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As an aggressive subtype of breast cancer, triple-negative breast cancer (TNBC) is
associated with poor prognosis and lack of effective therapy, except chemotherapy. In
recent years, immunotherapy based on immune checkpoint (IC) inhibition has emerged as
a promising therapeutic strategy in TNBC. TNBC has more tumor-infiltrating lymphocytes
(TILs) and higher rate of mutation and programmed cell death ligand-1 (PD-L1) expression
than other subtypes of breast cancer have. However, previous studies have shown that
monotherapy has little efficacy and only some TNBC patients can benefit from
immunotherapy. Therefore, it is important to identify biomarkers that can predict the
efficacy of IC inhibitors (ICIs) in TNBC. Recently, various biomarkers have been extensively
explored, such as PD-L1, TILs and tumor mutational burden (TMB). Clinical trials have
shown that PD-L1-positive patients with advanced TNBC benefit from ICIs plus
chemotherapy. However, in patients with early TNBC receiving neoadjuvant therapy,
PD-L1 cannot predict the efficacy of ICIs. These inconsistent conclusions suggest that
PD-L1 is the best to date but an imperfect predictive biomarker for efficacy of ICIs. Other
studies have shown that advanced TNBC patients with TMB ≥10 mutations/Mb can
achieve clinical benefits from pembrolizumab. TILs also have potential predictive value in
TNBC. Here, we select some biomarkers related to ICIs and discuss their potential
predictive and prognostic value in TNBC. We hope these biomarkers could help to identify
suitable patients and realize precision immunotherapy.

Keywords: predictive biomarkers, immunotherapy, triple-negative breast cancer, immune checkpoint inhibitors,
prognostic biomarker
1 INTRODUCTION

Among women, breast cancer (BC) is the malignant tumor with the highest morbidity and the
second highest mortality (1–4). BC can be divided into four subtypes on the basis of expression of
estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2
(HER2), and Ki-67 as follows: luminal A, luminal B, HER2-enriched, and triple-negative (TN).
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TNBC accounts for 12%–17% of BC, and compared with other
subtypes, has specific characteristics including earlier onset age,
higher metastatic potential, and worse prognosis (5, 6). As a
heterogeneous disease, TNBC can be classified into multiple
subtypes by different detection methods. According to
transcriptome data from the Chinese population, TNBC can be
divided into four subtypes: immunomodulatory (IM), luminal
androgen receptor, mesenchymal-like, and basal-like and
immune suppressed (7, 8). Because TNBC lacks expression of
ER and PR and has little or no HER2 expression, it has become
the most refractory BC, and chemotherapy is still the most
important treatment regimen. Once the tumor has progressed,
TNBC is often incurable and the overall survival (OS) is only 10–
13 months (9, 10). Therefore, to extend the survival of TNBC
patients, a novel treatment strategy is urgently needed.

Recently, immunotherapy has been the focus of investigation in
tumor therapy. At present, immunotherapy has shown strong
activity against some tumor types such as melanoma and non-
small cell lung cancer (NSCLC). Tumor immunotherapy, because of
its reliable efficacy and tolerable safety, is regarded as the most
promising treatment after surgery, chemotherapy, radiotherapy and
targe ted therapy (11) . The most f requent ly used
immunotherapeutic drugs are immune checkpoint inhibitors
(ICIs), such as programmed cell death protein 1 (PD-1)/PD
ligand 1 (PD-L1) inhibitors and anti-cytotoxic T lymphocyte
antigen-4 (CTLA-4) agents. ICIs can increase lymphocytic
cytotoxicity and proliferation by interrupting the binding of IC
receptors and ligands to exert antitumor effects. Compared with
other subtypes of BC, TNBC has higher frequency of copy number
changes, genetic instability, and structural rearrangements, which
contribute to its high mutation rate (7, 12). The high mutation rate
in TNBC is associated with high lymphocyte infiltration and
increased PD-L1 expression (13–15). Both immune cells and
immunostimulators are enriched in the IM subtype of TNBC (7).
These indicate that patients with TNBC, especially IM subtype, may
benefit from ICIs. Therefore, increasing numbers of clinical trials
have investigated the efficacy of ICIs for treatment of TNBC, and
have shown promising results (16, 17). In the IMpassion 130 study,
patients with metastatic or locally advanced unresectable TNBC
treated with atezolizumab plus nab-paclitaxel had longer
progression-free survival (PFS) in the intention-to-treat
population and PD-L1-positive subgroup compared with patients
treated with placebo plus nab-paclitaxel. Clinically meaningful
prolonged OS was observed in the PD-L1-positive metastatic
TNBC (mTNBC) subgroup treated with atezolizumab plus nab-
paclitaxel (17, 18). Similar results were seen in the KEYNOTE-355
study, indicating that chemotherapy plus pembrolizumab
significantly improved PFS compared with chemotherapy alone
for PD-L1-positive patients with metastatic or locally advanced
unresectable TNBC (19). Based on these results, pembrolizumab
plus chemotherapy are strongly recommended by version 1.2021 of
the National Comprehensive Cancer Network (NCCN) guidelines
for BC as a first-line regimen in patients with locally advanced or
mTNBC with PD-L1 expression.

However, not all TNBC patients can benefit from ICIs. The
KEYNOTE-119 study showed that pembrolizumab did not prolong
Frontiers in Oncology | www.frontiersin.org 2
OS significantly in previously treated mTNBC patients, compared
with chemotherapy (20). Similarly, in the IMpassion 131 study,
paclitaxel combined with atezolizumab did not significantly prolong
PFS or OS in the intention-to-treat population (21). These results
question the efficacy of ICIs in TNBC. Therefore, it is necessary to
identify biomarkers for the efficacy of ICIs to help select patients
who could benefit from immunotherapy, and to guide the rational
application of such drugs in clinical practice. Besides, some of these
biomarkers also have potential prognostic value in TNBC. This
review aims to summarize the recent development of the most-
discussed biomarkers, which might help to predict the efficacy of
immunotherapy and prognosis in TNBC patients.
2 POTENTIAL PREDICTIVE AND
PROGNOSTIC VALUE OF THE
BIOMARKERS RELATED TO ICIs in TNBC

Currently, the most studied biomarkers related to the efficacy of
ICIs in TNBC are TILs, TMB, and PD-L1 expression status
[Table 1 (16, 18–38)]. PD-L1 as the target of anti-PD-L1
treatment is a potential predictive biomarker for the efficacy of
PD-1/PD-L1 inhibitors and prognosis of TNBC (16, 19, 22, 39–41).
However, the predictive value of PD-L1 is still questionable (23, 40,
42, 43). As mentioned above, TNBC patients have high levels of
TILs and TMB. Previous studies have analyzed the predictive
values of TILs and TMB for ICIs and have shown that they are
associated with better efficacy in TNBC (24–26, 44–52). However,
other studies have not confirmed the potential predictive value of
TMB (53, 54). Myeloid-derived suppressor cells (MDSCs) and
CTLA-4 are related to the increase of TNBC neoantigens,
immunosuppression, and immune microenvironment; therefore,
their value in IC inhibition cannot be ignored (55–59). Some
studies have found that cytokines may predict the efficacy of ICIs
and prognosis of BC, but there is a lack of consensus for TNBC.
The following is an overview of the potential predictive and
prognostic values (Figure 1), existing problems, and future
application prospects of these biomarkers.

2.1 ICs
2.1.1 PD-L1
PD-L1 is the ligand of PD-1 and is related to immunosuppression.
Under normal circumstances, the immune system reacts to foreign
antigens in the lymph nodes or spleen by promoting activation of
antigen-specific cytotoxic T cells (such as CD8+ T cells). PD-1
combined with PD-L1 can transmit inhibitory signals and reduce
the proliferation of CD8+ T cells in lymph nodes, which leads to
immune escape of tumor cells. The PD-1/PD-L1 inhibitors
interrupt binding of PD-L1 to PD-1, and in this way, tumor
cells cannot transmit inhibitory signals to T cells, and T cells
recognize and destroy cancer cells. About 20% of TNBC cells
express PD-L1 (15, 60). Several studies have explored the
predictive value of PD-L1 for immunotherapy in TNBC (16, 19,
22, 39–41). However, inconsistent results have been shown in
different studies (23, 40, 42, 43).
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TABLE 1 | Summary of clinical trials evaluating the predictive value of the biomarkers for ICIs in TNBC.

Biomarkers Application Trials Treatment N Group Key Data

PD-L1 Early TNBC KEYNOTE-522
(29)

Pembro /placebo
+chemotherapy

602 • PD-L1+ • pCR: 68.9% vs 54.9%

PD-L1- • pCR: 45.3% vs 30.3%
Impassion031

(23)
Atezo /placebo
+chemotherapy

333 • PD-L1+ • pCR: 69% (95% CI, 57-79) vs 49% (95% CI, 38-
61)

• PD-L1- • pCR: 48% vs 34%
Advanced
TNBC

Impassion130
(16, 18)

Atezo /placebo +
nab-paclitaxel

902 • PD-L1 + • m PFS: 7.5 (95%CI, 6.7-9.2) mo vs 5.0 (95%CI,
3.8-5.6) mo; HR=0.64 (0.51-0.80)
• m OS: 25.4 (95% CI, 19.6-30.7) mo vs 17.9 (95%
CI, 13.6-20.3)mo; HR=0.67 (0.53-0.86)

• PD-L1- • m PFS: 5.6 mo vs 5.6 mo; HR=0.95 (0.79-1.15)
• m OS: 19.7 mo vs 19.7 mo; HR=1.05 (0.87-1.28)

KEYNOTE-012
(30)

single-agent
pembro

111 • PD-L1+ • m PFS: 1.9 (95% CI, 1.7-5.5) mo
• m OS: 11.2 (95% CI, 5.3- (not reached)) mo

KEYNOTE-086
(31, 32)

single-agent
pembro

Cohort
A:170
B:84

• Cohort A
(PD-L1+vs PD-L1-)

• m PFS: 2.0 (95%CI, 1.9-2.1) mo vs 1.9 (95%CI,
1.7-2.0) mo
• m OS: 8.8 (95%CI, 7.1-11.2) mo vs 9.7 (95%CI,
6.2-12.6) mo

• Cohort B
(PD-L1+)

• m PFS: 2.1 (95%CI, 2.0-2.2) mo
• m OS: 18.0 (95%CI, 12.9, 23.0) mo

PD-L1 Advanced
TNBC

KEYNOTE-119
(20)

Pembro/
chemotherapyi

1098 • CPS ≥1 • m OS: 10.7 (95% CI, 9.3-12.5) mo vs 10.2 (95%
CI, 7.9-12.6) mo; HR=0.86(0.69-1.06)

• CPS ≥10 • m OS: 12.7(95% CI, 9.9-16.3) mo vs 11.6 (95%
CI, 8.3-13.7) mo; HR=0.78(0.57-1.06)

• CPS ≥20 • m OS: 14.9 mo vs 12.5 mo; HR=0.58(0.38-0.88)
KEYNOTE-355

(19, 33)
Pembro /placebo+
chemotherapy

847 • CPS ≥1 • m PFS: 7.6 (95% CI, 6.6-8.0) mo vs 5.6 (95% CI,
5.4-7.4) mo; HR=0.75 (0.62-0.91)
• m OS: 17.6(95% CI, 15.5-19.5) mo vs 16.0 (95%
CI, 12.8-17.4) mo; HR=0.86 (0.72-1.04)

• CPS ≥10 • m PFS: 9.7 (95% CI, 7.6-11.3) mo vs 5.6 (95% CI,
5.3-7.5) mo; HR=0.66 (0.50-0.88)
• m OS: 23.0(95% CI, 19.0-26.3) mo vs 16.1 (95%
CI, 12.6-18.8) mo; HR=0.73(0.55-0.95)

JAVELIN (22) single-agent
avelumab

168
(58 was
TNBC)

• TNBC
(PD-L1+ vs PD-L1-)

• ORR: 22.2% vs. 2.6%

• ≥1% TC
(PD-L1+ vsPD-L1-)

• mPFS:5.9(95%CI, 5.7-6.0)weeks vs 6.0(95% CI,
5.9-6.0) weeks; HR=1.183 (0.815-1.716)
• m OS: 6.5 (95% CI, 3.7-9.2) mo vs 8.3 (95% CI
6.3, ne) mo; HR=1.331 (0.815-2.174)

• ≥5% TC
(PD-L1+ vsPD-L1-)

• mPFS:6.0(95% CI, 5.7-7.1)weeks vs 5.9(95%CI,
5.9-6.0) weeks; HR=0.782 (0.473-1.290)
• m OS: 6.5 (95% CI, 2.2-ne) mo vs 7.1 (95% CI,
5.1-11.3) mo; HR=1.057 (0.556-2.010)

• ≥25% TC
(PD-L1+ vsPD-L1-)

• mPFS:6.0(95% CI 5.4- ne)weeks vs 5.9(95% CI
5.9- 6.0) weeks; HR=0.695 (0.172-2.813)
• m OS: 9.2 (95% CI, ne-ne) mo vs 6.8 (95% CI,
4.9-10.8) mo; HR=0.441 (0.061-3.177)

• ≥10% IC c
(PD-L1+ vsPD-L1-)

• mPFS:6.1(95%CI, 2.3-24,1)weeks vs 5.9(95%CI,
5.9-6.0)weeks; HR=0.656 (0.341-1.263)
• m OS: 11.3 (95% CI, 1.4-ne) mo vs 6.8 (95% CI,
4.7-9.2) mo; HR=0.620 (0.250-1.541)

KEYNOTE-150
(34)

Eribulin +pembro 107 • PD-L1+ • m PFS: 4.1 (95%CI, 2.1-4.8) mo
• PD-L1- • m PFS: 4.1 (95%CI, 2.3-6.3)mo

Impassion131
(21)

Atezo/ placebo
+paclitaxel

651 • PD-L1 + • m PFS: 6.0 (95% CI 5.6-7.4) mo vs 5.7 (95% CI
5.4-7.2) mo; HR=0.82 (0.60-1.12)
• Final OS: 22.1(95%CI 19.2-30.5) mo vs 28.3 (95%
CI 19.1-NE) mo; HR=1.11(0.76-1.64)

TILs Early TNBC KEYNOTE-173
(35)

Pembro +
chemotherapy

60 • Available pre-treatment sTILs
date of ypT0/Tis ypN0

• pCR : 60% vs 40% a

• Available on-treatment sTILs
date of ypT0/Tis ypN0

• pCR : 57% vs 43% b

• Available pre-treatment sTILs
date of ypT0 /ypN0

• pCR: 58% vs 42% c

• Available on-treatment sTILs
date of ypT0 /ypN0

• pCR: 53% vs 47%d

GeparNuevo
(28)

Durva / placebo+
chemotherapy

174 • Durvalumab-arm
(sTILs)e

• OR: 1.23 (95%CI, 1.04-1.6)

(Continued)
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Some studies have provided evidence about the predictive
value of PD-L1 for efficacy of ICIs in TNBC [Table 2 (18–21–23,
29–34, 37)]. PD-L1 has been shown to predict the efficacy of PD-
1/PD-L1 inhibitors in mTNBC, whether in monotherapy or
Frontiers in Oncology | www.frontiersin.org 4
combination therapy (22, 39). Atezolizumab-treated patients
with advanced TNBC in the PD-L1-positive population had a
higher objective response rate (ORR) compared with the PD-L1-
negative population (22.2% vs 2.6%) (39). Similarly, the
TABLE 1 | Continued

Biomarkers Application Trials Treatment N Group Key Data

• Durvalumab-arm
(iTILs)e

• OR: 1.58 (95%CI, 0.85-2.97)

• Durvalumab-arm
(iTILs post-pre)f

• OR: 5.15 (95%CI, 1.1-24.05)

• Placebo-arm
(sTILs) e

• OR: 1.39 (95%CI, 1.12-1.74)

• Placebo-arm
(iTILs) e

• OR: 0.94 (95%CI, 0.73-1.22)

• Placebo-arm
(iTILs post-pre)f

• OR: 1.19 (95%CI, 0.65-2.17)

Advanced
TNBC

KEYNOTE-086
(27, 31, 32)

single-agent
pembro

•Cohort
A: 147
B:46

• Cohort A • ORR: 6% vs 2%g

• Cohort B • ORR: 39% vs 9%h

TILs Advanced
TNBC

Impassion130
(24, 36, 37)

Atezo/ placebo +
nab-paclitaxel

902 • Any PD-L1, sTILs<10% •m PFS: 5.6 mo vs 5.4 mo; HR=0.86 (0.73-1.02)
•m OS: 19.2 mo vs 18.1 mo; HR=0.88 (0.72-1.08)

• Any PD-L1, sTILs≥10% •m PFS: 8.3 mo vs 6.1 mo; HR=0.64 (0.50-0.84)
•m OS: 25.0 mo vs 20.0 mo; HR=0.75 (0.54-1.03)

• PD-L1 ≥1%, sTILs<10% •m PFS: 6.4 mo vs 4.7 mo; HR=0.80 (0.59-1.10)
•m OS: 19.1 mo vs 17.6 mo; HR=0.74 (0.50-1.10)

• PD-L1 ≥1%, sTILs≥10% •m PFS: 9.0 mo vs 5.4 mo; HR=0.54 (0.39-0.75)
•m OS: 30.0 mo vs 18.2 mo; HR=0.54 (0.39-0.75)

• PD-L1 <1%, sTILs<10% •m PFS: 5.6 mo vs 5.5 mo; HR=0.90 (0.73-1.10)
•m OS: 19.3 mo vs 18.2 mo; HR=0.95 (0.75-1.20)

• PD-L1 <1%, sTILs≥10% •m PFS: 7.2 mo vs 9.0 mo; HR=0.92 (0.59-1.44)
•m OS: 23.7 mo vs 24.5 mo; HR=1.04 (0.59-1.82)

• Any PD-L1, CD8 <0.5% •m PFS: 5.6 mo vs 5.6 mo; HR=0.86 (0.65 to 1.14)
•m OS: 16.3 mo vs 22.3 mo; HR=1.16 (0.81 to
1.65)

• Any PD-L1, CD8 ≥0.5% •m PFS:7.4 mo vs 5.5 mo; HR=0.75 (0.62 to 0.91)
•m OS: 22.6 mo vs 18.1 mo; HR=0.69 (95%CI,
0.54-0.81)

• PD-L1 ≥1%,CD8<0.5% •m PFS: 9.2 mo vs3.8 mo; HR=0.33 (0.13 to 0.83)
•m OS:30.7 mo vs19.4 mo; HR=0.22 (0.06 to 0.90)

• PD-L1 ≥1%,CD8 ≥0.5% •m PFS: 7.7 mo vs 5.3 mo; HR=0.64 (0.49 to 0.83)
•m OS: 28.6 mo vs 17.7 mo; HR=0.63 (0.46 to
0.86)

• PD-L1<1%,CD8 <0.5% •m PFS: 5.6 mo vs 5.7 mo; HR=1.00 (0.73 to 1.37)
• m OS: 15.5 mo vs 22.3 mo; HR=1.39 (0.95 to
2.03)

• PD-L1<1%,CD8 ≥0.5% •m PFS: 6.5 mo vs 7.2 mo; HR=0.91 (0.68 to 1.21)
•m OS: 21.0 mo vs 19.6 mo; HR=0.78 (0.56 to
1.10)

TMB Early TNBC GeparNuevo
(26)

Durva / placebo+
chemotherapy

149j • Durvalumab-arm
(TMB≥2.05 muts/mb vs <2.05

muts/mb)

• pCR: 63% vs 40%k

• Placebo-arm
(TMB≥2.05 muts/mb vs <2.05

muts/mb)

•pCR: 52% vs 37%l

Advanced
TNBC

KEYNOTE-119
(25)

Pembro/
chemotherapy

253i • TMB ≥10 •ORR: 14.3% (95%CI, 4.0-39.9) vs 8.3% (95%CI,
0.4-35.4)

• TMB<10 •ORR: 12.7% (95%CI, 7.9-19.9) vs 12.8% (95%CI,
7.8-20.4)

IL-8 Advanced
TNBC

A phase II trial
(38, 129)

Camrelizumab
+apatinib

28m • Responder vs non-
respondern

•Levels of IL-8: 0 pg/ml vs 2.15 pg/mlO
N, number of patients; TC, tumor cells; IC, immune Cells; m PFS, median PFS; mo, months; m OS, median OS; HR, hazard ratio, HR(95%CI); Pembro, Pembrolizumab; Atezo,
Atezolizumab; OR, odds ratio; Durva, durvalumab.
a: Levels of TILs: Median (IQR): 42% (95% CI,10-74) vs 10% (95% CI,5-25); b: Levels of TILs: Median (IQR): 65% (95% CI,5-89) vs 25% (95% CI,2-48); c: Levels of TILs: Median (IQR): 40%
(95% CI,10-75) vs 10% (95% CI,5-38); d: Levels of TILs: Median (IQR): 65% (95% CI,5-86) vs 25% (95% CI,3-60); e: pre-therapeutic; f: difference of iTIL between post-window and
pretherapeutic biopsy; g: Levels of TILs: Median (IQR): 10% (95% CI,7.5-25) vs 5% (95% CI,1-10); h: Levels of TILs: Median (IQR): 50% (95% CI,5-70) vs 15% (95% CI,5-37.5); i: TMB data
were available for 253/601 (42.1%) treated patients (pembro, n = 132; chemo, n = 121); j: both whole exome sequencing and RNA-Seq data can be got from pretreatment samples of 149
TNBC of GeparNuevo; k: P=0.028; l: P=0.232; m: 28 Patients had biopsies and blood collected; n: responders (partial response ); non-responders (stable disease or progressive disease);
o: P = 0.001.
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JAVELIN study reported that mTNBC patients with higher PD-
L1 expression had better efficacy of atezolizumab (22).
The IMpassion 130 and KEYNOTE-355 studies indicated that
PD-L1 positivity was related to better efficacy of PD-1/PD-L1
inhibitors in mTNBC (16, 17, 19). These studies have suggested
that PD-L1 expression can identify patients who will benefit
from ICIs.

Conversely, other clinical trials have not supported PD-L1 as
a predictor of the efficacy of ICIs (23, 42). The KEYNOTE-522
and IMpassion 031 studies in early TNBC patients showed that,
irrespective of positive or negative PD-L1 expression, PD-1/PD-
L1 inhibitors combined with chemotherapy had a higher
pathological complete remission (pCR) than placebo combined
with chemotherapy (23, 42). Notably, the patients in these
studies had early rather than advanced TNBC. The different
results between early and advanced TNBC patients suggest that
PD-is not an ideal biomarker and its predictive value varies
according to individual immune function and/or disease setting.
However, the potential mechanism underlying these results
remains unclear.
Frontiers in Oncology | www.frontiersin.org 5
The potential prognostic value of PD-L1 in TNBC remains
contentious. Some studies have provided evidence that PD-L1-
positive may be associated with better prognosis (40, 41, 61, 62).
A meta−analysis reported that PD-L1-positive on tumor cells
was related to poor prognosis, whereas PD-L1-positive on TILs
was associated with better survival (41). Li et al. found that PD-
L1 expression on TILs suggested better disease-free survival
(DFS) in TNBC (61). However, Barrett et al. found that PD-
L1-positive on tumor cells was associated with prolonged OS in
patients with TNBC (40). Similarly, Botti et al. showed that PD-
L1-positive on tumor cells was associated with better DFS in
TNBC (62). However, other studies questioned the potential
prognostic value of PD-L1 in TNBC (63, 64). A meta-analysis
exploring the relationship between PD-L1 and prognosis in
TNBC found no significant association between PD-L1
expression and OS (64). Thus, the prognostic value of PD-L1
in TNBC remains unclear and further studies are required.

The inconsistency of these studies suggests that the PD-L1
expression is affected by factors such as complex immune
environment and different detection methods. First, expression
FIGURE 1 | The relationship between biomarkers and immune resistance. First, TMB might lead to new antigens and enhance immunogenicity. Second, the PD-1
combined with PD-L1 can transmit inhibitory signals and reduce immune activation, which leads to the immune escape of tumor cells. Third, CTLA-4 can compete
with CD28 to bind to CD80 and CD86 on antigen-presenting cells (APC), and inhibit the activation signal. Fourthly, cytokines can regulate proliferation, differentiation
and function of immune cells, tumor microenvironment, and even affect migration of cancer cells. Especially, tumor cells secrete IL-8 to recruit MDSCs into the tumor
microenvironment to induce immunosuppression, and promote tumor progression. CTLA-4, cytotoxic T lymphocyte antigen-4; IL-8, interleukin-8; MDSCs, myeloid-
derived suppressor cells PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1 TMB, tumor mutational burden.
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TABLE 2 | The predictive value of PD-L1 for PD-1/PD-L1 inhibitors in TNBC.

Application Agents Study Combined
Drug

N Scoring Criteria Group Results

Early TNBC Pembro KEYNOTE-522
(29)

Pembro/placebo
+chemotherapyg

602 CPS:1 •PD-L1+ • pCR: 68.9% vs 54.9%
•PD-L1- • pCR: 45.3% vs 30.3%

Atezo Impassion031
(23)

Atezo/placebo
+chemotherapyh

333 PD-L1 in IC: 1% • PD-L1 + • pCR: 69% (95% CI, 57-79) vs 49% (95% CI,
38-61)

• PD-L1 - • pCR: 48% vs 34%
Advanced TNBC Atezo Impassion130

(18, 37)
Atezo/placebo
+ nab-paclitaxel

902 PD-L1 in IC: 1% • PD-L1 + • ORR: 58.9% (51.5-66.1) vs 42.6% (35.4-50.1)
HR=1.96 (1.29-2.98)
• m PFS: 7.5 (95%CI, 6.7-9.2) mo vs 5.0 (95%
CI, 3.8-5.6) mo
HR=0.64 (0.51-0.80)
• m OS: 25.4 (95% CI, 19.6-30.7)mo vs 17.9
(95%CI, 13.6-20.3)mo
HR=0.67 (0.53-0.86)

• PD-L1 - • m PFS: 5.6 mo vs 5.6 mo
HR=0.95 (0.79-1.15)
• m OS: 19.7 mo vs 19.7 mo
HR=1.05 (0.87-1.28)

Atezo Impassion131
(21)

Atezo/ placebo
+paclitaxel

651 PD-L1 in IC: 1% • PD-L1 + • m PFS: 6.0 (95% CI 5.6-7.4) mo vs 5.7 (95%
CI 5.4-7.2) mo
HR=0.82 (0.60-1.12)
• Final OS: 22.1 (95% CI 19.2-30.5) mo vs 28.3
(95% CI 19.1-NE) mo
HR=1.11(0.76-1.64)

Advanced TNBC Pembro KEYNOTE-012
(30)

single-agent
pembro

111 PD-L1 in IC: 1% • PD-L1+ • ORR: 18.5% (95% CI, 6.3-38.1)
• m PFS: 1.9 (95% CI, 1.7-5.5) mo
• m OS: 11.2 (95% CI, 5.3- (not reached)) mo

Pembro KEYNOTE-086
(31, 32)

single-agent
pembro

Cohort
A:170
B:84

CPS: 1 • Cohort A
(PD-L1+)

• ORR: 5.7% (95%CI, 2.4-12.2)
• m PFS: 2.0 (95%CI, 1.9-2.1) mo
• m OS: 8.8 (95%CI, 7.1-11.2) mo

• Cohort A
(PD-L1-)

• ORR: 4.7% (95%CI, 1.1-13.4)
• m PFS: 1.9 (95%CI, 1.7-2.0) mo
• m OS: 9.7 (95%CI, 6.2-12.6) mo

• Cohort B
(PD-L1+)

• ORR: 21.4% (95%CI, 13.9-31.4)
• m PFS: 2.1 (95%CI, 2.0-2.2) mo
• m OS: 18.0 (95%CI, 12.9, 23.0) mo

Pembro KEYNOTE-150
(34)

Eribulin
+pembro

107 CPS: 1 •PD-L1+ •ORR: 25.7% (95%, 12.9-40.8)
•m PFS: 4.1 (95%CI, 2.1-4.8) mo

•PD-L1- •ORR: 25.0% (95%, 12.5-39.8)
•m PFS: 4.1 (95%CI, 2.3-6.3)mo

Advanced TNBC Pembro KEYNOTE-119
(20)

Pembro/
chemotherapyi

1098 CPS: 1, 10, 20 •CPS ≥1 •ORR: 12.3% (95%CI, 8.1-17.6) vs9.4% (95%
CI, 5.8-14.3)
•m OS: 10.7 (95% CI, 9.3-12.5) mo vs 10.2
(95% CI, 7.9-12.6) mo
HR=0.86(0.69-1.06)

•CPS ≥10 •ORR: 17.7% (95%CI, 10.7-26.8) vs9.2% (95%
CI, 4.3-16.7)
•m OS: 12.7(95% CI, 9.9-16.3) mo vs 11.6
(95% CI, 8.3-13.7) mo
HR=0.78(0.57-1.06)

•CPS ≥20 •ORR: 26.0% vs12.0%
•m OS: 14.9 mo vs 12.5 mo
HR=0.58(0.38-0.88)

Pembro KEYNOTE-355
(19, 33)

Pembro/
placebo
+ chemotherapyj

847 CPS: 1 and 10 •CPS ≥1 •ORR: 44.9% (95% CI, 40.1-49.8) vs 38.9%
(95% CI, 32.2-45.8)
•m PFS: 7.6 (95% CI, 6.6-8.0) mo vs 5.6 (95%
CI, 5.4-7.4) mo
HR=0.75 (0.62-0.91)
•m OS: 17.6(95% CI, 15.5-19.5) mo vs 16.0
(95% CI, 12.8-17.4) mo
HR=0.86 (0.72-1.04)

•CPS ≥10 •ORR: 52.7% (95% CI, 45.9-59.5) vs 40.8%
(95% CI, 31.2-50.9)

(Continued)
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of PD-L1 is regulated by various mechanisms including the
signal transducer and activator of transcription 3 and nuclear
factor-kB pathways (65). Additionally, the function of PD-L1 is
influenced by ubiquitination, glycosylation, phosphorylation and
methylation (65). Therefore, expression of PD-L1 may be altered
over time and be induced by other therapies. Second, the
different antibodies or detection methods may have affected
the results of PD-L1 expression in many studies (66–68).
Antibodies for the detection of PD-L1, such as 28-8, 22C3,
SP263 and SP142, have been approved as companion/
complementary diagnostics to nivolumab, pembrolizumab,
durvalumab and atezolizumab, respectively (69). In clinical
application, the major differences among the four antibodies
Frontiers in Oncology | www.frontiersin.org 7
are mainly stained cells and scoring criteria of PD-L1. The
Blueprint Project showed that 28-8, 22C3 and SP263 mainly
stained tumor cells, and the test results were similar. SP142
stained immune cells more prominently than the other
antibodies did. Compared with tumor cell staining, immune
cell staining was more heterogeneous (70, 71). At present, there
are four scoring criteria of PD-L1: combined positive score
(CPS), tumor proportion score, immune cell score and tumor
cell score (72, 73). Because of the different scoring criteria, the
definitions of PD-L1-positive tumors were different. For
example, PD-L1-positive tumors in the IMpassion 130 study
were defined as staining of any intensity in immune cells
occupying ≥1% of the tumor area tested by SP142 (16). In the
TABLE 2 | Continued

Application Agents Study Combined
Drug

N Scoring Criteria Group Results

•m PFS: 9.7 (95% CI, 7.6-11.3) mo vs 5.6 (95%
CI, 5.3-7.5) mo
HR=0.66 (0.50-0.88)
•m OS: 23.0(95% CI, 19.0-26.3) mo vs 16.1
(95% CI, 12.6-18.8) mo
HR=0.73(0.55-0.95)

Advanced Breast
cancer

Avelumab JAVELIN (22) single-agent
avelumab

168
(58 was
TNBC)

•PD-L1 in TCa: 1, 5
and 25%

•PD-L1 in ICb: 10%

• TNBCc

(PD-L1+ vs
PD-L1-)

•ORR: 22.2% vs. 2.6%

• ≥1% TCd

(PD-L1+
vsPD-L1-)

•ORR: 3.4% (95% CI, 0.3-8.2) vs 3.9% (95% CI,
0.5-13.5)
•m PFS:5.9 (95% CI, 5.7-6.0) weeks vs 6.0
(95% CI, 5.9-6.0) weeks
HR=1.183 (0.815-1.716)
•m OS: 6.5 (95% CI, 3.7-9.2) mo vs 8.3 (95% CI
6.3, ne) mo
HR=1.331 (0.815-2.174)

• ≥5% TCe

(PD-L1+
vsPD-L1-)

•ORR: 4.3% (95% CI, 0.1, 21.9) vs 2.7% (95%
CI, 0.6-7.6)
•m PFS:6.0 (95% CI, 5.7-7.1) weeks vs 5.9
(95% CI, 5.9-6.0) weeks
HR=0.782 (0.473-1.290)
•m OS: 6.5 (95% CI, 2.2-ne) mo vs 7.1 (95% CI,
5.1-11.3) mo
HR=1.057 (0.556-2.010)

• ≥25% TC f

(PD-L1+
vsPD-L1-)

•ORR: 0 (95% CI, 0-70.8) vs 3 (95% CI, 0.8-7.5)
•m PFS:6.0 (95% CI 5.4- ne) weeks vs 5.9 (95%
CI 5.9- 6.0) weeks
HR=0.695 (0.172-2.813)
•m OS: 9.2 (95% CI, ne-ne) mo vs 6.8 (95% CI,
4.9-10.8) mo
HR=0.441 (0.061-3.177)

• ≥10% IC c

(PD-L1+
vsPD-L1-)

•ORR: 16.7 (95% CI, 2.1-48.4) vs 1.6 (95% CI,
0.2-5.7)
•m PFS:6.1 (95% CI, 2.3-24,1) weeks vs 5.9
(95% CI, 5.9-6.0) weeks
HR=0.656 (0.341-1.263)
•m OS: 11.3 (95% CI, 1.4-ne) mo vs 6.8 (95%
CI, 4.7-9.2) mo
HR=0.620 (0.250-1.541)
N, number of patients; TC, tumor cells; IC, immune Cells; m PFS, median PFS; mo, months; m OS, median OS; HR, hazard ratio, HR (95%CI); Pembro, Pembrolizumab;
Atezo, Atezolizumab.
a: the percentages of tumor cells expressing PD-L1: 1 and 5% thresholds with any staining intensity and a 25% threshold with moderate to high staining; b: 10% of immune cells expressing
PD-L1 at any staining intensity in tumor tissue; c: ITT population, PD-L1+: PD-L1 expression≥10% immune cells; d: ITT population, PD-L1+: PD-L1 expression≥1% tumor cells; e: ITT
population, PD-L1+: PD-L1 expression≥5% tumor cells; f: ITT population, PD-L1+:PD-L1 expression≥25% tumor cells; g: paclitaxel+carboplatin; h: nab-paclitaxel + doxorubicin+
cyclophosphamide; i: received investigator-choice (capecitabine, eribulin, gemcitabine, or vinorelbine); j: nab-paclitaxel, paclitaxel, or gemcitabine-carboplatin.
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KEYNOTE-355 study, PD-L1-positive tumors were defined as
CPS ≥1 and CPS ≥10, where CPS was the ratio of PD-L1-positive
cells (tumor cells, lymphocytes and macrophages) to the total
number of tumor cells tested by 22C3, multiplied by 100 (19).
However, these four evaluation methods have not been
comprehensively compared; therefore, which method can
better reflect the expression level and predictive value of PD-
L1 requires further study. Additionally, there were temporal and
spatial differences in PD-L1 expression between primary and
metastatic lesions (74). Expression of PD-L1 in the metastatic
site was significantly lower compared with the primary site (75,
76). Factors such as the empirical judgment of pathologists,
heterogeneity of PD-L1, and the effect of drugs might also
interfere with PD-L1 expression (65, 70, 77–79).

In summary, the potential predictive and prognostic values of
PD-L1 in TNBC remain controversial. Understanding of the
tumor, microenvironment, and host factors that influence
response to ICIs may contribute to identifying more reliable
biomarkers (80). Accurate methods are needed to detect PD-L1
expression and guide precision medicine (81). At present,
identifying patients who can benefit from ICIs partly relies on
immunohistochemical assays used in clinical trials (82). However,
it is difficult to detect the dynamic change in PD-L1 expression,
and some factors can interfere with the results. Therefore, the
determination of the optimal assay will require further rigorous
studies. Scoring systems and thresholds for PD-L1 positivity lack
standardization, and this may affect the judgment of PD-L1
positivity. Fortunately, this study area is rapidly developing and
PD-L1 as a potential prognostic and predictive biomarker will be
fully optimized for TNBC in the future.

2.1.2 CTLA-4
CTLA-4 is one of the immunoglobulin superfamily and a signal
receptor on the T-cell membrane (83). It is homologous to CD28
on the surface of T cells and competes with CD28 to bind to B7-1
(CD80) and B7-2 (CD86) on antigen-presenting cells, although it
has a stronger affinity for B7-1 and B7-2 (84). When B7 binds to
CD28, it initiates an activation signal, which is inhibited when
CTLA-4 binds to B7 (85). Normally, CTLA-4 participates in
negative immunoregulation. However, tumors can also
participate in these immunoregulatory pathways by expressing
CTLA-4, which decreases immune cell functions (86, 87). Some
studies have found that the high levels of CTLA-4 correlate with
better efficacy of anti-CTLA-4 therapies in melanoma (88, 89).
However, there is a lack of data from clinical trials about its
predictive value for ICIs in TNBC. In addition to the above, the
potential prognostic value of CTLA-4 in BC has been reported
(55, 56). Yu et al. analyzed tissue samples from 130 BC patients
who underwent surgery. They found that more interstitial
CTLA-4+ lymphocytes were related to longer DFS and OS,
whereas more CTLA-4+ tumor cells were related to shorter
DFS and OS (55). Lu et al. analyzed an RNA-sequencing
dataset and found that BC patients with high CTLA-4
expression had a significantly elevated risk of death compared
with those with low CTLA-4 expression (56).

Thus, CTLA-4 expression in BC may be a potential
prognostic biomarker. However, whether these results can be
Frontiers in Oncology | www.frontiersin.org 8
applied to TNBC is worthy of further investigation. The potential
predictive value of CTLA-4 for efficacy of ICIs in TNBC has not
been clarified. Relevant research should be carried out in the
future to explore the potential prognostic and predictive value of
CTLA-4 in TNBC.

2.2 Immune Cells
2.2.1 TILs
TILs are heterogeneous lymphocyte groups that exist in tumor
nests and interstitial cells. They are dominated by different degrees
of monocyte and lymphocyte infiltration. The percentage of TILs
is higher in TNBC than in luminal type and HER2-enriched BC
(46, 90). Some studies have reported that the quantity of TILs in
TNBC has predictive value for efficacy of ICIs [Table 3 (27, 31, 32,
35)]. In the KEYNOTE-086 study, Sherene et al. found that high
ORR for mTNBC patients treated with pembrolizumab was
associated with high level of TILs (27). Similar findings were
reported in the KEYNOTE-173 study, where a high level of TILs
was significantly related to better pCR or ORR for TNBC patients
treated with pembrolizumab (44). Loi et al. found that stromal
TILs ≥5% predicted the response to pembrolizumab monotherapy
(45). The biomarker analyses of the GeparNuevo trial showed that
higher level of stromal TILs was associated with pCR in the overall
cohort but did not predict the efficacy of durvalumab (28). The
increased level of intratumoral TILs from before to after treatment
was predictive for pCR specifically in the durvalumab arm (28).
An increase in TILs in early TNBC patients after neoadjuvant
therapy was associated with improved DFS and OS (46, 47).
A phase III trial reported an approximately 15% reduction in
death and recurrence for every 10% increase in TILs (47).
At present, several studies have demonstrated the predictive
value of TILs, but there is a lack of high-quality evidence.
Therefore, the predictive value of TILs for efficacy of ICIs in
TNBC remains contentious.

Most of the above studies have focused on the predictive value
of the level of TILs rather than TIL subsets for efficacy of ICIs in
TNBC (27, 44–47). TIL subsets with different immune cell
compositions represent different immune responses and
prognosis (48, 91). On the one hand, TIL subsets can predict
the efficacy of ICIs for TNBC. For example, mTNBC patients
who received atezolizumab as monotherapy with intratumoral
CD8+ T cells >1.35% prior to treatment presented trends toward
higher ORR and longer OS (92). An exploratory analysis of the
IMpassion 130 study reported that the percentage of CD8+ T
cells (≥0.5%) was predictive for the efficacy of atezolizumab plus
nab-paclitaxel in mTNBC (24). Similarly, Jiang et al. found that a
high CD8 immunohistochemical score was associated with better
efficacy of immunotherapy in the IM subtype of TNBC (93, 94).
On the other hand, TIL subsets might be associated with worse
prognosis in BC (50, 95). For example, a high enrichment score
of immature DCs and eosinophils is associated with poor OS
(95). Additionally, lymphocytes with positive expression of fork
head box protein 3 in tumor tissues are significantly associated
with poor prognosis in BC (50).

Taken together, the potential predictive value of TILs in
TNBC needs further exploration, and TILs may have potential
prognostic value in TNBC. The 17th St Gallen International
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Breast Cancer Consensus Conference has shown that TILs may
serve as a prognostic biomarker in TNBC (96). The following
factors may affect the predictive effect of TILs. First, the
evaluation of TILs is still mainly dependent on pathologists,
who may obtain different results. Because the composition of
TILs is complex, it is a challenge for researchers to distinguish
Frontiers in Oncology | www.frontiersin.org 9
the functions of different cells and their predictive values.
Restrictions among TILs and the influence of cytokines on
their functions can also influence their predictive value.
Fortunately, testing standards have been formed for TILs, and
artificial intelligence has gradually been applied to case
interpretation (97, 98). Therefore, TILs can be detected more
TABLE 3 | Results of the exploratory studies of TILs in TNBC patients treated with PD-1/PD-L1 inhibitors.

Application Agents Study Combined Drug N Group Results Levels of TILs

Early TNBC Pembro KEYNOTE-173
(35)

Pembro +
chemotherapya

60b •Available pre-treatment
sTILs date of ypT0/Tis ypN0

•pCR :60% vs 40% h
•Median (IQR): 42% (95% CI,10-
74) vs 10% (95% CI,5-25) c $

•Available on-treatment sTILs
date of ypT0/Tis ypN0

•pCR :57% vs 43% h
•Median (IQR): 65% (95% CI,5-89)

vs 25% (95% CI,2-48) e $
•Available pre-treatment
sTILs date of ypT0 /ypN0

•pCR :58% vs 42% h
•Median (IQR): 40% (95% CI,10-
75) vs 10% (95% CI,5-38) d $

•Available on-treatment sTILs
date of ypT0 /ypN0

•pCR :53% vs 47% h
•Median (IQR): 65% (95% CI,5-86)

vs 25% (95% CI,3-60) f $
Advanced
TNBC

Pembro KEYNOTE-086
(27, 31, 32)

single-agent
pembro

•Cohort
i

A: 147
B:46

•Cohort A •ORR :6% vs 2%j
•Median (IQR): 10% (95% CI,7.5-

25) vs 5% (95% CI,1-10) k $
•Cohort B •ORR :39% vs 9%j

•Median (IQR): 50% (95% CI,5-70)
vs 15% (95% CI,5-37.5) k $

Advanced
TNBC

Atezo Impassion130
(24, 36, 37)

Atezo/ placebo +
nab-paclitaxel

902 •Any PD-L1, sTILs<10% •m PFS: 5.6 mo vs 5.4
mol

HR=0.86 (0.73-1.02)

•sTILs<10%, any CD8

•m OS: 19.2 mo vs 18.1
mol

HR=0.88 (0.72-1.08)
•Any PD-L1, sTILs≥10% •m PFS: 8.3 mo vs 6.1

mol

HR=0.64 (0.50-0.84) $

•sTILs≥10%, any CD8

•m OS: 25.0 mo vs 20.0
mol

HR=0.75 (0.54-1.03)
PD-L1 ≥1%, sTILs<10% •m PFS: 6.4 mo vs 4.7

mol

HR=0.80 (0.59-1.10)

•sTILs<10%, any CD8

•m OS: 19.1 mo vs 17.6
mo

•HR=0.74 (0.50-1.10)
PD-L1 ≥1%, sTILs≥10% •m PFS: 9.0 mo vs 5.4

mol

HR=0.54 (0.39-0.75) $

•sTILs≥10%, any CD8

•m OS: 30.0 mo vs 18.2
mol

•HR=0.54 (0.39-0.75) $
PD-L1 <1%, sTILs<10% •m PFS: 5.6 mo vs 5.5

mol

HR=0.90 (0.73-1.10)

•sTILs<10%, any CD8

•m OS: 19.3 mo vs 18.2
mol

HR=0.95 (0.75-1.20)
PD-L1 <1%, sTILs≥10% •m PFS: 7.2 mo vs 9.0

mol

HR=0.92 (0.59-1.44)

•sTILs≥10%, any CD8

•m OS: 23.7 mo vs 24.5
mol

HR=1.04 (0.59-1.82)
April
N, number of patients; TC, tumor cells; IC, immune Cells; IQR, interquartile range; $, indicates statistical significance; pCR, pathological complete response.
a: Pembro + taxane with or without carboplatin, and then doxorubicin and cyclophosphamide before surgery; b: 53 patients have pre-treatment sTILs data and 49 patients have on-
treatment sTILs data; c: Median (IQR) TIL level in responders vs non-responders, P= 0.0059, AUROC (90% CI) 0.653 (0.527-0.779); d: Median (IQR) TIL level in responders vs non-
responders, P= 0.0091, AUROC (90% CI) 0.638 (0.512-0.764); e: Median (IQR) TIL level in responders vs non-responders, P= 0.0085, AUROC (90% CI) 0.690 (0.564-0.817); f: Median
(IQR) TIL level in responders vs non-responders, P= 0.0097, AUROC (90%CI) 0.676 (0.547-0.806); g: DCR (CR + PR + SD ≥ 24 weeks; h: Number of responders/number vs Number of no-
responders/number, and patients not assessable for pCR were considered non-responders; i: 193 patients had evaluable tumor samples: 147 from cohort A, 46 from cohort B; j: ORR in
patients with TIL level ≥vs<median; k: Median (IQR) TIL level in responders vs non-responders, and patients without response data were counted as non-responders. Response data
included complete response or partial response; l: Atezo + nab-paclitaxel vs placebo + nab-paclitaxel.
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objectively. In the future, the clinical application of TILs will have
broad prospects in TNBC, but currently, we should not use TILs
to select individual patients for ICIs in clinical practice.

2.2.2 MDSCs
Myelopoiesis is a tightly regulated process that is altered in
cancer, leading to the expansion of immature myeloid cells, now
called MDSCs (99). Tumor cells secrete interleukin (IL)-8 to
recruit MDSCs into the tumor microenvironment; inhibit T-cell
activation by consuming and limiting cysteine and other
essential amino acids, such as cysteine, for T-cell activation;
induce immunosuppression; and promote tumor progression
(100–104). MDSCs can be divided into two major groups:
polymorphonuclear and monocytic MDSCs (105). Some
studies have shown that the subsets of MDSCs are associated
with the efficacy of ICIs in NSCLC and melanoma (106–108).
However, there is no evidence whether the MDSCs are related to
the efficacy of ICIs in TNBC. Therefore, the predictive value of
MDSCs for efficacy of ICIs in TNBC is not clear.

Other studies have shown that higher levels of MDSCs are
associated with worse prognosis in patients with solid tumors
such as advanced BC (57, 58, 109, 110). Furthermore, advanced
BC patients with circulating MDSCs >3.17% at baseline had
poorer median OS than patients with circulating MDSCs ≤3.17%
(5.5 vs 19.32 months) (57). In support of the prognostic value of
MDSCs, Bergenfelz et al. observed 54 patients with metastatic BC
and found that higher MDSC count was associated with worse
PFS and OS (58).

As mentioned above, MDSCs may have potential prognostic
value in BC, although no similar study has focused on TNBC.
The potential predictive value of MDSCs for efficacy of ICIs in
BC has not yet been clarified. Some studies have reported that
ICIs reduce the number of circulating MDSCs, which implies
that ICIs might have an MDSC-inhibiting effect (111, 112).
Therefore, the detection of circulating MDSCs may contribute
to a better understanding of the predictive value of MDSCs for
efficacy of ICIs in TNBC. In the future, MDSCs are worth further
exploration, especially for the potential predictive value of ICIs
and prognostic value in TNBC.

2.3 TMB
Tumor formation and progression are accompanied by the
acquisition and accumulation of mutations. TMB refers to the
total number of base substitutions, somatic gene coding errors, and
gene deletion or insertion errors detected per million bases (113).
Exogenous DNA damage and DNA repair pathway defects can
cause mutations. These mutations might lead to new antigens that
are identified as foreign by the immune system, leading to activation
of the immune microenvironment (114). Correspondingly, an
activated immune microenvironment is favorable for tumor
shrinkage by PD-1/PD-L1 inhibitors (115). In the Chinese
population, the rate of TMB-high (TMB-H) in BC is higher than
that reported by The Cancer Genome Atlas (116). Among the
various subtypes of BC, TNBC has the highest TMB, followed by
HER2-positive BC (117–119). Some trials reported that TMB-H
was related to the better efficacy of immunotherapy in TNBC (25,
26, 51, 52). The KEYNOTE-119 study reported that ORR was
Frontiers in Oncology | www.frontiersin.org 10
significantly increased by single-agent pembrolizumab in mTNBC
patients with TMB ≥10 mutations/Mb, while no significant
difference was demonstrated in the ORR between chemotherapy
and pembrolizumab in patients with TMB <10 mutations/Mb (25).
The results of genome sequencing and whole exome sequencing
from 3,369 BC patients also showed that patients with TMB ≥10
mutations/Mb might benefit from ICI treatment (51). Karn et al.
performed whole exome sequencing in patients with early TNBC
and obtained RNA data from pretreatment samples of patients
treated with neoadjuvant ICIs (26). They found that TMB-H was
associated with the efficacy of ICIs, and the pCR of patients with
TMB-H and TMB-low in the durvalumab treatment arm was 63%
and 40%, respectively (26). Barroso et al. analyzed 62 mTNBC
patients who had previously been treated with ICIs alone or
combined with another therapy (52). They found that TMB-H
was associated with longer PFS among patients with mTNBC
treated with anti-PD-1/PD-L1 therapies.

However, the predictive value of TMB in BC was questioned
by other studies (53, 54). An analysis of 10,000 cases showed that
patients with TMB-H BC treated with ICIs had worse efficacy
than those who received other antitumor treatments (53).
Additionally, Adams et al. found no relationship between PFS
and TMB in patients with metastatic BC with TMB-H treated
with pembrolizumab monotherapy (54). These results suggest
that TMB-H may not have predictive value for efficacy of ICIs in
BC. However, these trials did not report the BC subtypes, and
whether these conclusions can be applied to TNBC requires
further study.

The potential predictive value of TMB for efficacy of ICIs and
its potential prognostic value in TNBC are unclear. TMB-H (≥10
mutations/Mb) is useful in certain circumstances to help define
which BC patients can appropriately receive pembrolizumab,
based on version 1.2021 of the NCCN guidelines for BC.
However, there are still some unresolved issues for TMB in
TNBC. First, the cutoff point of TMB-H is still uncertain and it
has differed among trials. Even if the US Food and Drug
Administration defines TMB-H as TMB ≥10 mutations/Mb,
this definition is still controversial (120). Therefore, one of the
challenges for the future application of TMB is to standardize the
cutoff point of TMB. Not all TMB-H patients were positively
correlated with a good therapeutic effect of ICIs. In some cases,
tumor cells develop drug resistance because of TMB-H (121). For
instance, as one of the forms of TMB, the deletion mutation of
PTEN can promote tumor resistance to ICIs (122, 123).
Therefore, clarifying correlations between mutation type and
efficacy of ICIs in TNBC is important.

2.4 Cytokines
Cytokines are a class of soluble low-molecular weight proteins
secreted by immune and nonimmune cells, including interleukins,
tumor necrosis factors, interferons, colony-stimulating factors and
transforming growth factors (124). Through the autocrine and
paracrine pathways, cytokines can regulate proliferation,
differentiation and function of immune cells, tumor
microenvironment, and even affect the migration of cancer cells
(124, 125). Recent studies have explored the relationship between
cytokines and the efficacy of immunotherapy and prognosis in
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tumors (125, 126). Cytokines may be related to the efficacy of ICIs
in solid tumors, such as NSCLC and melanoma (127–131).
Schalper et al. found that patients with melanoma or NSCLC
with high IL-8 levels derived limited benefit from nivolumab and/
or ipilimumab (100). Patients with TNBC with low plasma IL-8
levels are more likely to respond to camrelizumab combined with
apatinib (129). However, there is insufficient evidence to support
the predictive value of IL-8 levels for efficacy of ICIs in TNBC.
Other studies have suggested that IL-8 may have prognostic value
in TNBC (132–134). Deng et al. found that IL-8 induced TNBC
cell migration and tumor growth by multiple signaling pathways
(132). Through bioinformatic analysis, Kim et al. and Malone
et al. found that high IL-8 expression was associated with poor
prognosis compared with low IL-8 expression in TNBC
(133, 134).

In summary, there is a lack of consensus whether cytokines can
be used to evaluate the efficacy of ICIs and prognosis in TNBC.
Because of the complexity of the tumor microenvironment and
interaction among cytokines, further exploration of cytokines may
be difficult. Compared with invasive examinations such as needle
biopsy, cytokines provide another noninvasive examination that can
be dynamically detected. At present, cytokine therapy is important
for some cancers and has achieved good clinical efficacy in
melanoma (135), prostate cancer (136) and colorectal cancer
(137). In the future, how to expand the clinical application of
cytokines in TNBC is still a challenge.
3 CONCLUSIONS AND
FUTURE PERSPECTIVES

ICIs are a promising treatment approach for TNBC. Several clinical
trials have shown that ICIs improve the treatment outcomes of
TNBC patients (16, 19, 22, 39–41). However, some patients do not
respond to ICIs and may suffer immune-related adverse events.
Therefore, it is important to evaluate biomarkers in TNBC to
identify patients that might benefit from immunotherapy. In this
review, we discussed different biomarkers related to the efficacy of
ICIs and their potential prognostic value in TNBC, including TILs,
PD-L1, cytokines and TMB. Among them, PD-L1 and TMB-H are
regarded as criteria for screening BC patients who are suitable for
pembrolizumab according to versions 1.2020 and 1.2021 of the
NCCN guidelines for BC.

Although many studies of biomarkers for ICIs are underway,
there are still some unresolved issues. First, some trials collect
samples at a single time point, which lack basic information
regarding the dynamic responses to ICIs. This can be overcome
by collecting longitudinal tumor samples. Compared with the
collection of tumor tissues, peripheral blood testing has the
advantages of easy sample collection and causing little harm to
patients. Therefore, liquid biopsy may have promise in clinical
translational studies. Second, there is no unified detection
method or standard for biomarkers such as PD-L1 or TILs.
Different studies may obtain different conclusions when using
the same biomarker. Third, new immunotherapeutic
combinations are gradually emerging, and whether these
predictive biomarkers are suitable for new regimens needs to
Frontiers in Oncology | www.frontiersin.org 11
be explored further. Fourth, some patients develop drug
resistance in the course of receiving ICIs. Therefore, studies of
biomarkers should not only focus on the prognosis and efficacy
for ICIs in TNBC, but also the role of biomarkers in the
mechanisms related to drug resistance. Finally, a single factor
cannot accurately predict the prognosis and efficacy of ICIs in
TNBC. In the future, the predictive value of composite
biomarkers should be further explored.

In summary, many biomarkers are emerging as potential
predictive markers for ICIs and prognostic biomarkers in TNBC,
which still need further validation. New detection methods, such
as high-throughput sequencing (138), single-cell sequencing
technology (139) and magnetic resonance imaging computer-
aided detection (a technology used to identify the TILs level)
(140), are being applied to biomarker research. These methods
will help identify new biomarkers and facilitate more convenient
and accurate use of them in the clinic.

First, TMB might lead to new antigens and enhance
immunogenicity. Second, the PD-1 combined with PD-L1 can
transmit inhibitory signals and reduce immune activation, which
leads to the immune escape of tumor cells. Third, CTLA-4 can
compete with CD28 to bind to CD80 and CD86 on antigen-
presenting cells (APC), and inhibit the activation signal. Fourthly,
cytokines can regulate proliferation, differentiation and function of
immune cells, tumor microenvironment, and even affect migration
of cancer cells. Especially, tumor cells secrete IL-8 to recruit MDSCs
into the tumor microenvironment to induce immunosuppression,
and promote tumor progression. CTLA-4, cytotoxic T lymphocyte
antigen-4; IL-8, interleukin-8; MDSCs, myeloid-derived suppressor
cells PD-1, programmed cell death protein 1; PD-L1, programmed
cell death ligand 1 TMB, tumor mutational burden.
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