter photodiode (having even 100% QE) can
provide only 40 pA of current (Palanker et al., 2005). Basically,
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TABLE 1 | Data adapted from APL Photonics 5, 020903 (2020); Optica 6(3), 380-384 (2019); and Optics Express 14 (11), 4826-4834 (2006).

Loss vs. wavelength for various chip platforms

Loss (dB/cm) 300–400 nm 400–500 nm 500–600 nm 600–700 nm

Aluminum nitride (AlN) 40–50 40–50 30–40 20–30

Alumina (Al2O3) ∼ 3 2 1 < 1

Tantalum pentoxide (Ta2O3) N/A ∼ 4 ∼ 2 < 1

Silicon-nitride (Si3N4) N/A 5–20 < 1 < 1

Lithium niobate (LiNbO3) N/A N/A N/A ∼ 0.06

Femto-second laser-written waveguides in glass (SiO2 ) N/A N/A N/A ∼ 0.2

each photoreceptor cell can produce 1 pA with a single
photon absorption (Salari et al., 2016a). To provide stimulating
current on the order of 1–2 µA, which would be minimal for
physiological stimulation, current amplification by a factor of
about 1,000 is required. Suitable current levels would require
photodiodes more than 600µm in diameter, so that ambient light
cannot be used to power more than a token number of electrodes
on a retinal chip. An additional source of power will be needed
for any practical chip (Palanker et al., 2005). The stimulation
current for an electrode of 10 µm in diameter is on the order
of 1 µA. The photodiode converts photons into electric current
with efficiency of up to 0.6 AW−1, thus 1.7 µW of light power
will be required for activation of one pixel. If light pulses are
applied for 1 ms at 50 Hz, the average power will be reduced
to 83 nW/pixel. With 18,000 pixels on the chip, the total light
power irradiating an implant will be 1.5 mW (Palanker et al.,
2005). In the case of skull-implant PIC chip, the main difference
with the retina implant is that the retina implant should activate
neurons with the currents produced by external light, which
needs a relatively high intensity of light, while for the PIC chip
there is no need to activate neurons, and a low light intensity
even with a few numbers of photons is sufficient for the CMOS
pixels activation to be reported to the software. In silicon, a
single-photon with a wavelength between 300 and 1,100 nm can
generate only one electron–hole pair. Therefore, for visible and
near-infrared light, the task of single-photon detection becomes
a task of single-electron (or hole) detection. This is not easy
due to the unavoidable readout noise of the sensor, which is
usually too high for the reliable detection of a single electron.
Another difficulty for room temperature applications are the
thermal dark currents, because they are indistinguishable from
photogenerated signals.

4.5.2. Chip Battery and Wireless Sectors
In order to have a dynamic chip for monitoring signals of the
brain continuously, the chip requires a long lifetime battery. The
size and lifetime of the battery is one of the major challenges
in design of an implant chip for biomedical applications. As
an alternative, replacing the battery with a miniaturized and
integrated wireless power harvester aid the design of sustainable
biomedical implants in smaller volumes (Masius and Wong,
2020). Currently, implanted batteries provide the energy for
implantable biomedical devices. However, batteries have fixed
energy density, limited lifetime, chemical side effects, and large

size. Thus, researchers have developed several methods to harvest
energy for implantable devices. Devices powered by harvested
energy have longer lifetime and provide more comfort and
safety than conventional devices. A solution to energy problems
in wireless sensors is to scavenge energy from the ambient
environment. Energies that may be scavenged include infrared
radiant energy, wireless transfer energy, and RF radiation energy
(inductive and capacitive coupling) (Hannan et al., 2014).
Recently, a chip has been developed that is powered wirelessly
and can be surgically implanted to read neural signals and
stimulate the brain with both light and electrical current. The
technology has been demonstrated successfully in rats and is
designed for use as a research tool. The chip is capable of
16-ch neural recording, 8-ch electrical stimulation, and 16-
ch optical stimulation, all integrated on a 5 × 3 mm2 chip
fabricated in 0.35-µm standard CMOS process. The trimodal
SoC is designed to be inductively powered and communicated
(Jia et al., 2020).

4.6. Biocompatibility of the Chip
Brain implants may induce side effects; for instance they may
interact acutely and chronically with the brain tissue possibly
causing blood–brain barrier (BBB) breach, vascular damage,
micromotions, diffusion, etc. (Prodanov and Delbeke, 2016). The
advantage of our suggested photonic chip is that it is minimally
invasive compared to invasive implants (e.g., ECoG) since it does
not need to penetrate the brain tissue.

Some of the key fundamental questions associated to brain
implants are related to how long an implant can record
useful neuronal signals and what degree of acquisition and
decoding reliably can be achieved if the tissue is affected
by chip implant. Functional neural tissue survival, distance
from the chip contact to target and long-term stability are
essential parameters to be considered (Prodanov and Delbeke,
2016).

In the case of photonic chip, it should be installed on the
inner surface of the skull and not to be implanted directly
in the brain tissue. However, there is still the possibility of a
close contact with the brain meninges (i.e., layered membranes
that protect the brain and spine) due to the mechanical or
volume changes of the brain. In this case, it has been shown
that Silicone causes the least amount of inflammation relative
to other materials tested at all sacrifice points, which makes
it the leading standard neurosurgical implant material and an
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appropriate control for studies of brain biocompatibility (Mofid
et al., 1997). Thus, we envisage to adopt silicone chips but we also
expect that research in biocompatibility will provide alternative
and advanced materials. However, since the photonic chip can
be implanted in between the meninges and the skull, there
can be concerns about the limitation of brain UPE detection
due to the existence of meninges. The meninges layers of
the human brain are composed of three main layers: dura,
arachnoid, and falx. The key question is whether light can
pass through these layers and if it does, then what are the
scattering and absorption effects of photons? For instance, to
have a reasonable data acquisition should the dura be open?
The optical properties of the human brain and its meninges
have been investigated decades ago. It has been shown that
meninges is approximately transparent for the near-IR range,
but almost half of emissions will not pass through it in
the visible range, and less than 40% of emissions can pass
through the meninges in the UV range (200–400 nm) (Eggert
and Blazek, 1987). As a result, based on the high efficiency
of the photonic chip in the near-IR range, the existence of
meninges reduces the intensity of UPE but it does not lead to a
significant limitation.

Additionally, because of the aqueous and biochemically
aggressive nature of the body, the lifetime of brain implants
strongly depends on packaging. There are different methods
for packaging, which may be especially important for the
case of traditional electric chips with wireless neuromodulatory
implants with increasing electrode count to have an in vivo
lifetime comparable to a sizable fraction of a healthy patient’s
lifetime (>10–20 years) (Shen and Maharbiz, 2021). For our
suggested photonic chip, the situation is considerably better
because the chip does not have electrodes in the wet biological
tissue nor contact with that, and the environment between the
meninges and skull is not aqueous, and therefore the probability
of water leakage in the photonic chip is minimal. If there
will be an injury in the meninges layers due to some impact
or accident, then the aqueous leakage may occur, where the
photonic chip should be investigated for packaging based on the
materials used.

5. DISCUSSION AND CONCLUSION

We propose a radically novel BCI that is based on UPE from
the brain. We describe its feasibility of fabrication based on
integrated photonic circuits that be readily implemented in a lab.
The envisaged BCI chip can be implanted on the interior surface
of the skull to monitor in real-time UPE signals emanating
from the cortex surface. The proposed chip is not only useful
for BCI technology but also it can be used as a photonic
sensor for imaging, spectroscopy, and sensitive measurements at
low light levels in several applications from biological UPE to
quantum optical processing (Salari et al., 2021). Although our
proposed technology is, admittedly, at the level of conjecture,
requiring comprehensive tests and investigations for verification,
we still envision complementary features as well as certain
advantages over established technologies, including ECoG. The

inherent advantage of our proposed technology is that it is
minimally invasive when compared to ECoG. Furthermore,
there are certain side effects that may affect the quality of data
acquisition over time in ECoG, whereas we expect a relatively
stable long-term data acquisition in our proposed approach. In
addition, if our suggested photonic chip-technology reaches a
satisfactory detection performance based on our estimations,
we anticipate that it can feature some other advantages. For
example, it may provide additional information about brain
functioning, such as an approximately real-time imaging (in
slightly longer timescales, e.g., each 15, 20, 30, 60 min, or so)
and open the door to studying metabolism variations, variation
of ROS production, delayed luminescence but also undertake
novel and complementary studies on object visualization studies,
sleep studies, and neurodegenerative diseases (Breakspear et al.,
2006; Fülöp et al., 2021). Indeed, the emphasis of our conjectural
paper is to develop a novel technology and methods that
could provide complementary information to improve our
understanding of brain activity with potential applications for
BCI technologies.

Now, we would like to discuss the advantages and limitations
of our proposed technology vs. the current BCI methods. On-
chip PICs offer advantages such as miniaturization, higher
speed, low thermal effects, large integration capacity, and
compatibility with existing processing flows that allow for high
yield, volume manufacturing, and lower prices. In the case
of UPE detection, there is no need for on-chip single-photon
sources, which is one of the most difficult challenges in PICs
for quantum computation and communication. In the suggested
chip, single photons are produced naturally by metabolism in
neurons and therefore a lower power with battery is needed
for energy consumption on an implant PIC. Loss is low in
NIR range (e.g., 2 × 10−6 dB/cm). In addition, photons are
bosons, which do not interact and crosstalk is minimal. A
PIC for optical interferometery is efficient for the wavelengths
typically in the near infrared range, 800–1,650 nm. This makes
a limitation for detection of UPE photons that are in the
visible range and the overlapped part to NIR, 400–800 nm. For
example, loss is high for the visible range (e.g., 0.6 dB/cm at
600 nm).

Moreover, it may look that the single-photon detections
on a CMOS array have a low QE besides the dark current
in room temperature, which may lose considerable amounts
of UPE. Another concern may be that the output of CMOS
is electrons, which are charged particles and fermions, and
therefore electronic crosstalk is inherent. In fact, the CMOS
QE is about 75%, which is about three times higher than the
photo-multiplier tubes (PMTs) with QE about 25%. The SNR
of a PMT at room temperature to detect UPE photons is about
1–2, thus a cooling system is required to cool down the PMT
sensor to enhance the SNR to reach 3 and higher. Obviously,
there is no cooling system on an PIC chip, but in this case,
the QE of the CMOS sensor can compensate the lack of a
cooling system. For a simple estimation, assuming a 1 × 1 cm
chip and considering the length of each CMOS pixel is 4 µm,
it is possible to have 2,500 CMOS pixels as the output port
on the chip, including 50×50 pixels on the ROP. According
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the estimations in the main text, the amount of total photon
loss from the receiver optical plane (ROP) to the output of
the optical interferometer (OI) is about 50%, and the QE of
CMOS at the output of the OI is estimated to be 25% in body
temperature under the implant conditions on the skull to have
a final SNR from 1 to 2. Consequently, it is estimated that
only 10% of incident photons can be safely recognized in the
output and reported wirelessly to the software on a computer or
smartphone. Considering 10–1,000 incident photons per second
received in the ROP under a cognitive task (e.g., an object
visualization), there can be 1–100 photons per second efficiently
detected in the output port, which are enough to have a
relatively successful implant PIC chip for an acceptable pattern
for UPE processing, where the size of the machine learning
program is N × N sparse matrix, which is not a difficult task
for a chip size number of pixels. To conclude, in this paper,
we advance major conjectures regarding the relevance of UPE
patterns and decision making as well as the feature extractions
from UPE signals, which need to be experimentally verified.
However, despite some probable limitations in chip fabrication
and efficiency, it may be used for wireless BCI signal acquisition
with several advantages vs. traditional counterparts such as speed,
size, minimally invasive, cheap, scalability, etc. This can be a
potential step forward for real-time brain imaging and biological
information processing.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

All authors contributed to the idea development and writing the
manuscript.

FUNDING

VS and SR are grateful for the financial support by the
Spanish State Research Agency through BCAM Severo Ochoa
excellence accreditation SEV-2017-0718 and BERC 2018-2021
program. SR was also grateful for project RTI2018-093860B-C21
funded by (AEI/FEDER, UE) with acronym MathNEURO. CS
acknowledges NSERC Discovery Grant RGPIN-2020-03945.

ACKNOWLEDGMENTS

VS and SR are very thankful for several helpful discussions with
Jean-Bernard Bru at BCAM. VS also thanksM. Aslani for helping
to find setup and illustration.

REFERENCES

Adamo, A. M., Llesuy, S. F., Pasquini, J. M., and Boveris, A. (1989). Brain

chemiluminescence and oxidative stress in hyperthyroid rats. Biochem. J. 263,

273–277. doi: 10.1042/bj2630273

Agte, S., Junek, S., Matthias, S., Ulbricht, E., Erdmann, I., Wurm, A., et al. (2011).

Muller glial cell-provided cellular light guidance through the vital Guinea-pig

retina. Biophys. J. 101, 2611–2619. doi: 10.1016/j.bpj.2011.09.062

Albrecht-Buehler, G. (1995). Changes of cell behavior by near-infrared signals. Cell

Motil. Cytoskeleton. 32, 299–304. doi: 10.1002/cm.970320406

Antonov, I. P., Goroshkov, A. V., Kalyunov, V. N., Markhvida, I. V., Rubanov, A. S.,

and Tanin, L. V. (1983). Measurement of the radial distribution of the refractive

index of the Schwann’s sheath and the axon of a myelinated nerve fiber in vivo.

J. Appl. Spectrosc. 39, 822–824. doi: 10.1007/BF00662830

Arakawa, Y., Nakamura, T., Urino, Y., and Fujita, T. (2013). Silicon photonics for

next generation system integration platform. IEEE Commun. Mag. 51, 72–77.

doi: 10.1109/MCOM.2013.6476868

Artem’ev, V. V., Goldobin, A. S., and Gus’kov, L. N. (1967). Recording of light

emission from a nerve. Biofzika 12, 1111–1113.

Boes, A., Corcoran, B., Chang, L., Bowers, J. E., and Mitchell, A. (2018).

Status and potential of lithium niobate on insulator (LNOI) for photonic

integrated circuits. Laser Photon. Rev. 12:1700256. doi: 10.1002/lpor.2017

00256

Bokkon, I., Salari, V., Tuszynski, J. A., and Antal, I. (2010). Estimation of the

number of biophotons involved in the visual perception of a single-object

image: biophoton intensity can be considerably higher inside cells than outside.

J. Photochem. Photobiol. B 100, 160–166. doi: 10.1016/j.jphotobiol.2010.

06.001

Breakspear, M., Roberts, J. A., Terry, J. R., Rodrigues, S., Mahant, N., and

Robinson, P. A. (2006). A unifying explanation of primary generalized seizures

through nonlinear brain modeling and bifurcation analysis. Cereb. Cortex 16,

1296–1313. doi: 10.1093/cercor/bhj072

Carolan, J., Harrold, C., Sparrow, C., Martín-López, E., Russell, N. J.,

Silverstone, J. W., et al. (2015). Universal linear optics. Science 349, 711–716.

doi: 10.1126/science.aab3642

Cheng, L., Mao, S., Li, Z., Han, Y., and Fu, H. Y. (2020). Grating couplers

on silicon photonics: design principles, emerging trends and practical issues.

Micromachines 11:666. doi: 10.3390/mi11070666

Chrostowski, L., and Hochberg, M. (2015). Silicon Photonics Design. Cambridge:

Cambridge University Press. doi: 10.1017/CBO9781316084168

Chwirot, B. W. (1992). “Ultraweak luminescence studies of microsporogenesis in

Larch,” in Recent Advances in Biophoton Research and Its Applications, eds F. A.

Popp, K. H. Li, and Q. Gu (Singapore: World Scientific Publishing Company),

259–285. doi: 10.1142/9789814439671_0010

Cifra, M., Brouder, C., Nerudova, M., and Kucera, O. (2015). Biophotons,

coherence and photocount statistics: a critical review. J. Luminesc. 164, 38–51.

doi: 10.1016/j.jlumin.2015.03.020

Cifra, M., and Pospisil, P. (2014). Ultra-weak photon emission from biological

samples: defnition, mechanisms, properties, detection and applications. J.

Photochem. Photobiol. B. Biol. 139, 2–10. doi: 10.1016/j.jphotobiol.2014.02.009

Coldren, L., Corzine, S., and Mashanovitch, M. (2012). Diode Lasers and

Photonic Integrated Circuits, 2nd Edn. Hoboken, NJ: John Wiley and Sons.

doi: 10.1002/9781118148167

Davis, K. M., Miura, K., Sugimoto, N., and Hirao, K. (1996). Writing

waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731.

doi: 10.1364/OL.21.001729

Demetrius, L. (2003). Quantum statistics and alometric scaling of organisms. Phys.

A 322, 477–490. doi: 10.1016/S0378-4371(03)00013-X

Donchin, E., Spencer, K. M., and Wijesinghe, R. (2000). The mental prosthesis:

assessing the speed of a P300-based brain-computer interface. IEEE Trans.

Rehabil. Eng. 8, 174–179. doi: 10.1109/86.847808

Dragulinescu, A. (2012). “Comparison of various structures of CMOS photodiodes

in terms of dark current, photocurrent, and quantum efficiency,” in

Proc. SPIE 8411, Advanced Topics in Optoelectronics, Microelectronics, and

Nanotechnologies VI (Bellingham, WA). doi: 10.1117/12.966388

Eggert, H., and Blazek, V. (1987). Optical properties of human brain tissue,

meninges, and brain tumors in the spectral range of 200 to 900 nm.

Neurosurgery 21, 459–464. doi: 10.1227/00006123-198710000-00003

Esmaeilpour, T., Fereydouni, E., Dehghani, F., Bókkon, I., Panjehshahin, M. R.,

Császár-Nagy, N., et al. (2020). An experimental investigation of ultraweak

Frontiers in Neuroscience | www.frontiersin.org 14 January 2022 | Volume 15 | Article 780344

https://doi.org/10.1042/bj2630273
https://doi.org/10.1016/j.bpj.2011.09.062
https://doi.org/10.1002/cm.970320406
https://doi.org/10.1007/BF00662830
https://doi.org/10.1109/MCOM.2013.6476868
https://doi.org/10.1002/lpor.201700256
https://doi.org/10.1016/j.jphotobiol.2010.06.001
https://doi.org/10.1093/cercor/bhj072
https://doi.org/10.1126/science.aab3642
https://doi.org/10.3390/mi11070666
https://doi.org/10.1017/CBO9781316084168
https://doi.org/10.1142/9789814439671_0010
https://doi.org/10.1016/j.jlumin.2015.03.020
https://doi.org/10.1016/j.jphotobiol.2014.02.009
https://doi.org/10.1002/9781118148167
https://doi.org/10.1364/OL.21.001729
https://doi.org/10.1016/S0378-4371(03)00013-X
https://doi.org/10.1109/86.847808
https://doi.org/10.1117/12.966388
https://doi.org/10.1227/00006123-198710000-00003
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Salari et al. BCI via Photonic Chips

photon emission from adult murine neural stem cells. Sci. Rep. 10, 463.

doi: 10.1038/s41598-019-57352-4

Fang, Z., and Zhao, C. Z. (2012). Recent progress in silicon photonics: a review.

ISRN Optics 2012:428690. doi: 10.5402/2012/428690

Franze, K., Grosche, J., Skatchkov, S. N., Schinkinger, S., Foja, C., Schild, D., et al.

(2007). Muller cells are living optical fibers in the vertebrate retina. Proc. Natl.

Acad. Sci. U.S.A. 104, 8287–8292. doi: 10.1073/pnas.0611180104

Fukushima, K. (1980). Neocognitron: a self-organizing neural network model

for a mechanism of pattern recognition unaffected by shift in position. Biol.

Cybernet. 36, 193–202. doi: 10.1007/BF00344251

Fulop, T., Tripathi, S., Rodrigues, S., Desroches, M., Bunt, T., Eiser, A., et al.

(2021). Targeting impaired antimicrobial immunity in the brain for the

treatment of Alzheimer’s Disease. Neuropsychiatr. Dis. Treat. 17, 1311–1339.

doi: 10.2147/NDT.S264910

Gardiner, C. W., and Zoller, P. (2004). Quantum Noise. New York, NY: Springer-

Verlag.

Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., and Lounasmaa O. V.

(1993). Magnetoencephalography theory, instrumentation, and applications to

noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497.

doi: 10.1103/RevModPhys.65.413

Hannan, M. A., Mutashar, S., Samad, S. A., and Hussain, A. (2014). Energy

harvesting for the implantable biomedical devices: issues and challenges.

Biomed. Eng. 13:79. doi: 10.1186/1475-925X-13-79

Imaizumi, S., Kayama, T., and Suzuki, J. (1984). Chemiluminescence in hypoxic

brain? The first report. Correlation between energy metabolism and free radical

reaction. Stroke 15, 1061–1065. doi: 10.1161/01.STR.15.6.1061

Isojima, Y., Isoshima, T., Nagai, K., Kikuchi, K., and Nakagawa, H. (1995).

Ultraweak biochemiluminescence detected from rat hippocampal slices.

Neuroreport 6, 658–660. doi: 10.1097/00001756-199503000-00018

Jia, Y., Guler, U., Lai, Y.P., Gong, Y., Weber, A., Li, W., et al. (2020). A trimodal

wireless implantable neural interface system-on-chip. IEEE Trans. Biomed.

Circ. Syst. 14, 1207–1217. doi: 10.1109/TBCAS.2020.3037452

Jolliffe, I. T. (2002). Principal Component Analysis. New York, NY: Springer-

Verlag.

Kataoka, Y., Cui, Y., Yamagata, A., Niigaki, M., Hirohata, T., Oishi, N., et al. (2001).

Activity-dependent neural tissue oxidation emits intrinsic ultraweak photons.

Biochem. Biophys. Res. Commun. 285, 1007–1011. doi: 10.1006/bbrc.2001.5285

Kobayashi, M., Takeda, M., Ito, K., Kato, H., and Inaba, H. (1999a). Two-

dimensional photon counting imaging and spatiotemporal characterization of

ultraweak photon emission from a rat’s brain in vivo. J. Neurosci. Methods 93,

163–168. doi: 10.1016/S0165-0270(99)00140-5

Kobayashi, M., Takeda,M., Sato, T., Yamazaki, Y., Kaneko, K., Ito, K., et al. (1999b).

In vivo imaging of spontaneous ultraweak photon emission from a rat’s brain

correlated with cerebral energy metabolism and oxidative stress. Neurosci. Res.

34, 103–113. doi: 10.1016/S0168-0102(99)00040-1

Kumar, S., Boone, K., Tuszynski, J., Barclay, P., and Simon, C. (2016). Possible

existence of optical communication channels in the brain. Sci Rep. 7;6:36508.

doi: 10.1038/srep36508

Levy, I., Hasson, U., and Malach, R. (2004). One picture is worth at least a million

neurons. Curr. Biol. 14, 996–1001. doi: 10.1016/j.cub.2004.05.045

Liang, D., and Bowers, J. E. (2009). Photonic integration: Si or InP substrates?

Electron. Lett. 45, 578–581. doi: 10.1049/el.2009.1279

Marshall, G. D., Politi, A., Matthews, J. C. F., Dekker, P., Ams, M., Withford, M. J.,

et al. (2009). (2009). Laser written waveguide photonic quantum circuits. Opt.

Express 17, 12546–12554 doi: 10.1364/OE.17.012546

Marsili, F., Verma, V. B., Stern, J. A., Harrington, S., Lita, A. E., Gerrits, T., et al.

(2013). Detecting single infrared photons with 93% system efficiency. Nat.

Photon 7, 210–214. doi: 10.1038/nphoton.2013.13

Masius, A. A., and Wong, Y. C. (2020). On-chip miniaturized antenna in CMOS

technology for biomedical implant. Int. J. Electron. Commun. 115:153025.

doi: 10.1016/j.aeue.2019.153025

Mofid, M. M., Thompson, R. C., Pardo, C. A., Manson, P. N., and Vander Kolk,

C. A. (1997). Biocompatibility of fixation materials in the brain. Plast. Reconstr.

Surg. 100,14–20. doi: 10.1097/00006534-199707000-00003

Muñoz, P., Micó, G., Bru, L. A., Pastor, D., Perez, D., Domenech, J. D.,

Fernandez, J., et al. (2017). Silicon nitride photonic integration platforms

for visible, near-infrared and mid-infrared applications. Sensors 17:2088.

doi: 10.3390/s17092088

Musumeci, F., Privitera, G., Scordino, A., Tudisco, S., and Lo Presti, C. (2005).

Discrimination between normal and cancer cells by using analysis of delayed

luminescence. Appl. Phys. Lett. 86, 153902–153901. doi: 10.1063/1.1900317

Naseer, N., and Hong, K. S. (2015). fNIRS-based brain-computer interfaces: a

review. Front. Hum. Neurosci. 9:3. doi: 10.3389/fnhum.2015.00003

Niedermeyer, E., and da Silva, F. L. (2004). Electroencephalography: Basic

Principles, Clinical Applications, and Related Fields. Philadelphia, PA: Lippincott

Williams &Wilkins.

Niggli, H. J., Tudisco, S., Lanzanò, L., Applegate, L. A., Scordino, A., and

Musumeci, F. (2008). Laser-ultraviolet-A induced ultra weak photon emission

in human skin cells: a biophotonic comparison between keratinocytes and

fbroblasts. Indian J. Exp. Biol. 46, 358–363. Available online at: http://nopr.

niscair.res.in/bitstream/123456789/4472/1/IJEB%2046%285%29%20358-363.

pdf

Niggli, H. J., Tudisco, S., Privitera, G., Applegate, L. A., Scordino, A., and

Musumeci, F. (2005). Laser-ultraviolet-A-induced ultraweak photon emission

in mammalian cells. J. Biomed. Opt. 10:024006. doi: 10.1117/1.1899185

Nolte, S., Will, M., Burghoff, J., and Tuennermann, A. (2003). Femtosecond

waveguide writing: a new avenue to three-dimensional integrated optics. Appl.

Phys. A 77, 109–111. doi: 10.1007/s00339-003-2088-6

Pakkenberg, B., and Gundersen, H. J. (1987). Neocortical neuron number

in humans: effect of sex and age. J. Comp. Neurol. 384, 312–320.

doi: 10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-K

Palanker, D., Vankov, A., Huie, P., and Baccus, S. (2005). Design of a high-

resolution optoelectronic retinal prosthesis. J. Neural Eng. 2, S105–S120.

doi: 10.1117/12.590964

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin.

Neurophysiol. 118, 2128–2148. doi: 10.1016/j.clinph.2007.04.019

Popp, F. A., Li, K. H., Mei, W. P., Galle, M., and Neurohr, R. (1988). Physical

aspects of biophotons. Experientia 44, 576–585. doi: 10.1007/BF01953305

Popp, F. A., Nagl, W., Li, K. H., Scholz, W., Weingärtner, O., Wolf, R. (1984).

Biophoton emission. New evidence for coherence and DNA as source. Cell

Biophys. 6, 33–51. doi: 10.1007/BF02788579

Pospisil, P., Prasad, A., and Rac, M. (2014). Role of reactive oxygen species in ultra-

weak photon emission in biological systems. J. Photochem. Photobiol. B Biol.

139, 11–23. doi: 10.1016/j.jphotobiol.2014.02.008

Prodanov, D., and Delbeke, J. (2016). Mechanical and biological interactions of

implants with the brain and their impact on implant design. Front. Neurosci.

10:11. doi: 10.3389/fnins.2016.00011

Reichenbach, A., and Bringmann, A. (2013). New functions of Muller cells. Glia

61, 651–678. doi: 10.1002/glia.22477

Romero-Garcia, S., Merget, F., Zhong, F., Finkelstein, H., and Witzens,

J. (2013). Silicon nitride CMOS-compatible platform for integrated

photonics applications at visible wavelengths. Opt. Express 21, 14036–14046.

doi: 10.1364/OE.21.014036

Salari, V., Bokkon, I., Ghobadi, R., Scholkmann, F., and Tuszynski, J. A.

(2016b). Relationship between intelligence and spectral characteristics of brain

biophoton emission: correlation does not automatically imply causation. Proc.

Natl. Acad. Sci. U.S.A. 113, E5540–E5541. doi: 10.1073/pnas.1612646113

Salari, V., and Brouder, C. (2011). Comment on Delayed luminescence of

biological systems in terms of coherent states. Phys. Lett. A 375, 2531–2532.

doi: 10.1016/j.physleta.2011.05.017

Salari, V., Paneru, D., Saglamyurek, E., and Ghadimi, M. (2021). Quantum face

recognition protocol with ghost imaging. arXiv preprint arXiv:2110.10088.

Salari, V., Scholkmann, F., Bokkon, I., Shahbazi, F., and Tuszynski, J.

(2016a). The physical mechanism for retinal discrete dark noise: thermal

activation or cellular ultraweak photon emission? PLoS ONE 11:e0148336.

doi: 10.1371/journal.pone.0148336

Salari, V., Scholkmann, F., Vimal, L. P., Császár, N., Aslani, M., and Bókkon,

I. (2017). Phosphenes, retinal discrete dark noise, negative aferimages

and retinogeniculate projections: a new explanatory framework based

on endogenous ocular luminescence. Prog. Ret. Eye Res. 60, 101–119.

doi: 10.1016/j.preteyeres.2017.07.001

Salari, V., Valian, H., Bassereh, H., Bokkon, I., and Barkhordari, A. (2015).

Ultraweak photon emission in the brain. J. Integ. Neurosci. 14, 419–429.

doi: 10.1142/S0219635215300012

Sander, T. H., Preusser, J., Mhaskar, R., Kitching, J., Trahms, L., and

Knappe, S. (2012). Magnetoencephalography with a chip-scale atomic

Frontiers in Neuroscience | www.frontiersin.org 15 January 2022 | Volume 15 | Article 780344

https://doi.org/10.1038/s41598-019-57352-4
https://doi.org/10.5402/2012/428690
https://doi.org/10.1073/pnas.0611180104
https://doi.org/10.1007/BF00344251
https://doi.org/10.2147/NDT.S264910
https://doi.org/10.1103/RevModPhys.65.413
https://doi.org/10.1186/1475-925X-13-79
https://doi.org/10.1161/01.STR.15.6.1061
https://doi.org/10.1097/00001756-199503000-00018
https://doi.org/10.1109/TBCAS.2020.3037452
https://doi.org/10.1006/bbrc.2001.5285
https://doi.org/10.1016/S0165-0270(99)00140-5
https://doi.org/10.1016/S0168-0102(99)00040-1
https://doi.org/10.1038/srep36508
https://doi.org/10.1016/j.cub.2004.05.045
https://doi.org/10.1049/el.2009.1279
https://doi.org/10.1364/OE.17.012546
https://doi.org/10.1038/nphoton.2013.13
https://doi.org/10.1016/j.aeue.2019.153025
https://doi.org/10.1097/00006534-199707000-00003
https://doi.org/10.3390/s17092088
https://doi.org/10.1063/1.1900317
https://doi.org/10.3389/fnhum.2015.00003
http://nopr.niscair.res.in/bitstream/123456789/4472/1/IJEB%2046%285%29%20358-363.pdf
http://nopr.niscair.res.in/bitstream/123456789/4472/1/IJEB%2046%285%29%20358-363.pdf
http://nopr.niscair.res.in/bitstream/123456789/4472/1/IJEB%2046%285%29%20358-363.pdf
https://doi.org/10.1117/1.1899185
https://doi.org/10.1007/s00339-003-2088-6
https://doi.org/10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-K
https://doi.org/10.1117/12.590964
https://doi.org/10.1016/j.clinph.2007.04.019
https://doi.org/10.1007/BF01953305
https://doi.org/10.1007/BF02788579
https://doi.org/10.1016/j.jphotobiol.2014.02.008
https://doi.org/10.3389/fnins.2016.00011
https://doi.org/10.1002/glia.22477
https://doi.org/10.1364/OE.21.014036
https://doi.org/10.1073/pnas.1612646113
https://doi.org/10.1016/j.physleta.2011.05.017
https://doi.org/10.1371/journal.pone.0148336
https://doi.org/10.1016/j.preteyeres.2017.07.001
https://doi.org/10.1142/S0219635215300012
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Salari et al. BCI via Photonic Chips

magnetometer. Biomed. Opt. Express 3, 981–990. doi: 10.1364/BOE.3.0

00981

Scholkmann, F. (2015). Two emerging topics regarding long-range physical

signaling in neurosystems: membrane nanotubes and electromagnetic fields. J.

Integr. Neurosci. 14, 135–153. doi: 10.1142/S0219635215300115

Scholkmann, F. (2016). Long range physical cell-to-cell signalling viamitochondria

inside membrane nanotubes: a hypothesis. Theor. Biol. Med. Model. 13:1.

doi: 10.1186/s12976-016-0042-5

Scholkmann, F., Kleiser, S., Metz, A. J., Zimmermann, R., Pavia, J. M., Wolf, U.,

and Wolf, M. (2014). A review on continuous wave functional near-infrared

spectroscopy and imaging instrumentation and methodology. Neuroimage 85,

6–27. doi: 10.1016/j.neuroimage.2013.05.004

Scordino, A., Baran, I., Gulino, M., Ganea, C., Grasso, R., Niggli, J. H., and

Musumeci, F. (2014). Ultra-weak delayed luminescence in cancer research: a

review of the results by the ARETUSA equipment. J. Photochem. Photobiol. B 5,

76–84. doi: 10.1016/j.jphotobiol.2014.03.027

Shen, K., and Maharbiz, M. M. (2021). Ceramic packaging in neural implants. J.

Neural Eng. 18:025002. doi: 10.1088/1741-2552/abd683

Shenoy, P., Miller, K. J., Ojemann, J. G., and Rao, R. P. N. (2007). Generalized

features for electrocorticographic BCIs. IEEE Trans. Biomed. Eng. 55, 273–280.

doi: 10.1109/TBME.2007.903528

Simon, C. (2019). Can quantum physics help solve the hard problem of

consciousness? J. Conscious. Stud. 26, 204–218.

Simons, M., and Trajkovic, K. (2006). Neuron-glia communication in the control

of oligodendrocyte function and myelin biogenesis. J. Cell Sci. 119(Pt 21),

4381–4389. doi: 10.1242/jcs.03242

Slawinski, J. (1988). Luminescence research and its relation to ultraweak cell

radiation. Experientia 44, 559–571. doi: 10.1007/BF01953303

Spring, J. B., Metcalf, B. J., Humphreys, P. C., Kolthammer, W. S., Jin, X. M.,

Barbieri, M., et al. (2012). Boson sampling on a photonic chip. Science 339,

798–801. doi: 10.1126/science.1231692

Stefanov, K. D., Prest, M. J., Downing, M., George, E., Bezawada, N., and

Holland, A. D. (2020). Simulations and design of a single-photon CMOS

imaging pixel using multiple non-destructive signal sampling. Sensors 20, 2031.

doi: 10.3390/s20072031

Sun, Y., Wang, C., and Dai, J. (2010). Biophotons as neural communication signals

demonstrated by in situ biophoton autography. Photochem. Photobiol. Sci. 9,

315–322. doi: 10.1039/b9pp00125e

Suzuki, J., Imaizumi, S., Kayama, T., and Yoshimoto, T. (1985).

Chemiluminescence in hypoxic brain? The second report: cerebral protective

effect of mannitol, vitamin E and glucocorticoid. Stroke 16, 695–700.

doi: 10.1161/01.STR.16.4.695

Szameit, A., Dreisow, F., Pertsch, T., and Nolte, S. (2007). Tunnermann, Andreas

Control of directional evanescent coupling in fs laser written waveguides. Opt.

Express 15, 1579–1587. doi: 10.1364/OE.15.001579

Tang, R., and Dai, J. (2013). Biophoton signal transmission and

processing in the brain. J. Photochem. Photobiol. B. Biol. 139, 71–75.

doi: 10.1016/j.jphotobiol.2013.12.008

Tang, R., and Dai, J. (2014). Spatiotemporal imaging of glutamate-induced

biophotonic activities and transmission in neural circuits. PLoS ONE 9:e85643.

doi: 10.1371/journal.pone.0085643

Tokuda, T., Haruta, M., Sasagawa, K., and Ohta, J. (2021). CMOS-based

neural interface device for optogenetics. Adv. Exp. Med. Biol. 1293, 585–600.

doi: 10.1007/978-981-15-8763-4_41

Urbonas, D., Mahrt, R. F., and Stöferle, T. (2021). Low-loss optical

waveguides made with a high-loss material. Light Sci. Appl. 10:15.

doi: 10.1038/s41377-020-00454-w

Wang, C., Bokkon, I., Dai, J., and Antal, I. (2011). Spontaneous and visible

light-induced ultraweak photon emission from rat eyes. Brain Res. 1369, 1–9.

doi: 10.1016/j.brainres.2010.10.077

Wang, Z., Wang, N., Li, Z., Xiao, F., and Dai, J. (2016). Human high

intelligence is involved in spectral redshif of biophotonic activities in the

brain. Proc. Natl. Acad. Sci. U.S.A. 113, 8753–8758. doi: 10.1073/pnas.16048

55113

Washburna, A. L., and Bailey, R. C. (2011). Photonics-on-a-chip: recent

advances in integrated waveguides as enabling detection elements for

real-world, lab-on-a-chip biosensing applications. Analyst 136, 227–236.

doi: 10.1039/C0AN00449A

Wollman, E. E., Verma, V. B., Lita, A. E., Farr, W. H., Shaw, M. D.,

Mirin, R. P., et al. (2019). Kilopixel array of superconducting nanowire

single-photon detectors. Opt. Express 27, 35279–35289. doi: 10.1364/OE.27.0

35279

Zarkeshian, P., Kumar, S., Tuszynski, J., Barclay, P., and

Simon, C. (2018). Are there optical communication channels

in the brain? Front. Biosci. 23, 1407–1421. doi: 10.2741/

4652

Zhang, J., Yu, W., Sun, T., and Popp, F. A. (1997). Spontaneous

and light-induced photon emission from intact brains of chick

embryos. Sci. China C Life Sci. 40, 43–51. doi: 10.1007/BF028

79106

Zhu, D., Shao, L., Yu, M., Cheng, R., Desiatov, B., Xin, C., et al. (2021). Integrated

photonics on thin-film lithium niobate. Adv. Opt. Photon. 13, 242–352.

doi: 10.1364/AOP.411024

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Salari, Rodrigues, Saglamyurek, Simon and Oblak. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 January 2022 | Volume 15 | Article 780344

https://doi.org/10.1364/BOE.3.000981
https://doi.org/10.1142/S0219635215300115
https://doi.org/10.1186/s12976-016-0042-5
https://doi.org/10.1016/j.neuroimage.2013.05.004
https://doi.org/10.1016/j.jphotobiol.2014.03.027
https://doi.org/10.1088/1741-2552/abd683
https://doi.org/10.1109/TBME.2007.903528
https://doi.org/10.1242/jcs.03242
https://doi.org/10.1007/BF01953303
https://doi.org/10.1126/science.1231692
https://doi.org/10.3390/s20072031
https://doi.org/10.1039/b9pp00125e
https://doi.org/10.1161/01.STR.16.4.695
https://doi.org/10.1364/OE.15.001579
https://doi.org/10.1016/j.jphotobiol.2013.12.008
https://doi.org/10.1371/journal.pone.0085643
https://doi.org/10.1007/978-981-15-8763-4_41
https://doi.org/10.1038/s41377-020-00454-w
https://doi.org/10.1016/j.brainres.2010.10.077
https://doi.org/10.1073/pnas.1604855113
https://doi.org/10.1039/C0AN00449A
https://doi.org/10.1364/OE.27.035279
https://doi.org/10.2741/4652
https://doi.org/10.1007/BF02879106
https://doi.org/10.1364/AOP.411024
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Are Brain–Computer Interfaces Feasible With Integrated Photonic Chips?
	1. Introduction
	2. Classical Brain–Computer Interface Technology
	3. Potential Application of UPE in BCI
	3.1. UPE Intensity From the Surface of the Human Brain

	4. Skull-Implant Setup for the UPE-Based BCI
	4.1. On-Chip Photonic Integrated Circuits
	4.2. Photons Statistics and Distributions
	4.2.1. Photon Detection With Interference

	4.3. Implementation Feasibility
	4.3.1. Chip Ingredients

	4.4. Noise and Loss in the PIC
	4.4.1. Noise and Loss in the Receiver Optical Plane
	4.4.2. Loss in Optical Fibers
	4.4.3. Noise and Loss in Optical Interferometer

	4.5. Noise and Loss in the CMOS Sensor Array
	4.5.1. Quantum Efficiency
	4.5.2. Chip Battery and Wireless Sectors

	4.6. Biocompatibility of the Chip

	5. Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


