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Introduction
Cervical cancer (CC) is among the commonest malignant 
tumors and the deadliest malignancy in females, with about 
604 000 new and 342 000 death cases reported worldwide in 
2020.1 In recent years, CC incidence has declined due to 
increased awareness; however, its mortality rate remains high in 
developing countries. CC is difficult to diagnose at an early 
stage, limiting treatment only to options available in the 
advanced stage. Currently, the standard treatment options for 
CC include surgery, chemotherapy, and radiotherapy. However, 
the effectiveness of chemotherapy in CC is not remarkable 
owing to drug resistance.2 Therefore, developing better prog-
nostic tools for predicting and improving the outcome of CC 
cases is highly needed.

Immune-related genes (IRGs), with important regulatory 
effects on the immune system, are reportedly associated with 
the occurrence and development of several cancers.1,3 The key 
characteristic of IRGs is that they regulate complex modula-
tory networks in cancers, thereby making them therapeutically 
significant targets that could constitute biomarkers for pre-
dicting prognosis in cancer.4 Specifically, tumor-infiltrating 
immune cells are highly relevant to CC development.3

Recently, immune-related prognostic signatures using 
microarray and RNA-sequencing data have been developed 
for several cancers. For example, a robust IRG pair (IRGP) 
signature was identified for predicting prognosis and immune 

heterogeneity in patients with glioblastoma.3 Moreover, a 14 
IRG-based prognostic model was constructed for overall sur-
vival (OS) prediction in gastric cancer using The Cancer 
Genome Atlas (TCGA) and ImmPort databases.5 Other 
immune-related signatures have also been identified for 
several malignancies, including hepatocellular carcinoma,6 
osteosarcoma,7 ovarian carcinoma8 and colorectal cancer.9

In the present study, we generated an IRGP signature by 
combining RNA-sequencing (RNA-seq) data and clinical 
findings of CC cases from TCGA and verifying them using 
Gene Expression Omnibus (GEO). The constructed prog-
nostic model may help predict CC outcomes with improved 
accuracy.

Materials and Methods
Data collection and processing

The clinical and RNA-seq data of CC cases (n = 309; compris-
ing 3 control and 306 tumor specimens) were retrieved on 
April 20, 2021 from TCGA database (https://portal.gdc.can-
cer.gov/) and were utilized as the training cohort for con-
structing a prognostic signature. The GSE44001 (n = 300) 
dataset was downloaded on April 26, 2021 from the GEO 
database (https://www.ncbi.nlm.nih.gov/geo/) and served as 
the validation cohort for verifying the efficacy of the IRGP 
signature. IRGs were obtained from ImmPort (https://www.
immport.org/shared/genelists), a large public repository pro-
viding immunological data for humans.10 Gene expression 
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profiling from RNA-seq data underwent normalization to 
Fragments per Kilobase Million, and samples with a value of 0 
(zero) were deleted. Accordingly, gene expression profiling 
data in the GSE44001 dataset underwent conversion with 
probes changed to related gene symbols. In both training and 
validation cohorts, individuals with incomplete survival data 
were excluded from the analysis.

Construction of an IRGP prognostic signature

In total, 2483 IRGs were acquired from ImmPort; subse-
quently, differentially expressed IRGs in CC were identified 
for constructing the IRGP prognostic signature. With median 
absolute deviation >0.5, IRGs expressed in both training and 
validation cohorts showing a large variation were further ana-
lyzed; otherwise, they were excluded. IRGs were paired to form 
IRGPs, which were scored according to the relative expression 
of the 2 paired IRGs, including IRG1 and IRG2. In case IRG1 
showed elevated expression compared with IRG2 in a particu-
lar IRGP, the output was scored as 1; otherwise, the output was 
considered 0. Each IRGP with small variation and unbalanced 
distribution, for example, fluctuation range showing a score of 
0 or 1, was removed, considering the remaining IRGPs as the 
initial candidates. Univariate, Lasso, and multivariate regres-
sion analyses were performed for determining the correlations 
between the expression of IRGPs and OS in the training 
cohort, and those with P < .05 were selected. The log-rank test 
was used to identify associations of OS with IRGP in the 
training cohort. Then, the Lasso penalized Cox regression 
analysis (1000 iterations) was performed to avoid overfitting of 
the data, to obtain IRGPs and construct a prognostic signature. 
Finally, a total of 25 IRGPs were identified for prognostic sig-
nature building. A 1-year time-dependent receiver operating 
characteristic (ROC) curve for the training cohort was 
designed. The optimal cut-off, where sensitivity + specificity 
was largest, was determined, and the CC cases were classified 
as high- or low-risk based on this value. Using these coeffi-
cients for prognostic IRGPs, a model was established to calcu-
late the IRGP risk score for every specimen. The risk score 
signature was derived as:

Risk score = Expri Coef
i

n

=∑ 1
*

where Expr and Coef are the relative expression and Lasso 
regression-derived coefficient of gene pairs, respectively.

Validation of the IRGP signature

For predicting the reliability and stability of the developed 
IRGP prognostic signature, R (survival package) software was 
used for Kaplan-Meier curve generation based on high- and 
low-risk cases in both cohorts. Then, univariable and multi-
variable Cox proportional-hazard analyses of other clinical 
factors were performed for evaluating the accuracy of the prog-
nostic signature.

Assessment of the immune microenvironment

CIBERSORT analysis, an instrumental learning method 
that estimates cell type abundances from a large tissue 
transcriptome,11 was performed for the enrichment analysis of 
immune cells in high- and low-risk patients and the enrich-
ment of 22 different immune cells in CC samples was ana-
lyzed. The normal samples and low-expression genes were 
removed, and the remaining data were corrected. The presence 
of immune cells in high- and low-risk cases in the training 
cohort was analyzed using CIBERSPORT with approximately 
1000 permutations.

Gene Ontology (GO) and gene set enrichment 
analysis (GSEA)

To elucidate the biological mechanism of action of IRGPs in 
CC, GO analysis and GSEA were performed. R (gProfiler) 
was used for the GO analysis. GSEA was performed for 
the high- and low-risk cases using R (fgsea package), with 
1000 permutations. Genes with a false discovery rate of <0.05 
were retained.

Statistical analysis

R (v3.6.3) and Perl (v5.30.0) interfaces were used to perform 
the abovementioned statistical analyses. The glmnet, survival, 
survival ROC, and limma packages of R were used to perform 
the univariable and multivariable risk regression model analy-
ses, to draw ROC curves, and to plot survival curves, respec-
tively. For all results, P < .05 indicated statistical significance.

Results
Construction of an IRGP prognostic signature

Samples from the TCGA database (n = 306, excluding the nor-
mal samples) were analyzed as the training cohort, and those 
from the GEO (n = 300) database were analyzed as part of the 
validation cohort. A total of 2483 IRGs were retrieved from 
ImmPort. Overall, 379 IRGs were expressed in both training 
and validation sets. Subsequently, 13 033 IRGPs were used for 
constructing a prognostic signature. The associations of IRGs 
with OS were examined in the training group by univariable 
regression analysis. A total of 25 IRGPs (Table 1) had signifi-
cant associations with OS in CC. The risk scores for various 
samples were calculated in the training group according to the 
developed risk score formula. A 1-year time-dependent receiver 
operating characteristic (ROC) curve was plotted for the train-
ing cohort dataset, and an optimal cut-off of 1.274 was obtained 
(Figure 1), according to which the training cohort was assigned 
to high- and low-risk cases. High-risk cases showed remarka-
bly decreased OS rates compared with low-risk cases (P < .01) 
(Figure 2(a)). Next, univariable and multivariable Cox regres-
sion analyses were performed for evaluating the effects of 
IRGP risk score, age, and tumor grade and stage on the time-
independent ROC curve of the risk score in the training 
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cohort. Univariable analysis showed a significant association 
of the IRGP prognostic signature with OS (hazard ratio 
[HR] = 4.466, 95% confidence interval [CI]: 2.540-7.852; 
P < .01) (Figure 3(a)). Multivariable analysis further indicated 
that the IRGP prognostic signature was a prognostic factor, 
independently of age, and tumor grade or stage (HR = 4.958, 
95% CI: 2.655-9.258; P < .01) (Figure 3(b)).

IRGP signature is a valid independent prognostic 
factor

An independent validation set, GSE44001 (n = 300), was used 
for verifying the consistency of the prognostic value of the 
developed IRGP signature. Risk scores were calculated for 
various patients of the validation set, who were assigned to the 
high- and low-risk groups based on the optimal cut-off 

value obtained in the training cohort. In the validation cohort, 
high-risk cases had decreased OS compared with their low-
risk counterparts (P = .02). Univariable and multivariable Cox 
regression analyses demonstrated that the IRGP prognostic 
signature indeed constituted an independent prognostic fac-
tor (univariable: HR = 1.542, 95% CI: 1.125-2.111; P = .007; 
multivariable: HR = 1.580, 95% CI: 1.141-2.189; P = .006) 
(Figure 3(c) and (d)).

Infiltration of immune cells in high- and low-risk 
cases

Based on the CIBERSORT algorithm, 22 types of immune 
cells identified within patients with CC were systematically 
analyzed in both risk groups for proportions analysis. Seven 
immune cell types showed markedly different proportions 

Table 1.  Detailed information on about the 25 immune-related gene pairs (IRGPs).

IRGP1 Immune processes IRGP2 Immune processes Coef

ADRM1 Antigen_Processing_and_Presentation MIF Antimicrobials −0.179492135

APOBEC3H Antimicrobials BTC Cytokines −0.463445295

C5AR1 Chemokine_Receptors STC1 Cytokines −0.181534534

CXCL14 Cytokines ANGPTL2 Cytokine_Receptors −0.000291734

CXCL14 Cytokines PPP3CB NaturalKiller_Cell_Cytotoxicity −0.005971396

CXCL2 Cytokines RAF1 NaturalKiller_Cell_Cytotoxicity 0.086843698

DES Antimicrobials EPOR Cytokine_Receptors −0.085941485

DLL4 Antimicrobials DES Antimicrobials 0.449944957

DUOX1 Antimicrobials NRP1 Cytokine_Receptors −0.332649118

FLT3LG Cytokines INHBA Cytokines −0.199692472

HLA-DQA2 Antigen_Processing_and_Presentation CCL3 Antimicrobials −0.213899733

IL1B Antimicrobials CD3D TCRsignalingPathway −0.017464468

IL1B Antimicrobials DUOX1 Antimicrobials 0.394694083

IL1B Antimicrobials EDN1 Chemokines 0.737385178

IL34 Cytokines OSM Cytokines −0.213905919

INHBA Cytokines PRKCQ TCRsignalingPathway 0.059166996

IRF5 Antimicrobials LIF Cytokines −0.047922745

JAK1 Antimicrobials APOBEC3C Antimicrobials 0.401495096

LMBR1 Antimicrobials MAP3K14 TCRsignalingPathway 0.064208499

LTBP3 Cytokines MAP3K14 TCRsignalingPathway 0.5265958

MICA NaturalKiller_Cell_Cytotoxicity IFIH1 Antimicrobials 0.354710175

NRP1 Cytokine_Receptors THRA Cytokine_Receptors 0.204863519

PLXNB3 Cytokine_Receptors FGFR2 Cytokine_Receptors 0.386753047

TLR3 Antimicrobials CXCR6 Antimicrobials 0.682446531

VAV3 BCRSignalingPathway NRP1 Cytokine_Receptors −0.41334932
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between the high- and low-risk groups (P < .05) (Figure 4(a)). 
In particular, resting dendritic cells, resting mast cells, activated 
CD4+ memory T cells, and CD8+ T cells had elevated infiltra-
tion levels in low-risk cases compared with those in high-risk 
cases, whereas M0 macrophages, activated mast cells and neu-
trophils had lower proportions. M0 macrophages and CD8+ T 
cells were remarkably enriched in the high- and low-risk 
groups, respectively (both P < .01 Figure 4(b)).

GO and GSEA findings

Gene Ontology (GO) enrichment analysis showed that the 
IRGPs were significantly enriched mainly in 17 signaling 
pathways, including immune response regulating, adaptive 
immune response, and lymphocyte-mediated pathways 
(Figure 5(a)). Gene set enrichment analysis (GSEA) was used 
for exploring significantly altered signaling pathways in high-
risk and low-risk CC cases of the training cohort. The most 
significant signaling pathways were identified according to 
normalized enrichment scores (Figure 5(b)). Several related 
pathways, including immune response regulating signaling 
pathway, adaptive response based on somatic recombination of 
immune receptors built from immunoglobulin superfamily 
domains, lymphocyte-mediated immunity and antigen recep-
tor-mediated signaling pathway, were significantly enriched in 
low-risk cases, which suggested that these signaling pathways 
may have key functions in CC development.

Discussion
Considering the important role of tumor immunity in CC, the 
TCGA training cohort was analyzed to establish a prognostic 
signature involving 25 IRGPs containing 46 unique IRGs for 
OS prediction in CC cases. The reliability of the prognostic 
signature was confirmed with an independent external valida-
tion cohort from the GEO database. Univariable and multi-
variable analyses in the training and validation sets showed that 

age and the tumor pathological stage were not independent OS 
predictors in CC; however, the independent prognostic ability 
of the constructed IRGP signature was proven. Hence, this 
IRGP prognostic signature may aid in predicting the survival 
outcomes of patients with CC.

IRGs have different roles in tumors. For instance, CXCL14, 
a highly conserved homeostatic chemokine, is responsible for 
immune cell recruitment and maturation and drives epithelial 
cell movement helping to establish immune monitoring in the 
normal epithelium.12 IL-1B gene polymorphisms are associ-
ated with CC risk in the Chinese Uygur population.13 
Moreover, DLL4 inhibits radiation resistance and metastasis in 
CC and can potentially be used as a biomarker for predicting 
radiosensitivity and prognosis in CC.14 VAV3 promotes gastric 
cell proliferation15 and significantly contributes to prostate 
cancer growth and malignancy.16 STC1 is a glycoprotein hor-
mone involved in calcium/phosphorus homeostasis, being 
tightly associated with tumor occurrence and development. 
Indeed, RNA interference-mediated inhibition of STC1 
expression in CaSki cells (a human papillomavirus type 
16-positive cell line) cell growth, migration and invasion were 
greatly enhanced.17 Furthermore, reduced levels of d Nrp1+ 
Treg cells in patients with CC are directly related to reduced 
tumor mass.18 High CXCL12/CXCR4 and CXCL16/CXCR6 
ratios in cervical intraepithelial neoplasia and CC suggest that 
the occurrence of CC is a continuous process. Indeed CXCR6 
is considered a molecular marker and a potent prognostic fac-
tor of CC.19 In addition, Nrp1 is reported as a new tumor 
marker in hepatocellular carcinoma20; it also regulates gastric 
cancer progression21 and enhances the invasive and migratory 
properties of lung adenocarcinoma cells.22 The INHBA gene 
plays an important role in many tumors, with high INHBA levels 
in esophageal squamous cell carcinoma and other solid tumors 
reflecting poor prognosis.23 Moreover, INHBA overexpression 
results in poor clinical outcomes in bladder urothelial carcinoma, 
indicating its potential as a prognostic marker and a new thera-
peutic target.24 INHBA expression was associated with colon 
cancer prognosis and recurrence.25 High CD3D amounts are 
tightly associated with low survival in breast cancer.26

Human papilloma virus (HPV)-related persistent infection 
is the main cause of CC. The application of the HPV vaccine 
involves the alteration of the tumor immune microenvironment 
to prevent CC development.27 APOBEC3 family genes are 
translated into cytidine deaminases that counter viral infection 
and retrotransposition28; the haplotype II APOBEC3H, with 
higher frequency in individuals of African descent, is translated 
into a protein exerting the greatest antiviral effects on cells.29 
Conventional CC treatment options include chemotherapy, 
radiotherapy, and surgery. However, patients with advanced-
stage tumors are susceptible to radiotherapy and chemotherapy 
resistance. Many CC cases are detected at an advanced stage, 
usually with a high invasion rate; thus, the 3-year and 5-year 
mortality rates range between 52% and 79%.30-32 Although 
some diagnostic and prognostic markers of CC have been 

Figure 1.  Time-dependent receiver operating characteristics (ROC) 

curve for the immune-related gene pair (IRGP) risk score in the training 

set. An IRGP risk score of 1.247 was considered the optimal cut-off for 

classifying cases into the high- and low-risk groups.
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identified, the overall expression of these markers remains to be 
further elucidated owing to CC heterogeneity.

Previous studies have shown that the balance of the host 
tumor microenvironment is critical to tumor occurrence and 

development. The host tumor microenvironment consists of 
fibroblasts, vascular endothelial cells, immune cells, cytokines, 
growth factors, hormones, and extracellular matrix components, 
among other elements.33 In this study, resting dendritic cells, 

Figure 2.  Overall survival (OS) for different risk cases according to the optimal cut-off 1.247 in training and validation. Kaplan-Meier survival curves for 

high- and low-risk cases in the training (a) and validation (b) cohorts.
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resting mast cells, activated CD4+ memory T cells, and CD8+ 
T cells showed elevated infiltration levels in low-risk cases com-
pared with those in high-risk cases, whereas M0 macrophages, 
activated mast cells, and neutrophils showed lower infiltration. 
Most of the retrieved IRGs were enriched in the immune 
response regulating and lymphocyte- and antigen receptor-
mediated signaling pathways. Moreover, there were significant 
differences in the proportions of specific immune cells between 
high- and low-risk cases. Typically, CD8+ T cells recognize 
tumor cells and substantially contribute to the immune response, 
and elevated CD8+ T cell infiltration could lead to improved 
prognosis.34 As shown above, CD8+ T cell infiltration was sig-
nificantly lower in high-risk cases, in disagreement with previ-
ously reported findings in papillary carcinoma.35 Although 
CD8+ T cells are one of the main anticancer immune cell types, 
they are usually in a dysfunctional state (T cell exhaustion) 
when they infiltrate the cancer tissue.36 The characteristics of 
CD8+ T cell exhaustion are decreased activity and proliferation, 
increased apoptosis rate, and decreased production of effector 
cytokines. The distribution of CD8+ cells may be influenced 
by inhibitory receptors, small immunosuppressive molecules, 
immune regulatory cells, transcriptomic changes, and metabolic 
reprogramming of exhausted CD8+ T cells. Studies have also 

shown anomalous dendritic cells contribute to CD8+ T cell 
generation, resulting in a high CD8+ T cell abundance.37 
However, these cells do not exert the corresponding antitumor 
effects. Many tumor immunotherapies, such as inhibitory anti-
bodies, target CD8+ T cells, achieving good therapeutic effects. 
Understanding the molecular mechanism of CD8+ T cell 
exhaustion is very important for establishing reasonable immu-
notherapeutic interventions.

An IRGP prognostic signature is generated based on a 
relative expression ranking of genes and does not need data 
standardization, offering a great advantage over previously 
determined prognostic profiles. In addition, it is easy to be 
applied to clinical practice. Recently, other researchers used a 
29-IRGP signature for predicting OS in CC cases; however, 
the current study included more cases and used more stringent 
filtering conditions to develop a 25-IRGP signature for pre-
dicting patient prognosis in CC. Notably, the IRGPs screened 
and retained for model building in the present study also dif-
fered from those examined in previous studies.

If IRGs are detected in a patient, the 25 IRGP-based prog-
nosis signature may be employed for assessing their risk 
score based on the risk score formula. Moreover, the risk score 
can be used to determine high- or low-risk cases. Finally, a 

Figure 3.  Associations within the immune-related gene pair (IRGP) prognostic signature and clinical data with OS in the training and validation cohorts. 

Univariable and multivariable Cox analyses of clinical parameters and the IRGP prognostic signature in the training (a b) and validation (c d) cohorts.
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Figure 4.  Immune cell infiltration levels in low- and high-risk cervical cancer cases: (a) In total, 22 distinct immune cells were examined for abundance 

based on CIBERSORT algorithm in low- and high-risk cases, and (b) Abundance levels of 7 immune cells subsets showed significant differences between 

the 2 patient groups.
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Figure 5.  Functional enrichment of 25 immune-related gene pairs: (a) results of Gene Ontology (GO) enrichment analysis; the immune-related gene pairs 

(IRGPs) were significantly enriched in 17 signaling pathways and (b) Results of gene set enrichment analysis (GSEA); immune response regulating 

signaling pathway, adaptive response based on somatic recombination of immune receptors built from immunoglobulin superfamily domains, and 

lymphocyte-mediated immunity and antigen receptor-mediated signaling pathway were significantly enriched in low-risk cases.

Kaplan–Meier curve can be plotted for patient prognosis. The 
IRGP prognosis signature has been widely used in many can-
cer studies, in particular in hepatocellular carcinoma6 and 

osteosarcoma.7 Moreover, all of them were verified using data 
in the databases; and the only shortcoming was that these 
studies were not experimentally verified.
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This study had several limitations. The initial features of the 
prognostic signature are gene expression files based on RNA-
seq or microarray data, which have a high cost, a lengthy trans-
formation cycle, and requirements of professional knowledge 
of biological information; hence, popularizing the model for 
clinical use would be rather challenging. Furthermore, the bio-
logical functions and molecular mechanisms of the 46 IRGs in 
patients with CC need to be evaluated. Finally, standard genetic 
analysis by polymerase chain reaction is required to further 
verify the expression of the identified IRGs in CC.

Conclusion
This study presents a 25-IRGP prognostic signature as a reli-
able and independent biomarker of OS prognosis in CC. It also 
provides insights into the potential mechanisms of immuno-
therapy and the identification of related targets, which may 
contribute to the development of personalized immunothera-
peutic strategies, thereby improving the outcome of CC.
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