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Abstract
Janus	kinase	(JAK)	inhibitors	have	emerged	as	an	effective	class	of	therapies	for	vari‐
ous	inflammatory	diseases	such	as	rheumatoid	arthritis	(RA).	JAK	inhibitors	function	
intracellularly	by	modulating	the	catalytic	activity	of	JAKs	and	disrupting	the	recep‐
tor‐mediated	signaling	of	multiple	cytokines	and	growth	factors,	including	those	with	
pro‐inflammatory	activity.	Understanding	the	inhibition	profiles	of	different	JAK	in‐
hibitors,	based	on	the	associated	cytokine	receptors	and	downstream	inflammatory	
pathways	affected,	is	important	to	identify	the	potential	mechanisms	for	observed	
differences in efficacy and safety. This study applied an integrated modeling ap‐
proach,	using	 in	vitro	whole	blood	cytokine	 inhibition	potencies	and	plasma	phar‐
macokinetics,	to	determine	JAK‐dependent	cytokine	receptor	inhibition	profiles,	 in	
the	context	of	doses	estimated	to	provide	a	similar	clinical	 response	 in	RA	clinical	
trials.	The	calculated	profiles	of	cytokine	receptor	 inhibition	for	the	JAK	 inhibitors	
tofacitinib,	baricitinib,	upadacitinib,	and	filgotinib	and	its	metabolite,	were	generally	
similar	when	clinically	efficacious	doses	for	RA	were	considered.	Only	minor	numeri‐
cal	differences	 in	percentage	cytokine	receptor	 inhibition	were	observed,	suggest‐
ing	limited	differentiation	of	these	inhibitors	based	on	JAK	pharmacology,	with	each	
showing	 a	 differential	 selectivity	 for	 JAK1	 heterodimer	 inhibition.	 Nevertheless,	
only	robust	clinical	testing	involving	head‐to‐head	studies	will	ultimately	determine	
whether	 there	 are	 clinically	meaningful	differences	between	 these	 JAK	 inhibitors.	
Furthermore,	ongoing	and	future	research	into	inhibitors	with	alternative	JAK	selec‐
tivity	remains	of	clinical	importance.	Thus,	all	JAK	inhibitors	should	be	characterized	
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1  | INTRODUC TION

Inflammatory	diseases,	such	as	rheumatoid	arthritis	(RA),	are	chronic	
immune‐mediated	conditions,	which	collectively	have	an	estimated	
prevalence	of	5%‐7%	in	Western	society,1 can be highly disabling2 
and	painful,	and	cause	reduced	quality	of	life.3

Inflammation	is	a	complex	immune	response	involving	diverse	cell	
types	and	feedback	loops	promoting	the	production	of	pro‐inflamma‐
tory mediators.1,4	Notably,	 cytokines	are	a	group	of	 structurally	un‐
related	protein	messengers	that,	upon	binding	to	and	activating	their	
specific	receptors	on	immune	cells,	transmit	signals	that	regulate	the	
expression	of	numerous	inflammatory	genes.	Under	dysregulated	con‐
ditions,	 cytokines	play	a	key	 role	 in	 the	pathologic	 inflammatory	 re‐
sponse	characteristic	of	immune‐mediated	diseases.1,5,6

Janus	kinases	 (JAKs)	are	enzymes	 that	are	essential	 in	 the	 sig‐
naling	pathways	of	type	I	and	type	II	cell‐surface	cytokine	receptors	
which lack intrinsic kinase catalytic activity.5,6 There are four differ‐
ent	JAK	 isoforms	 in	humans	 (JAK1,	JAK2,	JAK3,	and	TYK2)	which	
function	 in	pairs	 to	 transmit	 intracellular	signals	 from	cytokine‐ac‐
tivated receptors.5	 JAK1	pairs	with	 JAK3	 to	mediate	 the	 signaling	
pathways of common gamma chain (γc)	cytokines.	 JAK1	also	pairs	
with	JAK2	and/or	TYK2	for	signaling	through	receptors	of	the	IL‐6,	
IL‐10,	and	interferon	cytokine	families.	Additionally,	JAK2	pairs	with	
TYK2	for	signaling	through	IL‐12	and	IL‐23	cytokine	receptors,	and	
with	 itself	 for	signaling	from	receptors	 for	hormone‐like	cytokines	
such	as	erythropoietin	(EPO).5

Indeed,	 there	 are	 over	 50	 cytokines	 that	 signal	 through	 JAK‐
mediated	type	I	and	II	receptors,6 many implicated in inflammatory 
disease pathophysiology.1,4	Notably,	 IL‐6	 induces	acute‐phase	pro‐
teins	 such	as	C‐reactive	protein	 (CRP)	 and	may	be	 involved	 in	 the	
autoimmune	process	through	B‐cell	modulation	and	T‐helper‐17‐cell	
differentiation.7 Common γc cytokines play a key role in adaptive 
immune	functions,	for	example,	in	T‐cell	and	natural	killer	(NK)‐cell	
differentiation.5	JAKs	are	therefore	an	attractive	therapeutic	target	
for	RA	and	other	inflammatory	diseases.6

Biologic	drugs	for	treating	inflammatory	diseases	target	extracel‐
lular elements of the inflammation pathway such as cytokines or their 
receptors.1,4,5	In	contrast,	targeted	synthetic	JAK	inhibitors	reduce	in‐
flammation by directly binding to and modulating the intracellular cat‐
alytic	activity	of	JAKs	and	disrupting	the	receptor‐mediated	signaling	
of	multiple	cytokines,	including	those	of	pro‐inflammatory	pathways.4

Current	JAK	inhibitor	drugs	were	designed	to	be	selective	for	cer‐
tain	 JAK	 isoforms.8	 Tofacitinib	 is	 an	oral,	 small	molecule	 JAK	 inhibi‐
tor	for	the	treatment	of	RA,	psoriatic	arthritis,	and	ulcerative	colitis.	
Tofacitinib is reported to have functional selectivity for heterodimer 

pairs	involving	JAK1	and/or	JAK3.4,5	Other	JAK	inhibitors	with	ongo‐
ing	or	completed	late	development	RA	clinical	trials	include	baricitinib,	
upadacitinib,	and	 filgotinib.	Baricitinib	 is	approved	 for	 the	 treatment	
of	 RA,	 with	 reported	 preferential	 selectivity	 for	 JAK1	 and	 JAK2.9 
Upadacitinib	and	filgotinib	are	under	investigation	for	the	treatment	of	
inflammatory	diseases	including	RA;	both	drugs,	as	well	as	filgotinib's	
active	metabolite,	are	reported	to	selectively	inhibit	JAK1.10‐12

Understanding	the	different	inhibition	profiles	of	JAK	inhibitors,	
based on the associated cytokine receptors and downstream inflam‐
matory	pathways	 inhibited,	 is	 important	to	better	characterize	the	
impact	of	JAK	inhibition	and	the	potential	rationale	for	differences	
in	clinical	efficacy	and	safety	profiles.	Although	JAK	selectivity	can	
be	evaluated	using	enzymatic	assays,	the	selectivity	observed	using	
biochemical assays may not necessarily be maintained when evalu‐
ated under physiologic cellular conditions.13 Suggested reasons for 
this	discrepancy	include	differences	within	the	complex	intracellular	
milieu,	particularly	when	assessing	activity	in	primary	cells	(ie,	human	
whole	blood),	such	as	the	difference	in	the	adenosine	triphosphate	
(ATP)	Michaelis‐Menten	constant	(KM)	of	each	kinase.

13

The	objective	of	this	study	was	to	characterize	cytokine	receptor	
inhibition	profiles	of	JAK	inhibitors	for	the	treatment	of	RA,	in	the	con‐
text	of	drug	doses	that	provided	a	similar	response	in	patients	in	RA	
clinical	 trial	settings.	To	achieve	this,	we	applied	an	 integrated	mod‐
eling	approach,	using	knowledge	of	both	intracellular	JAK‐dependent	
cytokine signaling inhibition potencies and in vivo pharmacokinetics.

2  | MATERIAL S AND METHODS

2.1 | Drug compounds

Tofacitinib	and	the	active	metabolite	of	filgotinib	were	synthesized	
by	Pfizer	Discovery	Research.	Baricitinib	(Catalog	No.	G‐5743),	upa‐
dacitinib	(Catalog	No.	M15685),	and	filgotinib	(Catalog	No.	I‐9794)	
were	purchased	 from	Advanced	ChemBlocks	 Inc.	 The	 compounds	
were	 prepared	 as	 30	 mmol/L	 stocks	 in	 100%	 dimethyl	 sulfoxide	
(DMSO).	An	11‐point	 dilution	 series	was	 created	 in	DMSO	with	 a	
maximum	concentration	of	10	mmol/L	or	30	mmol/L.	Further	dilu‐
tion	was	performed	by	adding	4	µL	of	the	above	compound	solutions	
into	96	µL	of	phosphate‐buffered	saline	(PBS)	with	a	maximum	con‐
centration	of	400	µmol/L	or	1200	µmol/L.

2.2 | Cytokines

EPO	 (Catalog	No.	287	TC),	G‐CSF	 (Catalog	No.	214‐GS),	GM‐CSF	
(Catalog	No.	215‐GM),	 IFNα	 (Catalog	No.	11200‐2),	 IFNγ (Catalog 

via	thorough	preclinical,	metabolic	and	pharmacological	evaluation,	adequate	 long‐
term	clinical	data,	and	when	available,	real‐world	experience.
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No.	285‐IF),	IL‐2	(Catalog	No.	202‐IL),	IL‐3	(Catalog	No.	203‐IL),	IL‐4	
(Catalog	 No.	 204‐IL),	 IL‐6	 (Catalog	 No.	 206‐IL),	 IL‐7	 (Catalog	 No.	
207‐IL),	 IL‐10	(Catalog	No.	217‐IL),	 IL‐12	(Catalog	No.	219‐IL),	 IL‐13	
(Catalog	No.	213‐IL),	 IL‐15	 (Catalog	No.	247‐IL),	 IL‐23	 (Catalog	No.	
1290‐IL),	IL‐27	(Catalog	No.	2526‐IL),	and	TPO	(Catalog	No.	288‐TP)	
were	 obtained	 from	R&D	 Systems.	 IL‐21	 (Catalog	No.	 AF‐200‐21)	
was	purchased	from	PeproTech.

2.3 | Antibodies

Antibodies	 specific	 to	 phosphorylated	 signal	 transducer	 and	 ac‐
tivator	 of	 transcription	 proteins	 (pSTATs)	 and	 cluster	 of	 differen‐
tiation	(CD)	molecules	were	supplied	by	BD	Biosciences	(San	Jose,	
CA,	USA):	anti‐pSTAT1‐AF647	 (Catalog	No.	612597);	anti‐pSTAT1‐
AF488	 (Catalog	 No.	 612596);	 anti‐pSTAT3‐AF647	 (Catalog	 No.	
557815);	 anti‐pSTAT4‐AF647	 (Catalog	 No.	 558137);	 anti‐pSTAT5‐
AF488	 (Catalog	 No.	 612598);	 anti‐pSTAT5‐AF647	 (Catalog	 No.	
612599);	 anti‐CD3‐BV421	 (Catalog	No.	 562426);	 anti‐CD3‐BV650	
(Catalog	No.	563852);	anti‐CD14‐Pacific	Blue	(Catalog.	No.	558121);	
anti‐CD14‐AF488	(Catalog	No.	557700);	anti‐CD19‐BV421	(Catalog	
No.	562440).

2.4 | Cells

Cryopreserved	 human	 bone	marrow	 CD34+ cells were purchased 
from	 STEMCELL	 Technologies	 (Catalog	 No.	 70002.3;	 Vancouver,	
Canada).	Frozen	bone	marrow	CD34+	cells	were	thawed,	washed	once	
with	StemSpan™	SFEM	II	medium	(Catalog	No.	09605;	STEMCELL	
Technologies),	suspended	in	StemSpan™	SFEM	II	medium	containing	
StemSpan™	Erythroid	 Expansion	 Supplement	 (Catalog	No.	 02692;	
STEMCELL	Technologies),	and	cultured	for	7	days.	CD34+ cells were 
then	 harvested,	 washed	 once	 with	 Dulbecco's	 (D)‐PBS,	 and	 sus‐
pended	at	0.5	x	106	cells/mL	in	human	whole	blood	to	be	used	in	the	
EPO	stimulation	assay.

Human whole blood was collected from 13 healthy donors 
(seven	males	and	six	females)	via	venipuncture	into	Vacutainer	col‐
lection	tubes	containing	sodium	heparin,	 in	accordance	with	Pfizer	
protocols	(Protocol	No.	GOHW	RDP‐01)	approved	by	the	Shulman	
Institutional	Review	Board.	Blood	was	warmed	to	37°C	prior	to	use.

2.5 | Other materials

Phosflow	Lyse/Fix	Buffer	5X	(Catalog	No.	558049)	was	purchased	
from	BD	Biosciences.	Fetal	bovine	serum	(Catalog	No.	A3160601)	
was	 purchased	 from	 Thermo	 Fisher	 Scientific	 and	 sodium	 azide	
(Catalog	No.	S8032)	was	obtained	from	Sigma	Aldrich.	D‐PBS	(with‐
out Ca2+	or	Mg2+)	was	obtained	from	Invitrogen	(Catalog	No.	14190).	
Glutathione	S‐transferase	(GST)‐tagged	recombinant	human	kinase	
domains	 of	 JAK1,	 JAK2,	 and	 JAK3	were	 purchased	 from	 Thermo	
Fisher	Scientific.	His‐tagged	 recombinant	human	TYK2	kinase	do‐
main	was	expressed	in	SF21/baculovirus	and	purified	using	a	two‐
step	affinity	 (Ni‐nitrilotriacetic	acid)	and	size‐exclusion	 (SEC	S200)	
purification method.

2.6 | Enzymatic potency of JAK inhibitors

The	 potency	 of	 tofacitinib,	 upadacitinib,	 baricitinib,	 and	 filgotinib	
and	its	metabolite	against	the	four	JAK	isoforms,	JAK1,	JAK2,	JAK3,	
and	TYK2,	was	measured	 in	 terms	of	half‐maximal	 inhibitory	 con‐
centration (IC50).	Human	JAK	activity	was	determined	using	a	micro‐
fluidic assay to monitor phosphorylation of a synthetic peptide by 
the	recombinant	human	kinase	domain	of	each	of	the	JAK	isoforms.

Test	compounds	were	solubilized	 in	DMSO	to	a	 stock	concen‐
tration	of	30	mmol/L.	Compounds	were	diluted	in	DMSO	to	create	
an	11‐point	half‐log	dilution	series	with	a	maximum	concentration	of	
600	μmol/L.	The	test	compound	plate	also	contained	positive	con‐
trol wells containing a proprietary potent inhibitor to define 100% 
inhibition	and	negative	control	wells	containing	DMSO	to	define	no	
inhibition.	The	 test	compounds	were	diluted	1:60	 in	 the	assay,	 re‐
sulting in a final assay compound concentration range of 10 μmol/L	
to	100	pmol/L,	with	a	final	assay	concentration	of	1.7%	DMSO.	Test	
compounds	 and	 controls	 solubilized	 in	 100%	 DMSO	 were	 added	
(250	nL)	 to	a	384‐well	polypropylene	plate	 (Corning)	using	a	non‐
contact acoustic dispenser.

Kinase	assays	were	carried	out	at	room	temperature	in	15	μL	reac‐
tion	buffer	containing	20	mmol/L	HEPES	(pH	7.4),	10	mmol/L	magne‐
sium	chloride,	0.01%	bovine	serum	albumin,	0.0005%	Tween	20,	and	
1	mmol/L	dithiothreitol.	Reaction	mixtures	contained	1	μmol/L	of	a	
fluorescently	labeled	synthetic	peptide	(5FAM‐KKSRGDYMTMQID	
for	 JAK1	 and	 TYK2,	 and	 FITC‐KGGEEEEYFELVKK	 for	 JAK2	 and	
JAK3)	at	a	concentration	less	than	the	apparent	KM.	Reaction	mix‐
tures	contained	1	mmol/L	ATP.

Test	compound	was	added	to	the	buffer	containing	ATP	and	sub‐
strate,	 and	 immediately	 after	 this	 step,	 the	 enzyme	was	 added	 to	
begin the reaction. The assays were stopped with 15 μL	of	a	buffer	
containing	 180	mmol/L	HEPES	 (pH	=	7.4),	 20	mmol/L	 ethylenedi‐
aminetetraacetic	 acid	 (EDTA),	 and	 0.2%	 coating	 reagent,	 resulting	
in	a	final	concentration	of	10	mmol/L	EDTA,	0.1%	coating	reagent,	
and	100	mmol/L	HEPES	 (pH	=	7.4).	 The	 assay	 plates	were	 placed	
on	 a	 Caliper	 Life	 Science	 Lab	 Chip	 3000	 (LC3000)	 instrument	 or	
Caliper	Life	Science	EZ	Reader	instrument	and	each	well	was	sam‐
pled using appropriate separation conditions to determine the level 
of phosphorylation.

2.7 | In vitro analyses

2.7.1 | Whole blood potency

Inhibition curves and IC50 values were determined for cytokine sign‐
aling	of	tofacitinib,	baricitinib,	upadacitinib,	and	filgotinib	and	its	me‐
tabolite.	 For	 each	 cytokine	 assay,	 all	 five	 compounds	were	 tested	
side‐by‐side	in	quadruplicate	(ie,	using	blood	from	four	donors).

A	total	of	90	µL/well	of	human	whole	blood	was	added	to	96‐
well	polypropylene	plates	(Catalog	No.	10755‐246;	VWR),	followed	
by	5	µL	test	compound	solutions	prepared	per	above	to	give	a	max‐
imum	concentration	of	 20	µmol/L	or	 60	µmol/L.	 The	plates	were	
mixed	and	incubated	for	60	minutes	at	37ºC.	Then,	5	µL	of	PBS	or	
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cytokine	was	 added	 to	 each	well	 (5	 µL/well;	 final,	 10	U/mL	 EPO,	
100	ng/mL	G‐CSF,	10	ng/mL	GM‐CSF,	5000	U/mL	 IFNα,	100	ng/
mL	IFNγ,	50	ng/mL	IL‐2,	50	ng/mL	IL‐3,	5	ng/mL	IL‐4,	50	ng/mL	IL‐6,	
30	 ng/mL	 IL‐7,	 30	 ng/mL	 IL‐10,	 30	 ng/mL	 IL‐12,	 30	 ng/mL	 IL‐13,	
30	ng/mL	IL‐15,	50	ng/mL	IL‐21,	25	ng/mL	IL‐23,	1000	ng/mL	IL‐27)	
and	 incubated	 for	 15	 minutes.	 Anti‐cell	 surface	 antibodies	 were	
added	15	minutes	prior	 to	cytokine	stimulation;	anti‐CD14‐Pacific	
Blue	(0.5	µL/well)	to	GM‐CSF,	IFNγ,	and	TPO‐treated	samples;	anti‐
CD3‐BV650	(0.5	µL/well)	plus	anti‐CD14‐Pacific	Blue	(0.5	µL/well)	
to	 IL‐6‐treated	 samples;	 and	 anti‐CD19‐BV421	 (0.5	 µL/well)	 plus	
anti‐CD14‐AF488	(0.5	µL/well)	to	IL‐13‐treated	samples.

The	reaction	was	quenched	by	adding	Lyse/Fix	Buffer	to	all	wells	
at	700	µL/well	and	incubating	for	20	minutes	at	37°C;	after	wash‐
ing	with	staining	buffer	(D‐PBS	containing	0.5%	fetal	bovine	serum	
and	0.1%	sodium	azide),	350	µL	ice‐cold	90%	methanol	(Catalog	No.	
4823‐32;	RICCA	Chemical)	was	added	to	each	well	and	incubated	at	
4ºC	for	30	minutes.	One	more	wash	was	done	with	staining	buffer	
and	 all	 samples	were	 finally	 suspended	 in	 150	µL/well	 of	 the	 de‐
sired	anti‐pSTAT	antibodies	at	1:150	dilution	in	staining	buffer;	anti‐
pSTAT1‐AF647	 in	 IFNγ‐treated	 samples;	 anti‐pSTAT1‐AF488	 and	
anti‐pSTAT3‐AF647	in	IFNα‐,	IL‐6‐,	and	IL‐27‐treated	samples;	anti‐
pSTAT3‐AF647	in	G‐CSF‐,	IL‐10‐,	IL‐21‐,	and	IL‐23‐treated	samples;	
anti‐pSTAT4‐AF647	in	IL‐12‐treated	samples;	anti‐pSTAT5‐AF647	in	
EPO‐,	GM‐CSF‐,	IL‐2‐,	IL‐3‐,	IL‐7‐,	IL‐15‐,	and	TPO‐treated	samples;	
anti‐pSTAT5‐AF488	 and	 anti‐pSTAT6‐AF647	 in	 IL‐4‐treated	 sam‐
ples;	and	anti‐pSTAT6‐AF647	in	IL‐13‐treated	samples.

After	 overnight	 incubation	 at	 4°C,	 all	 the	 samples	were	 trans‐
ferred	 into	 96‐well	 polypropylene	 U‐bottom	 plates	 (Catalog	 No.	
072‐00‐745;	Thermo	Fisher	Scientific)	and	flow	cytometric	analysis	
was	performed	on	an	LSR	Fortessa	equipped	with	a	High	Throughput	
Sampler	plate	loader	(BD	Biosciences).	The	lymphocyte	population	
was	gated	for	pSTAT	histogram	analysis	for	IFNα‐,	IL‐2‐,	IL‐3‐,	IL‐4‐,	
IL‐7‐,	 IL‐10‐,	 IL‐12‐,	 IL‐15‐,	 IL‐21‐,	 IL‐23‐,	 and	 IL‐27‐treated	 samples;	
granulocyte	population	for	G‐CSF‐treated	samples;	CD14+ cells for 
GM‐CSF‐,	 IFNγ‐,	and	TPO‐treated	samples;	CD3+	 cells	and	CD14+ 
cells	for	IL‐6‐treated	samples;	CD14+ cells and CD19+	cells	for	IL‐13‐
treated	samples;	all	events	(entire	populations)	for	EPO‐treated	cells.	
Background	fluorescence	was	defined	using	unstimulated	cells	and	
a gate was placed at the foot of the peak to include ~0.5% gated 
population.

Histogram	 statistical	 analysis	 was	 performed	 using	 FACSDiva	
version	 8.0.1	 (BD	 Biosciences).	 Relative	 fluorescence	 unit	 (RFU),	
which	measures	the	level	of	pSTAT,	was	calculated	by	multiplying	the	
percent positive population and its mean fluorescence. Data from 
11	compound	concentrations	(singlicate	at	each	concentration)	were	
normalized	as	a	percentage	of	control,	as	shown	in	Equation	1:

A,	RFU	 from	wells	 containing	compound	and	cytokine;	B,	RFU	
from	wells	without	cytokine	 (minimum	fluorescence);	C,	RFU	from	
wells	containing	only	cytokine	(maximum	fluorescence).

Inhibition curves and IC50	values	were	determined	using	Prism	
software	(Version	7,	GraphPad).

2.7.2 | Plasma protein binding

An	 equilibrium	 dialysis	 method	 was	 used	 to	 determine	 the	 plasma	
fraction unbound (fu)	values,	as	described	previously.

14	Briefly,	dialysis	
membranes	(MWCO	12‐14K)	and	96‐well	dialysis	devices	were	assem‐
bled	following	the	manufacturer's	instructions	(HTDialysis,	LLC,	Gales	
Ferry,	CT,	USA).	Human	plasma	samples	(pooled	mixed	gender;	BioIVT,	
www.bioivt.com)	containing	1	μmol/L	test	compounds	with	1%	DMSO	
were	dialyzed	against	PBS	for	6	hours	in	a	humidified	incubator	(75%	
relative humidity; 5% CO2/95%	 air)	 at	 37°C	 with	 shaking	 at	 450	
RPM.	Quadruplicates	of	binding	were	measured	for	each	compound.	
Samples	 were	 matrix‐matched	 and	 quenched	 with	 cold	 acetonitrile	
containing	internal	standard(s).	The	solutions	were	centrifuged	and	the	
supernatant	was	analyzed	using	liquid	chromatography‐tandem	mass	
spectrometry	(LC‐MS/MS).

2.7.3 | Blood‐to‐plasma ratio

Human	 blood‐to‐plasma	 ratio	 was	 measured	 by	 Unilabs	 York	
Bioanalytical	 Solutions.	 Test	 compounds	were	 incubated	 in	 quad‐
ruplicate	with	fresh	human	blood	 (mixed	gender,	at	 least	1	sample	
per	 gender,	 Clinical	 Trials	 Laboratory	 Services	 Ltd,	 London,	 UK)	
at 1 μmol/L	 in	 a	 humidified	 incubator	 (95%	 relative	 humidity;	 5%	
CO2/95%	air)	for	1	and	3	hours	at	37°C	with	shaking	at	450	RPM.	
Following	 incubation,	plasma	samples	were	obtained	by	centrifug‐
ing blood samples at 3000g	 for	7	minutes.	Both	plasma	and	blood	
samples	were	matrix‐matched	with	each	other	and	quenched	with	
acetonitrile containing internal standard. The solutions were centri‐
fuged,	and	the	supernatant	was	analyzed	by	LC‐MS/MS.	Peak	area	
ratios	were	used	to	calculate	blood‐to‐plasma	ratio.

2.8 | Data analyses

An	integrated	modeling	approach	was	applied	to	determine	cytokine	
receptor inhibition profiles. Whole blood IC50 values were converted 
to unbound values (IC50,u)	 using	measured	 blood‐to‐plasma	 ratios	
and measured fu	values,	as	shown	in	Equation	2:

Human daily average plasma concentrations (Cav)	were	used	as	
reported	or	predicted	in	the	literature	for	tofacitinib,	baricitinib,	up‐
adacitinib,	 and	 filgotinib	 and	 its	metabolite,	 for	doses	 that	we	de‐
termined	to	be	clinically	meaningful	(ie,	tofacitinib	5	mg	twice	daily	
[BID],	baricitinib	4	mg	once	daily	[QD],	upadacitinib	15	mg	QD,	and	
filgotinib	 200	mg	QD).	Doses	were	 selected	on	 the	 rationale	 that	
they provided a generally comparable proportion of patients meet‐
ing	 American	 College	 of	 Rheumatology	 (ACR)	 response	 criteria	 in	
clinical trial settings.15‐18 Cav as a measure of average daily drug 

(1)%of control=100×

(

A−B
)

(

C−B
)

(2)IC50,u=
IC50

blood:plasma ratio
× fu

https://www.bioivt.com
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plasma concentration was used as it has been shown to be a pre‐
dictive	exposure	metric	of	the	efficacy	of	tofacitinib	and	filgotinib,	
rather than Cmax or Cmin.19‐21 Cav values were converted to unbound 
values (Cav,u)	using	fu	values,	as	shown	in	Equation	3:

Proportions	(%)	of	JAK	receptor	inhibitory	concentrations	(ICxx)	
at	 clinically	 meaningful	 doses	 were	 then	 calculated,	 as	 shown	 in	
Equation	4:

3  | RESULTS

3.1 | Enzymatic potency of JAK inhibitors

Table 1 presents IC50	values	for	the	inhibition	of	the	JAK	isoforms	
(JAK1,	JAK2,	JAK3,	and	TYK2)	by	tofacitinib,	baricitinib,	upadacitinib,	
and	 filgotinib,	measured	 using	 an	 enzymatic	 assay.	Measurements	
were performed once for the filgotinib metabolite and showed weak 
inhibition	(therefore	data	not	shown).

3.2 | In vitro potency of JAK inhibitors

3.2.1 | Whole blood potency

Table 2 presents mean IC50 values for inhibition of cytokine receptors 
by	tofacitinib,	baricitinib,	upadacitinib,	and	filgotinib	and	its	metabo‐
lite,	measured	 in	 human	whole	 blood	 side‐by‐side.	Measurements	
were	performed	for	each	compound	at	11	different	concentrations,	
and	using	blood	from	four	donors	per	cytokine.	Additionally,	Figure	
S1 presents IC50	curves	(one	of	the	four	obtained)	for	representative	
cytokine	receptors	from	different	receptor	classes	(IFNγ,	IFNα,	IL‐6,	
IL‐15,	IL‐12,	and	EPO)	for	illustrative	purposes.

3.2.2 | Plasma protein binding

From	quadruplicate	measurements,	mean	fu values were determined 
to	be	0.61	for	tofacitinib,	0.59	for	baricitinib,	0.56	for	upadacitinib,	
0.49	for	filgotinib,	and	0.42	for	filgotinib	metabolite.

3.2.3 | Blood‐to‐plasma ratios

From	 quadruplicate	 measurements,	 mean	 blood‐to‐plasma	 ratios	
were	determined	to	be	1.20	for	tofacitinib,	1.32	for	baricitinib,	1.16	
for	upadacitinib,	1.22	for	filgotinib,	and	1.09	for	filgotinib	metabolite.

3.2.4 | Unbound half‐maximal inhibitory 
concentrations

Per	Equation	2,	the	measured	IC50	values,	fu	values,	and	blood‐to‐
plasma ratios were used to calculate IC50,u	 values,	which	 are	 pre‐
sented alongside the IC50 values in Table 2.

3.3 | Cytokine inhibition

Table 3 presents Cav values obtained from the literature for doses 
that were determined to be clinically meaningful (based on gener‐
ally	 comparable	 ACR	 response	 rates),	 and	 calculated	 Cav,u values 
(Equation	 3)	 for	 tofacitinib,	 baricitinib,	 upadacitinib,	 and	 filgotinib	
and its metabolite.

Calculated ICxx	 data	 (Equation	 4)	 are	 summarized	 in	 Figure	 1.	
Cytokine receptor inhibition profiles across a broad range of path‐
ways	were	generally	similar	among	the	JAK	inhibitors	studied,	and	
generally	 consistent	 across	 each	 JAK	 pair.	 There	 appeared	 to	 be	
some	 small	 numerical	 differences	 among	 the	 JAK	 inhibitors	 ana‐
lyzed.	Relative	inhibition	of	most	JAK1/3‐mediated	cytokine	recep‐
tors (γc	cytokine	receptors;	IL‐2,	IL‐4,	IL‐7,	and	IL‐15)	appeared	to	be	
numerically	greater	with	tofacitinib	vs	other	JAK	 inhibitors;	 inhibi‐
tion	of	 JAK2/TYK2‐mediated	 cytokine	 receptors	 (IL‐12,	 IL‐23,	 and	
EPO)	 appeared	 to	 be	 numerically	 greater	with	 baricitinib	 vs	 other	
JAK	inhibitors;	and	 inhibition	of	JAK1/JAK2‐mediated	cytokine	re‐
ceptors	 (IFNγ	 and	G‐CSF)	 and	 JAK2‐mediated	 cytokine	 receptors	
(TPO,	 IL‐3,	and	GM‐CSF)	appeared	 to	be	numerically	greater	with	
upadacitinib	vs	other	JAK	inhibitors.

4  | DISCUSSION

The	 relationship	 between	 the	 clinical	 profiles	 of	 JAK	 inhibitors	
and	 their	 individual	 selectivity	 for	 JAK	 isoforms	 is	 not	 clear.	 To	
explore	this,	we	evaluated	the	activity	of	JAK	inhibitors	approved	
or	under	investigation	for	RA	treatment.	Using	an	integrated	mod‐
eling	approach,	we	determined	cytokine	 receptor	 inhibition	pro‐
files	of	clinically	equivalent	doses	(based	on	proportion	of	patients	
meeting	ACR	response	criteria)	of	tofacitinib	(5	mg	BID),	baricitinib	
(4	mg	QD),	upadacitinib	(15	mg	QD),	and	filgotinib	and	its	metabo‐
lite	(200	mg	QD).

(3)Cav,u=Cav× fu

(4)ICxx=100×
Cav,u

IC50,u+Cav,u

TA B L E  1  Mean	IC50	values	in	enzymatic	assay	for	tofacitinib,	
baricitinib,	upadacitinib,	and	filgotinib	inhibition	of	JAK1,	JAK2,	
JAK3,	and	TYK2

 

IC50 (nmol/L) [n]a,b

JAK1 JAK2 JAK3 TYK2

Tofacitinib 15	[7] 71	[7] 45	[8] 472	[10]

Baricitinib 0.78	[3] 2	[3] 253	[3] 14	[3]

Upadacitinib 0.76	[3] 19	[3] 224	[3] 118	[3]

Filgotinib 45	[3] 357	[3] 9097	[3] 397	[3]

Abbreviations:	ATP,	adenosine	triphosphate;	IC50,	half‐maximal	inhibi‐
tory	concentration;	JAK,	Janus	kinase;	TYK,	tyrosine	kinase.
aIC50	values	represent	the	geometric	mean	of	independent	experi‐
ments;	[n]	denotes	the	number	of	experiments.	
bAll	reactions	were	carried	out	in	the	presence	of	1	mmol/L	ATP.	
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The IC50 values determined in this study were consistent with 
the	literature,	with	each	JAK	inhibitor	demonstrating	greater	selec‐
tivity	 for	 JAK1	vs	other	 isoforms.4,5,9‐11	 JAK1	 is	presumed	 to	be	a	
key	 target	 for	RA	and	other	 inflammatory	diseases	since	 it	associ‐
ates with receptors for γc	 cytokines,	 interferons,	 type	 II	 cytokine	
receptors	(eg,	IL‐6),	and	other	interleukins.5,22	Also	per	the	literature,	
tofacitinib	showed	comparative	selectivity	for	JAK3,	and	baricitinib	
showed	comparative	selectivity	for	JAK2.4,5,9

Cytokine receptor inhibitory concentration (ICxx)	 profiles	were	
generally	 similar	 among	 the	 JAK	 inhibitors,	 with	 small	 numerical	
differences	 in	 percentage	 cytokine	 receptor	 inhibition,	 suggesting	
limited	differentiation	of	these	JAK	inhibitors	based	on	in	vitro	phar‐
macology. Small differences observed included the ICxx values for 
IL‐6	 and	 IL‐15	 receptor	 inhibition.	 However,	 these	 differences	 do	
not appear to translate into significant differences in key clinical 
biomarkers.	Although	IL‐6	is	involved	in	stimulating	CRP	production	
from	hepatocytes,7	 reduction	of	CRP	levels	from	baseline	to	week	
12	does	not	appear	to	differ	by	any	clinically	meaningful	extent	for	
these	 JAK	 inhibitors	when	used	 to	 treat	RA:	 tofacitinib	5	mg	BID	
(−10.1	 mg/L23);	 baricitinib	 4	 mg	 QD	 (approximately	 −10	 mg/L24);	
upadacitinib	 6	 mg	 BID	 (−8.8	 mg/L25);	 and	 filgotinib	 200	 mg	 QD	
(−14.9	mg/L26).	Likewise,	although	IL‐15	is	critical	for	NK	cell	main‐
tenance,27	reductions	from	baseline	in	NK	cell	counts	do	not	appear	
to	differ	to	a	meaningful	extent	for	these	JAK	inhibitors	in	RA:	to‐
facitinib	 (−32.5	cells/mm3	at	month	1.5,	−63.5	cells/mm3 at month 
6,	+6.5	cells/mm3	at	month	22,	cross‐sectional	analysis	in	different	
groups of patients4);	baricitinib	4	mg	QD	(−57.0	cells/mm3 at week 
12;	−53.4	cells/mm3	at	week	2428);	upadacitinib	6	mg	BID	(approx‐
imately	−50	cells/mm3 at week 1229);	sufficient	 long‐term	data	are	
not available for filgotinib.

Tofacitinib generally demonstrated a greater relative inhibition of 
γc	 cytokine	 receptors	vs	 the	other	 JAK	 inhibitors.	This	 is	 consistent	
with	the	selectivity	of	tofacitinib	for	JAK1	and	JAK3,4,5 compared with 
smaller	JAK3	effects	for	the	other	JAK	inhibitors.9‐11	Given	the	associ‐
ation between γc	cytokines	and	adaptive	immune	functions,	including	
effects	on	subsets	of	pathologic	T	cells,5	one	might	expect	to	observe	
related	clinical	differences	between	these	JAK	inhibitors.	It	remains	to	
be seen if the relative difference in inhibition of γc cytokine receptors 
vs	other	 cytokine	 receptors	 (eg,	 IFN	and	 IL‐6)	with	 tofacitinib,	 com‐
pared	with	JAK	inhibitors	that	spare	JAK3,	translates	into	a	meaningful	
difference	in	infection	risk.	Meta‐analysis	data	suggest	that	the	risk	of	
serious infections is comparable for tofacitinib and baricitinib in the 
treatment	of	RA.30 Incidence rates (IRs; patients with events per 100 
patient‐years)	(95%	confidence	intervals	[CI])	were:	2.7	(2.5,	3.0)	for	all	
tofacitinib	doses	pooled	in	phase	1,	phase	2,	phase	3,	and	long‐term	
extension	(LTE)	studies;	and	4.8	(2.3,	9.7)	for	baricitinib	2	mg	QD,	and	
3.7	(2.3,	5.8)	for	baricitinib	4	mg	QD,	in	randomized	controlled	trials.30 
Interestingly,	herpes	zoster	(HZ),	caused	by	varicella	zoster	virus	reacti‐
vation,31	has	been	observed	with	each	JAK	inhibitor	studied	herein.	In	
pooled	analyses	of	RA	clinical	studies,	HZ	IRs	(events	per	100	patient‐
years)	were:	4.4	and	4.2	with	tofacitinib	5	and	10	mg	BID,	respectively,	
vs 1.5 with placebo32;	2.7	and	4.3	with	baricitinib	2‐	and	4	mg	QD,	
respectively,	vs	1.0	with	placebo.33 HZ has also been reported in phase JA
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3	RA	studies	of	upadacitinib	and	filgotinib.17,18	As	such,	the	occurrence	
of	HZ	 is	 likely	a	 “class	effect”	of	 inhibiting	at	 least	JAK1,34 although 
viral	reactivation	could	also	be	dependent	on	the	overall	impact	of	JAK	
inhibition.

Notably,	 IC50 values for filgotinib and its metabolite were not 
measurable	for	TPO,	IL‐3,	or	GM‐CSF	cytokine	receptors	(all	JAK2‐
dependent	pathways).	This	may	be	related	to	the	potency	of	filgo‐
tinib	and	the	concentration	range	used	in	the	assays.	Overall,	there	
was	only	minor	differentiation	between	the	effects	of	the	JAK	inhib‐
itors	on	cytokine	receptors	mediated	by	JAK2/JAK2	pairs.	However,	
tofacitinib and baricitinib appear to differentiate from each other 
clinically in terms of effect on platelet counts and hemoglobin lev‐
els,	which	could	be	related	to	the	effects	of	JAK2	inhibition	on	TPO	
and	EPO	activity	and	production.6,35,36 In a pooled analysis of two 
LTE	 studies	 of	 tofacitinib	 5	 or	 10	mg	BID	 for	 RA,	 platelet	 counts	
initially	decreased	from	baseline	then	stabilized	over	time,	and	he‐
moglobin levels increased from baseline over time.37 In the tofaci‐
tinib	LTE	study	ORAL	Sequel,	 increases	 in	hemoglobin	 levels	were	
observed	from	baseline	to	month	24,	which	then	remained	stable	to	
month	96.38	In	contrast,	in	an	integrated	analysis	of	phase	1b,	phase	
2,	phase	3,	and	LTE	RA	studies,	baricitinib	4	mg	QD	was	associated	
with	an	 initial	 increase	 in	platelet	counts,	which	 then	 returned	 to‐
ward baseline; hemoglobin levels decreased from baseline to week 
20,	then	returned	to	baseline	or	higher.33	Given	that	tofacitinib	and	
baricitinib do not appear to differentially inhibit cytokine receptor 
signaling	via	JAK2	to	a	significant	extent,	alternative	reasoning	for	
the	observed	clinical	difference	may	be	important,	for	example,	time	
course	for	inhibition.	Indeed,	time	above	IC50 may be significant.39

One	observation	with	tofacitinib	dosed	QD	vs	BID	suggests	that	
some	 JAK	 effects	may	 be	more	 sensitive	 to	 daily	 drug	 holiday.	 In	
a	 phase	2	RA	 study,	 changes	 in	 levels	 of	 hemoglobin	 and	 neutro‐
phils	from	baseline	to	week	24	were	less	pronounced	with	tofacitinib	
20	mg	QD	(0.01	g/dL	and	−0.43	×	103/mm3,	respectively)	vs	10	mg	
BID	(−0.34	g/dL	and	−1.20	×	103/mm3,	respectively).23 While these 
differences	 are	 subtle,	 further	 clinical	 data	 are	 required	 to	 under‐
stand this phenomenon.

Lower	levels	of	inhibition	of	JAK2‐dependent	cytokine	receptor	
signaling	 by	 tofacitinib,	 baricitinib,	 and	 upadacitinib	 have	 recently	

been	reported,40 which contradict values reported here and in pre‐
vious studies.41	 However,	 whereas	 we	 used	 cytokine	 concentra‐
tions	for	all	receptors	that	maximally	induce	STAT	phosphorylation	
(>EC95),	we	note	 that	McInnes	et	al

40	utilized	as	much	as	667‐fold	
lower	 concentrations	 of	 JAK2‐dependent	 cytokines.	 STAT	 phos‐
phorylation can be more readily inhibited at lower cytokine concen‐
trations	(Figure	S2),	likely	due	to	partial	receptor	activation,	resulting	
in lower IC50.	Physiologic	cytokine	concentrations	vary,	necessitating	
standardized	 cytokine	 receptor	 stimulation	 for	proper	 comparison	
of	inhibitor	activity	across	different	receptors.	Similarly,	the	use	of	
physiologic	ATP	concentration	is	important	when	comparing	the	in‐
hibition	potential	of	ATP‐competitive	JAK	inhibitors.42 The potency 
of	upadacitinib	against	JAK	enzymes	measured	in	this	study	differs	
from	those	recently	reported	in	Parmentier	et	al,43 which likely re‐
flects	differences	in	ATP	concentrations	used	between	studies.

Limitations	of	this	analysis	must	be	considered.	The	comparisons	
were	based	on	doses	of	 four	 JAK	 inhibitors	which	were	 considered	
to	provide	generally	comparable	clinical	efficacy	in	patients	with	RA;	
these	 agents	 (and	 doses)	 have	 not	 all	 received	 regulatory	 approval.	
Furthermore,	this	analysis	was	limited	to	an	extensive,	but	incomplete,	
list	of	cytokines;	nevertheless,	 those	evaluated	represent	key	 family	
members	associated	with	each	JAK	pair,	so	the	results	are	somewhat	
generalizable.	While	this	analysis	determined	cytokine	receptor	inhibi‐
tion	profiles,	the	clinical	impact	of	JAK	selectivity	could	vary	depend‐
ing	on	factors	such	as	patients'	genetics	or	underlying	 inflammatory	
state	(ie,	comorbid	diseases)8	as	well	as	environmental	factors	or	exog‐
enous	influences	(eg,	concomitant	medications).

Research into inhibitors of alternative inflammatory pathways 
remains	 important.	 Indeed,	 second‐generation	 JAK	 inhibitors,	
preferentially	selective	for	one	JAK	isoform,	are	being	developed.6 
For	 example,	 BMS‐986165	 is	 a	 TYK2‐selective	 inhibitor	 under	 in‐
vestigation for psoriasis44;	 and	 PF‐06651600	 is	 a	 dual	 JAK3/
TEC	 kinase‐selective	 inhibitor45 under investigation for alopecia 
(NCT02974868),	 Crohn's	 disease	 (NCT03395184),	 non‐segmental	
vitiligo	 (NCT03715829),	RA	 (NCT02969044),	 and	ulcerative	colitis	
(NCT02958865).	 Possible	 differences	 in	 clinical	 profiles	 of	 com‐
pounds	selective	for	TYK2	or	JAK3	vs	those	selective	for	JAK1	are	
evidenced	 in	 early	 study	 data,	 although	 further	 research	 in	 more	

 Dose Cav (nmol/L) Cav,u (nmol/L) fu

Tofacitinib19 5	mg	BIDa 68 41.0 0.61

Baricitinib9 4	mg	QDb 27 16.0 0.59

Upadacitinib47,48 15	mg	QDc 49 27.4 0.56

Filgotinib11 200	mg	QDc 474 232.0 0.49

Filgotinib metabolite11 200	mg	QDc 7438 3124.0 0.42

Abbreviations:	BID,	twice	daily;	Cav,	average	plasma	concentration;	Cav,u,	average	plasma	con‐
centration,	unbound;	EMA,	European	Medicines	Agency;	FDA,	United	States	Food	and	Drug	
Administration;	fu,	fraction	unbound;	QD,	once	daily.
aThis	dose	is	approved	by	both	the	EMA	and	the	FDA.	
bThis	dose	is	approved	by	the	EMA	but	not	approved	by	the	FDA	(dosage	of	2	mg	QD	is	approved	
by	the	FDA).	
cThese	JAK	inhibitors	are	under	investigation.	

TA B L E  3  Actual	and	unbound	Cav 
values for clinically meaningful doses of 
tofacitinib,	baricitinib,	upadacitinib,	and	
filgotinib and its metabolite
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robust	settings	is	required.	For	example,	BMS‐986165	has	not	been	
associated	with	laboratory	changes	such	as	increased	lipid	levels,44 
which	can	occur	with	IL‐6	inhibition.46

In	 conclusion,	by	applying	an	 integrated	modeling	approach,	 the	
JAK	 inhibitors	 tofacitinib,	 baricitinib,	 upadacitinib,	 and	 filgotinib,	 at	
doses	conveying	reasonably	equivalent	clinical	efficacy	for	RA,	exhib‐
ited	 generally	 similar	 cytokine	 receptor	 inhibition	 profiles.	 Although	

some	small	numerical	differences	were	observed,	these	do	not	appear	
to	translate	to	significant	differences	in	the	JAK	inhibitors'	clinical	pro‐
files.	At	 the	 same	 time,	we	appreciate	 that	only	 robust	 clinical	 test‐
ing	involving	head‐to‐head	studies	may	determine	whether	there	are	
clinically	meaningful	differences	between	these	JAK	inhibitors.	All	JAK	
inhibitors,	 including	 novel	 second‐generation	 compounds	with	mini‐
mal	JAK1	effects,	need	to	be	characterized	via	 thorough	preclinical,	

F I G U R E  1  Cytokine	receptor	inhibitory	concentrations	for	modeled	exposures	of	tofacitinib	5	mg	BID,	baricitinib	4	mg	QD,	upadacitinib	
15	mg	QD,	and	filgotinib/metabolite	200	mg	QD.	
BID,	twice	daily;	CD,	cluster	of	differentiation;	EPO,	erythropoietin;	G‐CSF,	granulocyte	colony‐stimulating	factor;	GM‐CSF,	granulocyte‐
macrophage	colony‐stimulating	factor;	ICxx,	proportion	of	JAK	inhibitory	concentration;	IFN,	interferon;	IL,	interleukin;	JAK,	Janus	kinase;	
pSTAT,	phosphorylated	signal	transducer	and	activator	of	transcription	protein;	QD,	once	daily;	TPO,	thrombopoietin;	TYK,	tyrosine	kinase
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metabolic	and	pharmacological	evaluation,	adequate	long‐term	clinical	
data,	and	when	available,	real‐world	experience.
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