
Report
Improving MHC class I ant
igen-processing
predictions using representation learning and
cleavage site-specific kernels
Graphical abstract
Highlights
d MHCrank, a new MHC class I processing predictor,

outperforms existing methods

d Learned embeddings correlate with important properties for

antigen processing

d Cleavage site-specific kernels identify relevant enrichment

patterns for amino acids
Lawrence & Ning, 2022, Cell Reports Methods 2, 100293
September 19, 2022 ª 2022 The Author(s).
https://doi.org/10.1016/j.crmeth.2022.100293
Authors

Patrick J. Lawrence, Xia Ning

Correspondence
ning.104@osu.edu

In brief

Lawrence et al. develop a deep-learning

model, MHCrank, to predict the

probability of antigen processing for

recognition by CD8+ T cells. MHCrank

outperforms existing antigen-processing

predictors. Additionally, the model is

open source, making it readily available

for use in drug and vaccine development.
ll

mailto:ning.104@osu.edu
https://doi.org/10.1016/j.crmeth.2022.100293
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmeth.2022.100293&domain=pdf

OPEN ACCESS

ll
Report

Improving MHC class I antigen-processing
predictions using representation learning
and cleavage site-specific kernels
Patrick J. Lawrence1 and Xia Ning1,2,3,4,*
1Biomedical Informatics Department, The Ohio State University, 1800 Cannon Drive, Lincoln Tower 250, Columbus, OH 43210, USA
2Computer Science and Engineering Department, The Ohio State University, 2015 Neil Avenue, Columbus, OH 43210, USA
3Translational Data Analytics Institute, The Ohio State University, 1760 Neil Avenue, Columbus, OH 43210, USA
4Lead contact
*Correspondence: ning.104@osu.edu

https://doi.org/10.1016/j.crmeth.2022.100293
MOTIVATION More than binding affinity, designing effective drugs and vaccines to stimulate the adaptive
immune response requires accurate predictions regarding which antigens will be produced through pro-
cessing and ultimately presented by MHC class I molecules. Constructing a model that is more acutely
aware of biologically relevant features for processing and presentation will improve these predictions. How-
ever, future predictions will benefit from considering amino acid structure in addition to the antigen
sequence.
SUMMARY
In this work, we propose a new deep-learning model, MHCrank, to predict the probability that a peptide will
be processed for presentation byMHC class I molecules. We find that the performance of our model is signif-
icantly higher than that of two previously published baseline methods: MHCflurry and netMHCpan. This
improvement arises from utilizing both cleavage site-specific kernels and learned embeddings for amino
acids. By visualizing site-specific amino acid enrichment patterns, we observe that MHCrank’s top-ranked
peptides exhibit enrichments at biologically relevant positions and are consistent with previous work.
Furthermore, the cosine similarity matrix derived from MHCrank’s learned embeddings for amino acids cor-
relates highly with physiochemical properties that have been experimentally demonstrated to be instru-
mental in determining a peptide’s favorability for processing. Altogether, the results reported in this work
indicate that MHCrank demonstrates strong performance compared with existing methods and could
have vast applicability in aiding drug and vaccine development.
INTRODUCTION

The major histocompatibility complex (MHC) class I protein is a

vital part of the immune system’s response to intracellular inva-

sion by viruses, bacteria, and parasites and against tumorigen-

esis (Comber and Philip, 2014). Its primary responsibility is to

present antigens—short peptides 8–10 amino acids in length

that are cleaved from proteins—into the extracellular environ-

ment to be recognized by cytotoxic (CD8+) T cells, which subse-

quently eliminate compromised cells via apoptosis (Rock et al.,

2004). Thus, these peptides can be leveraged for the develop-

ment of both vaccines that prime CD8+ T cells against a path-

ogen and drugs that elicit cytolytic activity in tumor cells.

There is not a single MHC class I molecule. Rather, multiple

versions can be produced based on the human leukocyte anti-

gen (HLA) alleles present in an individual’s genome. HLA is the
Cell Reports
This is an open access article under the CC BY-N
portion of the MHC class I molecule that binds presented pep-

tides; hypermutability within the HLA binding groove yields vari-

ability in the binding affinity of processed peptides and affords

greater coverage of the number of pathogens that can be recog-

nized (Wieczorek et al., 2017).

The peptides presented by MHC class I molecules must first

undergo a series of processing steps to make the peptide

more favorable for presentation. Peptidases digest proteins

into fragments based on identified consensus sequences that

indicate where to cleave proteins (Rock and Goldberg, 1999).

Fragments from digested protein are then translocated across

the rough endoplasmic reticulum (RER) membrane by the TAP

protein (Kloetzel, 2001; Lundegaard et al., 2010). TAP filters

these peptides, based on which ones are most likely to have

high affinity for the MHC class I molecule. Specifically, TAP

has a higher affinity for peptides between 8 and 16 amino acids
Methods 2, 100293, September 19, 2022 ª 2022 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:ning.104@osu.edu
https://doi.org/10.1016/j.crmeth.2022.100293
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmeth.2022.100293&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1. MHCrank model architecture

MHCrank takes a uniform-length N-flank + peptide + C-flank sequence, C-terminal cleavage site (see gray box), and the peptide’s original length before padding

or trimming as input. The amino acids comprising the sequence and cleavage site-specific kernel (CSSK) undergo feature embedding. A convolution layer is

applied to the embedding of the entire sequence. The remainder of the MHCrank architecture can be split into six components. Component (1) applies a mean

pool to the convolution output corresponding to the N-flank. Component (2) applies a mean pool to the convolution output corresponding to the C-flank. The

convolution output corresponding to the peptide sequence is forwarded to two stacked convolution layers. Components (3) and (4) each have two outputs (A and

B) obtained from the output of these convolution layers. (3A) extracts the output corresponding to the peptide’s N-terminal amino acid. (4A) extracts the output

corresponding to the peptide’s C-terminal amino acid. (3B) applies a mean pool to the peptide’s non-N-terminal amino acids. (4B) applies a mean pool to the

peptide’s non-C-terminal amino acids. Component (5) applies a global kernel to the embedded CSSK. Component (6) is a single node that takes the peptide’s

original length as input. Two dense layers are applied to the concatenated output of each component. The output from the second dense layer enters an output

layer that predicts the probability of the input peptide undergoing antigen processing. Note that the layout of this diagram is largely inspired by the presentation of

MHCflurry’s architecture (O’Donnell et al., 2020).

See also Figure S1.

Report
ll

OPEN ACCESS
in length (Abele and Tampé, 2004), aswell as peptides with either

hydrophobic or basic C-terminal amino acids (Kloetzel, 2001;

Rock et al., 2004). Once in the RER, longer peptides may be

further cleaved from the N termini to optimize its binding affinity

(Rock and Goldberg, 1999), but the C terminus remains un-

touched as this is the primary anchor point between the antigen

and MHCmolecule. Thus, leveraging these peptides for vaccine

and drug development requires an understanding of which pep-

tides will have the greatest opportunity to bind to any given HLA

allele.

As a result, computer-aided methods have been developed to

identify candidate peptides (O’Donnell et al., 2020; Jurtz et al.,

2017; Comber and Philip, 2014; Phloyphisut et al., 2019; Boehm

et al., 2019; Zeng and Gifford, 2019). Among them, deep-

learning (DL) models that rank peptides’ binding affinities to

MHC class I molecule(s) have achieved superior performance

(Jurtz et al., 2017). These models are created with the goal of

predicting which peptides will have the highest binding affinity

for the HLA alleles. However, there is no guarantee that highly

ranked peptides will be selected for presentation by upstream

proteins (O’Donnell et al., 2020), meaning that these models

may lack biological relevance. Recent attempts have been
2 Cell Reports Methods 2, 100293, September 19, 2022
made to develop models that rank the likelihood of peptides be-

ing processed within the MHC class I presentation pathway

(O’Donnell et al., 2020; Jurtz et al., 2017). These are considered

HLA independent as they do not require any information about

the HLA alleles, making them a more generalized approach. By

training on peptides that have been confirmed to be processed

for and presented by MHC class I molecules, in combination

with the amino acid residues immediately flanking the peptides

in their original protein, such models can—in theory—learn the

features that make a peptide more likely to be cleaved and pro-

cessed for presentation. This incorporates the biological infor-

mationmissing frombinding affinitymodels and has the potential

to enable superior performance on predicting presentation.

In this work, we propose a novel DL, antigen-processing (AP)

prediction model, denoted MHCrank, that has been developed

to rank candidate peptides by their likelihood to be processed

for MHC class I presentation. The architecture for MHCrank is

presented in Figure 1. Further details can be found in STAR

Methods. Based on the architecture used by O’Donnell et al.

(2020), our model imparts additional biological relevance,

focusing on the carboxyl (C)-terminal cleavage site of the antigen

and pre-processing antigen sequences to simulate what is

Table 1. Performance comparison: Mean AUC

MHCrank ensembles

EL Fw-top1 Fw-top2 Ba-top1 Ba-top2 C-top1 C-top2

0.9050 0.9073y (0.0)**** 0.9120y (0.0)**** 0.9102y (0.0)**** 0.9147y (0.0)**** 0.9121y (0.0)**** 0.9153y (0.0)****

Results comparing the performance of MHCrank’s ensembles against EL (netMHCpan4.0-EL) with respect to mean AUC. y highlights MHCrank en-

semble’s improvement in performance over netMHCpan4.0-EL; p values are reported in parentheses to the right of the mean performance values.

Statistically significant improvement of MHCrank’s ensembles relative to netMHCpan4.0-EL’s performance (after multiple-hypothesis correction) is

denoted as follows: ****p % 0.001. See also Figure S4 and Tables S2–S4.

Report
ll

OPEN ACCESS
observed in vivo (O’Donnell et al., 2020). In our development of

MHCrank, we forgo the use of the widely used BLOSUM62 ma-

trix for amino acid representations. Instead, MHCrank learns a

problem-specific embedding for each amino acid. Our experi-

ments on the benchmark dataset demonstrate that MHCrank

achieved a significant performance improvement over the

compared baseline methods: netMHCpan-4:0 eluted ligand

and MHCflurry-2:0 antigen processing, denoted netMHC-

pan4.0-EL and MHCflurry-AP, respectively.

Our paper is organized as follows. We first trained and evalu-

ated the proposed MHCrank model using data published by

O’Donnell et al. (2020). Further discussion regarding both the

training and testing data sets can be found in the ‘‘training

data’’ and ‘‘testing data processing’’ subsections of STAR

Methods. We evaluated our model by comparing its perfor-

mance against the MHCflurry-AP and netMHCpan4.0-EL base-

lines using three metrics: area under the curve (AUC), pre-

cision@k, and NDCG@k. Detailed descriptions of these metrics

can be found in the ‘‘evaluation metrics’’ subsection of STAR

Methods. Finally, we added transparency to our model by iden-

tifying what it had learned. We achieved this both by analyzing

the enrichment patterns of top-ranked peptides from our model

and by comparing the amino acid embeddings that were learned

by our model.

RESULTS

Performance evaluation
The validation AUC measured during training across four folds

(Table S1) was used to select models to be included in six

MHCrankensembles: Fw-top1—thecombinationof thebest-per-

formingmodel trained oneach fold; Fw-top2—thecombinationof

the top twoperformingmodels trainedoneach fold;Ba-top1—the

combination of the models from the same hyperparameter set

with the highest average validation AUC; Ba-top2—the combina-

tionof themodels fromthe twohyperparameter setswith thehigh-

est average validation AUC; C-top1—the combination of the Fw-

top1 and the Ba-top1 ensembles; and C-top2—the combination

of the Fw-top2 and the Ba-top2 ensembles. A more comprehen-

sive description of the ensembles is presented in the ‘‘ensemble

methods and model selection’’ subsection of STAR Methods.

All (100%) of the models selected for inclusion in the ensembles

utilized the embedding amino acid representation method

(Table S7A). Examining Table S1, we observe a decrease in

AUC from training to validation for all models. This is expected,

as models will have learned information from the peptides in the

training set, while the peptides in the validation set can be consid-

ered novel. Interestingly, we observed larger drops in AUC from
the training to the validation set for the two best-performing

models of those trained on fold 3 comparedwith the top-perform-

ing models from other folds. Furthermore, the best-performing

model of those trainedon fold3exhibits a large standarddeviation

in bothmean training and validation AUC compared with all other

selectedmodels. This is because themodel with this set of hyper-

parameters achieved poor performance when trained on fold 0.

This suggests that the hyperparameters used by this model are

not conducive to learning the important features of fold 0’s data.

Moreover, theonlyhyperparameter that is sharedby thebest-per-

formingmodels from fold 3 and not present in any of the other top

models is that those from fold 3 use an input peptide length of 15.

This indicates that perhapsa largerproportionof peptides in fold3

have central amino acids that contribute to MHC class I process-

ing or binding than those of the other folds.

Tables 1, 2, and 3 and Tables S2A–S2C compare the perfor-

mance of all six MHCrank ensembles against netMHCpan4.0-

EL and MHCflurry-AP, in terms of mean AUC, precision@k,

and NDCG@k, respectively. Note that the significance levels (p

% 0.1, 0.05, 0.01, 0.001) denoted in Tables 1, 2, 3, and S2 are

reported following multiple-hypothesis correction. We find that

all of the MHCrank ensembles perform significantly (p %

0.001) better than MHCflurry-AP for all evaluated metrics with

the exception of Fw-top1’s AUC and Ba-top1’s AUC and pre-

cision@k and NDCG@k for k = 10 (Table S2).

Evaluation of AUC

Tables 1, 2, 3, and S2A show that, for all the methods, the mean

AUC was higher than 0.9. This suggests all methods have

learned to distinguish between hits and decoys. Among the eval-

uated methods, C-top2 achieves the best performance (0.9153).

All the MHCrank ensembles outperform netMHCpan4.0-EL

(Table S2A), and four of the six MHCrank ensembles—Fw-

top2, Ba-top2, C-top1, and C-top2—outperform MHCflurry-

AP; each achieves statistically significant improvement at the

level of p% 0.001 (Table 1). This demonstrates the strong power

ofMHCrank ensembles in learning from the training data to score

hits above decoys. Further discussion about AUC is available in

the section ‘‘evaluating training and testing hits and decoys.’’

Additionally, we evaluate the impact of the ratio of decoys-to-

hits onmodel performance with respect to AUC and precision@k

and NDCG@k in the section ‘‘evaluation of model performance

with reduced decoy-to-hit ratios.’’

Evaluation of precision@k
Table S2B illustrates that all MHCrank ensembles consistently

outperform MHCflurry-AP across all k values with statistical sig-

nificance. Furthermore, four of the six MHCrank ensembles (Fw-

top1, Fw-top2, C-top1, and C-top2) outperform netMHCpan4.0-

EL for small values of k (10, 25) (see Table 2). For k = 500, all
Cell Reports Methods 2, 100293, September 19, 2022 3

Table 2. Performance comparison: Mean precision@k

MHCrank

k EL Fw-top1 Fw-top2 Ba-top1 Ba-top2 C-top1 C-top2

10 0.7065 0.7260y (0.0028)** 0.7251y (0.0050)** 0.6492 (0.0) 0.6980 (0.1995) 0.7089y (0.7117) 0.7116y (0.4440)

25 0.6434 0.6544y (0.0114)* 0.6517y (0.0524) 0.6314 (0.0047) 0.6246 (0.0) 0.6496y (0.1424) 0.6452y (0.6729)

50 0.5971 0.5973y (0.9488) 0.5971 (1.0) 0.5891 (0.0105) 0.5922 (0.1142) 0.6063y (0.0031)** 0.6035y (0.0391)

100 0.5495 0.5284 (0.0) 0.5360 (0.0) 0.5182 (0.0) 0.5304 (0.0) 0.5491 (0.8511) 0.5434 (0.0074)

250 0.4344 0.4202 (0.0) 0.4410y (0.0)**** 0.4198 (0.0) 0.4359y (0.3132) 0.4412y (0.0)**** 0.4482y (0.0)****

500 0.3288 0.3413y (0.0)**** 0.3544y (0.0)**** 0.3409y (0.0)**** 0.3552y (0.0)**** 0.3550y (0.0)**** 0.3604y (0.0)****

Results comparing the performance ofMHCrank’s ensembles against EL (netMHCpan4.0-EL) with respect tomean precision@k. y highlightsMHCrank

ensemble’s improvement in performance over netMHCpan4.0-EL; p values are reported in parentheses to the right of the mean performance values.

Statistically significant improvement of MHCrank’s ensembles relative to netMHCpan4.0-EL’s performance (after multiple-hypothesis correction) is

denoted as follows: *p % 0.1; **p % 0.05; ****p % 0.001. See also Figure S4 and Tables S2–S4.

Report
ll

OPEN ACCESS
MHCrank ensembles outperform netMHCpan4.0-EL with a sig-

nificance of at least p % 0.001. Among the six MHCrank

ensemble methods, Ba-top1 and Ba-top2 are generally the

worst-performing ensembles in terms of precision@k. On

average, neither ensemble improves upon the performance of

netMHCpan4.0-EL. Furthermore, Ba-top1 is the only ensemble

to achieve a significantly reduced precision@k (p % 0.1) relative

to MHCflurry-AP for any value of k (k =10). These two ensemble

methods used the overall best hyperparameters across all the

four folds. Thus, the models trained on each fold using these hy-

perparameter sets were not necessarily optimized for that fold.

Consequently, the combination of these suboptimal models

did not produce the best performance. On the contrary, Fw-

top2 and C-top1 were the two ensemble methods that achieved

the overall best precision@k. Bothmethods incorporated at least

the best model (C-top1) or two best models (Fw-top2) for each

of the four folds, allowing the ensemble to integrate themost pre-

dictive power possible from the data.

Evaluation of NDCG@k
Tables 3 and S2C display very similar trends to those in Tables 2

and S2B. That is, all the MHCrank methods outperform

MHCflurry-AP (Table S2C), and four of the six ensemble methods

(Fw-top1, Fw-top2, C-top1, and C-top2) outperform netMHC-

pan4.0-EL (Table 3). Again, Ba-top1 and Ba-top2 are the worst-

performing ensemble methods. Unlike Table 2, in Table 3 we

observe that Fw-top1 and Fw-top2 are the two best-performing

ensembles, with each achieving significant improvements over

netMHCpan4.0-EL for three and four values of k, respectively.

This indicates that Fw-top2 is able to rank more hits at higher po-

sitions in the ranking. C-top1 and C-top2 combine Fw-top1 and

Ba-top1, and Fw-top2 and Ba-top2, respectively. This grants

C-top1 and C-top2 both pros and cons of both types of ensem-

bles. Thus it is intuitive that they, in consequence, achieved mid-

level performance.

Percent improvement

Tables 4 and S2D summarize the improvement in performance of

MHCrank as a percentage change of its best-performing

ensemble—Fw-top2—relative to theperformanceof thenetMHC-

pan4.0-EL and MHCflurry-AP baselines, respectively, for mean

AUC, precision@k, and NDCG@k. For both precision@k and

NDCG@k, the percent improvement garnered by Fw-top2 over

both netMHCpan4.0-EL and MHCflurry-AP exhibits generally
4 Cell Reports Methods 2, 100293, September 19, 2022
increasing performance with increasing values of k (e.g., k = 10

versus k = 500). All percent improvements over MHCflurry-AP

are significant for both metrics (p % 0.001). This again indicates

that Fw-top2 is able to more effectively rank peptides likely to be

processed for presentation among the very top of ranking lists

when compared with netMHCpan and MHCflurry. One surprising

result is the dip in bothprecision@k andNDCG@k of Fw-top2 rela-

tive to netMHCpan4.0-EL for k = 50 and 100, followed by rapid

improvementbetween k =250and500.Oneplausible explanation

is netMHCpan4.0-EL learned to highly rank peptides with a spe-

cific motif that is highly enriched within hits (Figure 2). After ex-

hausting all peptides containing the learned motif, the accuracy

of subsequently ranked peptides would likely deteriorate.

Evaluation of model performance with reduced decoy-

to-hit ratios

The specific ratio of 99-decoys-per-hit that we use for evaluating

model performance is a convention utilized bymany the state-of-

the-art methods: MHCflurry (O’Donnell et al., 2020), DeepLigand

(Zeng and Gifford, 2019), and netMHCpan (Jurtz et al., 2017).

The reason for this is that the engineered class rarity is designed

to replicate biological conditions. Specifically, a very small sub-

set of produced peptides is selected by the TAP protein to be

transported into the ER for further processing and to ultimately

be presented (Yewdell et al., 2003).

To further understand the role that the data’s composition

plays in the performance of each model, we recalculated AUC,

precision@k, and NDCG@kwith 50 decoys per hit and 20 decoys

per hit. The set of hits in the amended test data is identical to that

present in the original test data. The set of decoys in each of the

amended test sets was randomly sampled from the set of de-

coys in the original test data. We report the results of these ex-

periments in Table S3.

Tables S3B and S3A show that the ratio of decoys per hit (50

and 20, respectively) does not affect a model’s AUC. The perfor-

mance of all models evaluated using 50 decoys per hit and 20

decoys per hit was nearly identical to that reported in Table 1.

However, both the precision@k (Table S3D) and NDCG@k

(Table S3F) were improved both for each model and for each

value of k when using 50 decoys per hit. The improvement of

all models with a reduced decoy-per-hit ratio indicates that the

difficulty of the task has decreased, as there are fewer decoys

available to be ranked above hits. Interestingly, 50 decoys per

Table 3. Performance comparison: Mean NDCG@k

MHCrank ensembles

K EL Fw-top1 Fw-top2 Ba-top1 Ba-top2 C-top1 C-top2

10 0.7253 0.7451y (0.0032)** 0.7544y (0.0)**** 0.6705 (0.0) 0.7166 (0.2004) 0.7265y (0.8571) 0.7357y (0.1268)

25 0.6712 0.6846y (0.0031)** 0.6877y (0.0002)*** 0.6486 (0.0) 0.6547 (0.0003) 0.6761y (0.2813) 0.6770y (0.1905)

50 0.6272 0.6317y (0.17375) 0.6344y (0.0282) 0.6113 (0.0) 0.6198 (0.02749) 0.6346y (0.02602) 0.6348y (0.0213)

100 0.5795 0.5658 (0.0) 0.5735 (0.01295) 0.5486 (0.0) 0.5621 (0.0) 0.5805y (0.0) 0.5770 (0.0)

250 0.4712 0.4202 (0.0) 0.4780y (0.0)**** 0.4538 (0.0) 0.4701 (0.4678) 0.4772y (0.0001)**** 0.4833y (0.0)****

500 0.3685 0.3779y (0.0)**** 0.3909y (0.0)**** 0.3743y (0.0)**** 0.3891y (0.0)**** 0.3909y (0.0)**** 0.3961y (0.0)****

Results comparing the performance of MHCrank’s ensembles against EL (netMHCpan4.0-EL) with respect to mean NDCG@k. y highlights MHCrank

ensemble’s improvement in performance over netMHCpan4.0-EL; p values are reported in parentheses to the right of the mean performance values.

Statistically significant improvement of MHCrank’s ensembles relative to netMHCpan4.0-EL’s performance (after multiple-hypothesis correction) is

denoted as follows: **p % 0.05; ***p % 0.01; ****p % 0.001. See also Figure S4 and Tables S2–S4.

Report
ll

OPEN ACCESS
hit yielded a larger improvement inMHCrank’s performance rela-

tive to netMHCpan4.0-EL. Compared with Table 2, which used

99 decoys per hit, MHCrank’s improvement in precision@k =

25 becomes significant. Additionally, compared with Table 3,

MHCrank achieved significant improvement in NDCG@k over

netMHCpan4.0-EL from k = 25 to k = 100. While the difficulty

of the task was reduced, the larger relative improvement of

MHCrank indicates that it is better at ranking hits above decoys

and that there were fewer among the top values of k than in either

MHCflurry-AP or netMHCpan4.0-EL.

Similar to the trendobserved for 50decoysper hit inTablesS3B,

S3D, and S3F, the use of 20 decoys per hit (Tables S3A, S3C, and

S3E) toevaluatemodel performanceyields improvementsover the

use of both 50 decoys per hit and 99 decoys per hit. However,

compared with the precision@k and NDCG@k reported for 50 de-

coysper hit (TablesS3DandS3F, respectively), the significance of

MHCrank’s improvements over netMHCpan4.0-EL are reduced

when using 20 decoys per hit for both precision@k and NDCG@k

(Tables S3C and S3E, respectively). This result suggests that the

difficulty of the prediction tasks has been further reduced

compared with using both 99 and 50 decoys per hit. Despite the

triviality of the decoys relative to hits, these results favor the use

of 99 decoys per hit. Not only ismodel evaluation using 99 decoys

per hit standard practice, but this ratio also replicates biological

conditions and introduces difficulty to the prediction tasks used

for performance evaluation, both of which allow for better

comparisons.

Enrichment of training and top-ranked peptides
Figures 2 and S2 show the position-specific enrichment in

various sets of peptides. This is done to assess how peptide

composition may impact both training and testing. The second

and ninth positions are underscored in each figure with yellow

boxes. These positions correspond to the canonical anchor res-

idues for binding to the MHC class I molecule.

Evaluating training peptides

Figure 2A illustrates the position-specific enrichment for 50,000

randomly selected hits from the training data. In this figure, posi-

tion 9 exhibits a high level of enrichment. The amino acids that

are enriched at this position are either hydrophobic (e.g., L, V,

and I) or aromatic (F, Y, W) and are all enriched to comparable

levels. This conforms to the biological relevance affirmed by pre-
vious studies (Wieczorek et al., 2017) that hydrophobic residues

tend to be favored in the C-terminal position. Position 2 also has

slightly elevated enrichment when compared with the low levels

of enrichment that exist for positions 1 and 3–8. Taken together,

this demonstrates that the peptides selected for training can

represent a large range of different peptides.

Evaluating training and testing hits and decoys

Theenrichments reported inFigureS2wereobtained todetermine

the utility of AUC and precision@k metrics. This includes whether

or not either could be considered a biased metric. In Figures S2A

and S2C, we observed no noticeable difference in the enrichment

patterns of training and testing hits. This is promising, as it sug-

gests that both are representative processed antigens, making

thedatabiologically relevant.Additionally, there isnot anoticeable

difference between training hits (Figure S2A) and decoys (Fig-

ure S2B). This indicates that the training decoys are non-trivial.

The peptides used for trainingwere selected from a larger dataset

using scores fromMHCflurry’s BAmodel as criteria. As discussed

byO’Donnell et al., the intuition behind using hits and decoys with

the top 2% of predicted binding affinities (i.e., decoys are very

similar to hits) was to prevent the model from learning features

associated with binding affinities (O’Donnell et al., 2020). This

effectively forces the APmodel to learn non-trivial features related

to antigen processing. However, unlike the training data, there is a

substantial difference between the enrichment patterns of the hits

and decoys in the testing data, as demonstrated in Figures S2C

and S2D. This is because the testing data are from a different

data source (O’Donnell et al., 2020) that was published after the

trainingdata. Unlike the training data, after randomly sampling de-

coys from the protein from which each peptide originates, the

testing data are not filtered by binding affinity. Here, we want to

point out that the formulation of the testing set, including true

hits and sampled decoys, was done according to a process that

is well accepted by the research community and widely used by

the state-of-the-art methods, including MHCflurry, DeepLigand,

and netMHCpan, to evaluate their performance. While the use of

AUC as a metric is common practice, given the dissimilarity be-

tween testing hits and decoys, the triviality of testing decoys likely

inflates this metric. Even so, such inflation would likely affect all

evaluated models to a comparable extent. As such, the relative

ordering of AUC values may still be considered a useful metric

and may provide valuable insights.
Cell Reports Methods 2, 100293, September 19, 2022 5

Figure 2. Amino acid enrichment of training peptides and top 100 predicted candidates
(A–D) The enrichment of amino acids in (A) 50,000 randomly sampled hits from training dataset and in the top 100 peptides from the testing data ranked by (B)

MHCrank’s Fw-top2 ensemble and both the (C) MHCflurry-AP and (D) netMHCpan4.0-EL baseline methods. Yellow boxes covering positions 2 and 9 in each

figure highlight the enrichment of the peptides at their typical anchor positions.

See also Figures S2 and S3.

Report
ll

OPEN ACCESS
Evaluation of MHCrank’s top-ranked peptides

Figure 2B depicts the position-specific enrichment for the set of

the top 100 ranked peptides by the best MHCrank ensemble Fw-

top2. The top 100 peptides were selected for each model as k =

100 is the threshold where MHCrank’s performance rapidly im-

proves compared with netMHCpan4.0-EL. By examining the

general composition of peptides ranked highly by MHCrank

and the netMHCpan4.0-EL and MHCflurry-AP baselines, we

believe we may be able to elucidate the reason for the drastic

shift in performance at k = 100 that we observed in Table 4.

The position-specific enrichment of Fw-top2’s recommended

peptides shows an enhancement in the enrichment at the sec-

ond and ninth positions relative to Figure 2A. Their enhancement

in the Fw-top2 ensemble’s top 100 ranked peptides indicates
6 Cell Reports Methods 2, 100293, September 19, 2022
that our method is capable of discerning both anchor positions

within the peptides. Moreover, similar to the enrichment of the

training peptides, the patent enrichment at the ninth position fea-

tures uniform enrichment of mostly hydrophobic amino acids.

This suggests that Fw-top2 learned to identify the features and

physiochemical properties of the residues versus specific se-

quences. Note there was also a slight increase in the enrichment

of the central amino acids (positions 3–9) compared with Fig-

ure 2A, indicating that MHCrank may have learned some motifs

that convey processing favorability within the central amino

acids.

Evaluation of MHCflurry-AP’s top-ranked peptides

Figure 2C depicts the position-specific enrichment for the set of

top 100 ranked peptides by MHCflurry-AP. Like MHCrank,

Table 4. Performance comparison: Percent change

k Precision@k NDCG@k AUC

10 2.63y** 4.00y**** 0.77y****

25 1.29y 2.47y*** –

50 0.00 1.15y –

100 �2.47 �1.05 –

250 1.51y**** 1.45y**** –

500 7.77y**** 6.09y**** –

Results comparing the performance of MHCrank’s ensembles against EL

(netMHCpan4.0-EL) with respect to percent improvement. yhighlights
MHCrank ensemble’s improvement in performance over netMHCpan4.0-

EL. Statistically significant improvement of MHCrank’s ensembles relative

to netMHCpan4.0-EL’s performance (after multiple-hypothesis correction)

is denoted as follows: **p% 0.05; ***p% 0.01; ****p% 0.001. The p values

are not reported for percent improvements, as these are derived from the

performance reported for Fw-top2 (Tables 1, 2, and 3). Note that the re-

ported percent improvement in AUC was calculated over the entire data-

set, not at a specific k threshold. See also Figure S4 and Tables S2–S4.

Report
ll

OPEN ACCESS
MHCflurry-AP exhibited enhanced enrichment of the second po-

sition. However, this is overshadowed by similar enrichment

levels of its central amino acids (positions 3–9). Additionally, Fig-

ure 2C displays a reduction in enrichment for the vital C-terminal

position. Thus, it appears there was not any position for which

MHCflurry-AP was able to learn meaningful features or trends.

This lack of fit might explain why MHCflurry-AP’s performance

was worse than MHCrank’s performance.

Evaluation of netMHCpan4.0-EL’s top-ranked peptides

Figure 2D depicts the position-specific enrichment for the set of

the top 100 ranked peptides by netMHCpan4.0-EL. The enrich-

ment of the ninth position is higher than any position-specific

enrichment from both MHCrank and MHCflurry-AP. Unlike the

enrichment at this position present in MHCrank’s top peptides,

only three amino acids (Y, L, F) are enriched for netMHCpan4.0-

EL. This is an important distinction because rather than learning

properties of the amino acids that occupy this position in hits, it

is likely that netMHCpan4.0-EL learned to prefer peptides that

ended in one of the three enriched amino acids. In fact, 91% of

netMHCpan4.0-EL’s top 100 peptides feature either Y, L, or F in

the C-terminal position, suggesting that netMHCpan4.0-EL’s per-

formance may decline when testing it with peptides that do not

match this pattern. This adds credence to our explanation under-

lying the dip in both precision@k andNDCG@k of Fw-top2 relative

to netMHCpan4.0-EL for k = 50, 100, followed by rapid improve-

ment between k = 250, 500 (Table 4). Also noteworthy is netMHC-

pan4.0-EL’s enhanced enrichment at positions 2, 3, and 4. The

enrichment of positions 2–4 suggests that netMHCpan4.0-EL

was able to learn that there is an important feature near those po-

sitions, but not which position was most informative.

Evaluation of allelic biases in site-specific amino acid
enrichment and MHCrank’s allele-specific performance
Even though MHCrank is HLA allele agnostic, we sought to

ascertain whether there were any allelic biases in the peptides

presented. This is important for vaccine and drug development,

as it can determine whether a candidate peptide may be less

effective among individuals in the population without the alleles
favoring the motif(s) present in a given peptide. We obtained a

monoallelic dataset published alongside MHCflurry (O’Donnell

et al., 2020) (datafile: DataS2). We retained only hits from HLA-

peptide combinations that were not present in our training

data. We then obtained the site-specific amino acid enrichment

of hits that were bound to each of the 92 HLA alleles present in

the dataset. By studying the enrichment patterns of these alleles,

we aimed to identify some of the features of peptides favored by

these alleles. Doing so would facilitate an evaluation of

MHCrank’s allele-specific performance.

In Figure S3A, we present the enrichment of all hits in the pro-

cessed dataset. The enrichment pattern observed here is

consistent with the enrichment reported for both the training

and testing hits (Figures S2A and S2C, respectively).

Figures S3B–S3D are presented to provide representative exam-

ples of the three most common enrichment patterns observed

within the dataset. Prevalence was determined by the number

of hits from alleles with these enrichment patterns. The enrich-

ment pattern of HLA*A:02-01, depicted in Figure S3B, repre-

sents the alleles that favor peptides with hydrophobic amino

acids present in the anchor residues and/or the peptide’s

termini. Roughly 70%of the hits in the dataset were from interac-

tions between peptides and alleles in this category.

Figure S3C presents the enrichment pattern of HLA*A:30:01.

Unlike the enrichment pattern in Figure S3B, there is a noticeable

decrease in the enrichment of hydrophobic amino acids.

Instead, there is enrichment of basic residues at both the N

and C termini. This indicates that HLA*A:30:01 and similar alleles

favor peptides with basic termini for presentation. However, note

that the total enrichment patterns of this dataset (Figure S3A) and

the enrichment patterns of the training hits (Figure S2A) exhibit

low-level enrichment of basic amino acids at the C-terminal an-

chor residue. This would suggest that possessing basic residues

in the C terminus is not an uncommon feature among peptides

presented by MHC class I molecules. In fact, approximately

16% of the hits in this dataset were interactions between pep-

tides and alleles in this category.

Finally, Figure S3D presents the enrichment of HLA*A:36-01.

This enrichment pattern exhibits high enrichment of acidic amino

acids near the N terminus of presented peptides. Given the

extremely low enrichment of acidic amino acids at any site for

all hits in the training, testing, and monoallelic data sets

(Figures S3D, S2A, and S2C, respectively) It may be inferred

that alleles that prefer peptides with an acidic N terminus are

less common than the previous two categories. Indeed, fewer

than 10% of hits in this dataset are from alleles possessing a

similar enrichment pattern to HLA*A:36-01.

Wealsoobtainedpredictions for all the hits in the dataset. Using

the average score for hits of alleleswith enrichment profiles similar

to Figure S3B as a baseline, we calculated the average change in

predicted score both for hits belonging to alleles with an enrich-

ment pattern similar to Figure S3C and for hits belonging to alleles

with an enrichment pattern similar to Figure S3D. We found that

hits from alleles with a basic enrichment profile garnered a 2.2%

improvement. Additionally, the hits from alleles with an acidic

enrichment profile had a significant reduction in average score

at �16.7%. However, the reduced capacity at scoring acidic hits

is likely the result of there being limited representative examples
Cell Reports Methods 2, 100293, September 19, 2022 7

Report
ll

OPEN ACCESS
within the training data. The similar scoring of basic hits relative to

hydrophobic hits strengthens this claim.

Amino acid embedding: Learned versus hard-coded
features
To ascertain whether the embedding method employed by

MHCrank enhanced its performance and facilitated its observed

improvement over the MHCflurry-AP and netMHCpan4.0-EL

methods, we retrained all the models within the top-performing

MHCrank ensemble (Fw-top2) six times. For each iteration, a

distinct embedding method was utilized: embedding, em-BLO,

BLOSUM, NormBLO, PC-NormBLO, and PC. Further details

regarding these embedding methods can be found in ‘‘amino

acid representation.’’ Figure 3A–3C highlights the results of this

experiment, specifically the average precision@k, NDCG@k,

and AUC, respectively.

Evaluation of precision@k and NDCG@k
In terms of precision@k, MHCrank performance is significantly

improved when using the embedding method than when using

any other embedding method; this holds true for all values of k

(Figure 3A). Models trainedwith the em-BLO embeddingmethod

performed the next best after the embedding method. Models

trained using the PC embedding method performed significantly

worse than when trained using any other embedding method.

Interestingly, the concatenation of the normalized BLOSUM

embedding with the PC embedding does not recapitulate the

performance observed when using the normalized BLOSUM

embedding alone. This suggests that expressiveness of the PC

embedding is likely not the main issue underlying its poor perfor-

mance. Rather, it is probable that some of the properties

included, such as molecular weight, are not important features

for predicting a peptide’s favorability to be processed for MHC

class I presentation. Furthermore, we observe the same trends

when considering NDCG@k (Figure 3B).

Evaluation of AUC

Thechoiceof embeddingmethod followsa similar trend inAUCas

well (Figure 3C). That is, the embedding, em-BLO, and BLOSUM

embedding methods achieve the top performances. Additionally,

the PCmethod again yields theworst performance of any embed-

ding method. Note, however, that the AUC for MHCrank models

trained with the embedding, em-BLO, and BLOSUM methods

achieve similar performances. In fact, the AUC garnered through

use of either the em-BLO or BLOSUM methods were not signifi-

cantly different from the AUC achieved by using the embedding

method. Thus, it may still be concluded that enabling MHCrank

to learn amino-acid-specific embeddings contributed to its ability

to identify peptides more likely to be processed.

Similarities of learned amino acid embeddings
To better understand what it is about the embedding method that

enabled such substantial improvement in performance, we ex-

tracted the 21-dimension embedding vector for each amino acid

from a representative MHCrank model. Figure 3D illustrates the

cosine similarities among the embeddings learned by MHCrank

for each amino acid. Amino acids in Figure 3D have been grouped

according to their type: hydrophobic, aromatic, basic, acidic, po-

lar, and other. We observed that, in general, the learned embed-

dings of amino acids within the same groups (i.e., of the same
8 Cell Reports Methods 2, 100293, September 19, 2022
types) are more similar than those of amino acids from different

groups (i.e., of different types). This indicates that MHCrank was

capable of learning meaningful information from amino acids that

may correlate with their physicochemical properties, and thus

facilitate better predictions. This is further demonstrated by the

similarities of learned embeddings of amino acids between certain

groups. Figure 3D shows that the embeddingsof aromatic and hy-

drophobic amino acids are more similar to each other than the

other amino acid types. Likewise, the embeddingsof basic, acidic,

and polar amino acids aremore similar to each other than they are

to other amino acid types. This distinction suggests thatMHCrank

is capable of learning information that corresponds to an amino

acid’s hydrophilicity, an important physicochemical property

involved in identifying peptides likely to be processed.

Amino acid embedding: Representation method
In addition to the embeddingmethodsevaluatedabove in ‘‘amino

acid embedding: learned versus hard-coded features,’’ we

compared the performance of MHCrank’s embedding method

against the performance garnered by leveraging the embedding

methods of DeepLigand (Zeng and Gifford, 2019) and

MHCSeqNet (Phloyphisut et al., 2019)within theMHCrank frame-

work. These models are state-of-the-art MHC class I binding af-

finity prediction models. Both DeepLigand and MHCSeqNet

were selected because their embedding methods are rooted in

natural language processing, an approach which tends to pro-

vide robust embeddings.

DeepLigand’s embedding method is an ‘‘Embeddings from

Language Model’’ (ELMo) (Zeng and Gifford, 2019). ELMo ap-

plies a deep bidirectional language model to the amino acids

of a peptide, which are treated as words in a sentence. This en-

ables ELMo to learn a context-dependent embedding for each

amino acid. That is, the embedding returned for any given amino

acid will depend not only on the amino acid itself but also on its

position in the peptide as well as the surrounding residues.

Because both DeepLigand and MHCrank make predictions

regarding peptides presented by MHC class I molecules, both

models share a corpus of peptides. As such, when leveraging

the ELMo embedding method, we used a pre-trained implemen-

tation that output 64-dimension embedding vectors.

MHCSeqNet’s embedding method, which is based on the

skip-gram model with a window of 3 (Phloyphisut et al., 2019)

(3-gram), also attempts to learn a context-dependent embed-

ding for amino acids. Unlike ELMo, 3-gram does not consider

the amino acid’s position in the peptide. Rather, it only considers

the amino acid itself and the identity of its surrounding residues.

Specifically, 3-gram uses a window size of three. That is, the

embedding for each amino acid is dependent on the previous

two residues. When leveraging 3-gram within the MHCrank

framework, we use a pre-trained embedding layer that outputs

100-dimension embedding vectors.

The results of this experiment are presented in Table S5. Using

the embedding method within the MHCrank framework achieved

significantlybetterperformance thanusingeitherELMoor3-gram.

A potential reason for this substantial difference in performance

may be that ELMo and 3-gram do not fit well within the MHCrank

framework. This is because the convolution operations that follow

the embedding layer inMHCrank are aimed at learning contextual

Hydrophobic
A I L V M

Aromatic
W Y F

Basic
H K R

Acidic
D E

Polar
N Q S T

Other
P G C

A
I
L
V
M H

yd
ro
ph
ob
ic

W
Y
F A

ro
m
at
ic

H
K
R B

as
ic

D
E A

ci
di
c

N
Q
S
T

Po
la
r

P
G
C O

th
er

−0.2

0

0.2

0.4

A

D

C

B

Figure 3. Performance of MHCrank with differing amino acid embedding methods

(A–C) Mean precision and NDCG@k and AUC, respectively for six identical architectures of MHCrank each trained while using a distinct amino acid embedding

method. The embedding method is used by all the best-performing MHCrank ensembles, including Fw-top2. NormBLO refers to a normalized version of the

BLOSUM matrix; PC is the embedding matrix we produce using physicochemical properties (see ‘‘amino acid representation’’).

(D) Cosine similarities of embeddings learned by an MHCrank model randomly selected from the best-performing ensemble (Fw-top2).

See also Tables S5 and S6.

Report
ll

OPEN ACCESS
dependencies, which affect the likelihood of a peptide being pro-

cessed for presentation. Thus, embedding methods such as

ELMoand3-gram,which alreadyprovide context-dependent em-

beddings, will be in conflict with these convolution layers, and as a

result MHCrank will not learn well.

Amino acid embedding:MHCrank embedding dimension
parameter study
After determining that embedding is the optimal embedding

method among those evaluated in Figure 3 and Table S5 to
use within the MHCrank framework, we preformed a parameter

study to identify the embedding’s optimal dimensions. We eval-

uated the performance of MHCrank when the dimensions of the

embedding method were set at 10, 20, 21, 50, and 100. Table S6

presents the results of these experiments.

The AUC for each dimension evaluated is reported in

Table S6A. We found that embedding dimensions of 10 and

100 achieved the best AUC, but dimensions of 20 and 21

achieved very similar AUC (only 0.4% difference). Moreover, in

terms of precision@k, the results reported in Figure S6B highlight
Cell Reports Methods 2, 100293, September 19, 2022 9

Report
ll

OPEN ACCESS
that using the embedding method with 20 or 21 dimensions

achieved significantly better performances than when either of

the other three dimensions were used. Note that the perfor-

mances garnered from using either 20 or 21 dimensions were

not significantly different. This is unsurprising given how similar

the dimensions are. We found that using 10 dimensions yielded

the next best performance. While similar in its dimensions, the

reduction in performance from using the 10-dimension embed-

ding method likely results from diminished expressiveness. The

performance attained using embedding of dimension 50 is

significantly reduced compared with dimensions 10, 20, and

21. Finally, across all values of k, the use of 100 dimensions

achieved the worst performance. The successive reduction in

performance from 20/21 dimensions to 50 and again from 50 di-

mensions to 100 is likely the result of overparameterization. That

is, the number of parameters that need to be learned is greater

than is allowed for by the size of the training data. The trends

in performance for precision@k are identical to those observed

for NDCG@k as well. Therefore, because the AUC performance

obtained by the embedding method with 20 and 21 dimensions

is very similar to the best-performing dimensions and these di-

mensions garnered the best performance both for precision@k

and NDCG@k, the results of this parameter study indicate that

using embedding with 20 or 21 dimensions is optimal given the

current MHCrank framework and the training data used.

Case studies using SARS-CoV-2 data
In Figure S4, we present two case studies using SARS-CoV-2

data (Kared et al., 2021; Snyder et al., 2020). These case studies

were conducted to evaluate MHCrank’s viability in a real-world

setting. Both of the studies report CD 8+ T cell receptors

(TCR) responses of various alleles to candidate peptides. Each

discussed method employs a distinct process to determine

candidates.

Kared et al.

This study (Kared et al., 2021) reports the TCR responses of

142 specific peptide-allele combinations from 30 active and

convalescent SARS-CoV-2 patients. Here, peptide candidates

are determined by obtaining a consensus of MHC class I pre-

diction models while considering homology with experimen-

tally validated antigens from other viruses in the SARS-CoV

family. Practically, this ensures that the candidates selected

will be more representative of the most highly immunogenic

peptides. This is because each method learns a different set

of features surrounding either a peptide’s likelihood to be pro-

cessed or its binding affinity in comparison with other models.

Furthermore, the candidates identified through a consensus

will have demonstrated many characteristics that increase

presentation favorability. During their experiments, the au-

thors denote hits as the number of TCRs identified that were

specific for peptides within the patient cohort. Higher hits indi-

cate that this combination is more immunogenic. That is, the

combination will drive CD8+ T cell responses to a greater

extent.

Because antigen processing is aimed at producing peptides to

be presented by MHC class I molecules, we hypothesize

that MHCrank’s predictions could be used as a predictor of

a peptide’s immunogenicity. As such, we selected both
10 Cell Reports Methods 2, 100293, September 19, 2022
netMHCpan4.1-BA and netMHCpan4.1-EL as baselines and ob-

tained predictions for each peptide-allele combination from the

models. Because MHCrank is allele agnostic, we grouped the

peptide-allele combinations to obtain the number of hits for

each peptide. Note that we do not use these groupings for

netMHCpan4.1-BA and netMHCpan4.1-EL, as the scores from

both models are allele dependent.

Given that the goal of vaccine development is to identify which

peptide(s) will elicit the best immune response, we wanted to

identify which model’s predicted scores were most closely

correlated with the number of hits. High levels of correlation

would enable a model’s predicted scores to be used as a mea-

sure of relative immunogenicity. In Figures S4A–S4C, we plot the

score (x axis) for each of 46 peptides against their respective

log 2ðhitsÞ and fit a line to the data. Figure S4G reports the slope

of the regression lines as well as the Pearson correlation and

respective p value for each model.

In Figure S4G, we observed that MHCrank achieved a 451%

increase in the slope of the regression line over netMHC-

pan4.1-BA. Additionally, the correlation coefficient calculated

for MHCrank is 966% higher than netMHCpan4.1-BA’s correla-

tion coefficient. Furthermore, the correlation between netMHC-

pan4.1-BA’s predicted binding affinity and the number of hits

is not statistically significant from an uncorrelated system. We

also find that MHCrank also achieves an 18% increase in its

slope of regression over netMHCpan4.1-EL’s slope and a 76%

increase in its correlation with hits over the netMHCpan4.1-EL

model. Note that, like netMHCpan4.1-BA, the correlation re-

ported for netMHCpan4.1-EL is not significant.

The difference in the distributions of points in Figures S4B and

S4C provides a possible explanation. netMHCpan4.1-EL pre-

dicts that the likelihood of a peptide to be processed will be

above 0.8 for the majority of peptide-allele combinations.

Comparatively, MHCrank provides a much greater range in pre-

dicted scores that is more closely associated with a peptide’s

T cell response. Practically, this observation supports

MHCrank’s use over netMHCpan4.1-EL. While it is important

to be able to identify which peptides will be presented, being

able to predict which peptides will elicit the strongest immune

response and CD8+ T cell production would have greater utility

in streamlining vaccine and drug development.

Snyder et al.

Our second SARS-CoV-2 case study utilizes data from Snyder

et al. (2020). These data measured TCR responses to approxi-

mately 550 candidate peptides from over 1,500 Covid-19 pa-

tients. Unlike the data presented by Kared et al., the candidates

identified here are exclusively those with the highest 2% of bind-

ing affinities, as predicted by netMHCpan4.1-BA. Overlapping

peptides were combined into ‘‘antigen groups’’ by the authors.

There were 260 antigen groups in total. The number of hits re-

ported for each group indicates the number of TCRs that were

specific for any of the peptides in said group. Similar to the Kared

et al. data, a higher number of hits indicates an increase in a pep-

tide’s immunogenicity.

To evaluate each predictor’s ability to estimate, we obtained

predictions for each peptide using netMHCpan4.1-BA, netMHC-

pan4.1-EL, and MHCrank. For each antigen group, the peptide

with the highest predicted score was used to represent the entire

Report
ll

OPEN ACCESS
region. This was done because there was no indication as to the

proportion or specific number of hits corresponding to individual

peptides. In Figures S4D–S4F, we plot the score (x axis) for each

antigen group against their respective log2(hits) and fit a line to

the data. Figure S4H reports the slope of the best-fit lines as

well as the Pearson correlation and their respective p value for

each model.

We notice a substantial increase in the correlation between

netMHCpan4.1-BA’s predicted binding affinity and log2(hits)

when using the Snyder et al. data compared with when using

the Kared et al. data (Figures S4H and S4G, respectively). Unlike

when the Kared et al. data are used, both netMHCpan4.1-BA

and netMHCpan4.1-EL exhibit significantly higher correlations

with the hits from Snyder et al. than a random model. MHCrank

is slightly outperformed by netMHCpan4.1-BA yet still outper-

forms netMHCpan4.1-EL. Additionally, its correlation remains

consistent across both datasets. This highlights not only

MHCrank’s versatility as an estimator of peptide immunodomi-

nance but also a potential issue with the approach employed

by Snyder et al.

First, grouping candidate peptides into antigen groups in-

hibits the ability to judge individual candidate rankings. That

is, by summing all the hits belonging to overlapping peptides,

the importance of the region to TCR response is evaluated

rather than the immunogenicity of specific peptides. This is

because it is unlikely that peptides within each antigen group

would have the same number of hits, nor would they neces-

sarily bind to the same TCRs. Thus, while netMHCpan4.1-BA

and netMHCpan4.1-EL perform reasonably well in the test con-

ditions offered by the Snyder et al. dataset, it is possible that

since candidates are filtered such that they comprise the top

2% of netMHCpan4.1-BA’s predicted binders in the SARS-

CoV-2 proteome, if the peptides were not collapsed into anti-

gen groups the distributions of log2(hits) to netMHCpan4.1-

BA and netMHCpan4.1-EL’s predicted scores would more

closely resemble that which was observed in Figures S4A

and S4B, respectively—in which case, the correlation would

be substantially reduced as well.

This also raises an issue with the processes used to select and

identify candidates. By only using netMHCpan4.1-BA to identify

candidates, Snyder et al. not only introduce sampling bias but

also control against any other factors affecting binding affinity

that have not been learned by netMHCpan4.1-BA. Importantly,

this includes the conditions that affect processing favorability.

As a result, the candidates identified by Kared et al. are more

likely to represent a higher proportion of the total number of an-

tigens to which the TCRs are specific. Furthermore, this presents

a plausible reason for netMHCpan4.1-BA’s extremely poor per-

formance when candidates are not limited by its perception of

binding affinity.

Finally, the consistency in MHCrank’s performance demon-

strates that while netMHCpan4.1-BA may be slightly more

adept at identifying important regions for stimulating TCR re-

sponses, MHCrank performs superiorly at estimating the immu-

nogenicity of individual peptides. However, for vaccine and

drug development, being able to identify the best peptides is

arguably more important than the regions from which they

originate.
DISCUSSION

We observed that all but two of the models included in the

MHCrank ensembles processed peptides to a length of 9 or 10

amino acids, and Figures 3A–3C demonstrate that MHCrank

models trained using embedding amino acid representation

significantly outperform all other evaluated embeddingmethods.

These findings indicate that peptide representations are

improved through the enhanced biological relevance of our

pre-processing method and the inclusion of learned embed-

dings. For pre-processing, we believe that our leveraging the

knowledge that central amino acids of longer peptides often

do not interact with theMHCclass Imolecule enabled processed

peptides to retain only the most relevant information. The dearth

of enrichment in the central amino acids both in the training pep-

tides Figure 2A and in the top 100 ranked peptides from

MHCrank (Figure 2B), paired with our improved performance

over MHCflurry-AP (Table S2D), further strengthens the claim

that central amino acids are not necessarily relevant features

and that their removal may improve model performance.

With respect to the unique embedding learned for each amino

acid, the enrichment we observed in Figure 2 also highlights their

capability to identify features and information that may not have

been imparted by the BLOSUMmatrix. As observed in Figure 2B,

all but one of the hydrophobic amino acids are enriched to com-

parable levels at the C-terminal position in Fw-top2’s top pre-

dicted peptides. Not only does this coincide with biological ob-

servations but, as we observed in Figure 3D, it also suggests

that MHCrank has learned to identify, and favor, certain physio-

chemical properties of amino acids, such as hydrophobicity,

despite no a priori knowledge (Comber and Philip, 2014).

Furthermore, the relative enrichment of MHCrank’s ninth posi-

tion versus its seventh and eighth positions (Figure 2B) suggests

that the implementation of the cleavage site-specific kernel aids

in the identification of commonalities among protease cleavage

site motifs. This is apparent when considering the enrichment

of the same positions from peptides ranked by MHCflurry-AP.

Thus, even for different numbers of top-k ranked peptides

based on predictions, where the performance of MHCrank and

netMHCpanwere not significantly different, we believeMHCrank

might still be considered superior because it achieves better per-

formance using more unique peptides. MHCrank also achieved

superior performance compared with MHCflurry-AP for all eval-

uated metrics. In addition, the amino acid learned embeddings

and enrichment were highly correlated with biological observa-

tions. Altogether, the proposed MHCrank demonstrates strong

performance compared with existing methods, and could have

vast applicability in aiding drug and vaccine development.

Rationale for benchmarking against netMHCpan version
4.0 over version 4.1
It should be noted that while we utilize netMHCpan4.0-EL as one

of our baselines, a newer version (4.1) (Reynisson et al., 2020)

has been released. We considered both versions and elected

to use version 4.0 as our baseline for the following specific rea-

sons. First, while methodologically both versions are quite

similar, a key distinction is the amount of training data used to

train each model (Jurtz et al., 2017; Reynisson et al., 2020).
Cell Reports Methods 2, 100293, September 19, 2022 11

Report
ll

OPEN ACCESS
Specifically, netMHCpan4.1-EL was trained on over 13 million

peptides. Comparatively, both netMHCpan4.0-EL andMHCrank

were trained on datasets that are less than 10%of this size. Such

large differences in the number of observations make it difficult

to ascertain whether improvements arise from minor methodo-

logical differences or from the inclusion of additional training

data. As such, it is considered unfair to compare the perfor-

mance of methods if their models are trained over substantially

different datasets. Therefore, we believe that netMHCpan4.0-

EL allows for a more accurate and fair comparison.

There were also concerns regarding a substantial overlap in

positive instances of netMHCpan4.1-EL’s training data and

MHCrank’s testing data. When evaluating model performance,

it is imperative that none of the testing data be in the training

data, which can artificially elevate a model’s performance.

However, when comparing netMHCpan-4.1’s reported training

data (found here: https://tinyurl.com/netMHCpan41Data), we

identified an overlap of over 100,000 peptides between

netMHCpan-4.1’s training data and our testing data. Further-

more, because approximately 60% of MHCrank’s testing hits

are present in netMHCpan-4.1’s training data, any direct com-

parison using MHCrank’s testing data may not be accurate. In

fact, the performance reported for netMHCpan4.1-EL is likely

inflated.

Furthermore, netMHCpan4.1-EL’s implementation is not

reproducible. That is, the source code is unavailable and the pa-

rameters of their model (e.g., number of layers, dimensionality of

layers) are not discussed. This prevents us from reproducing

their model and training it on our own data. netMHCpan4.0-EL

was determined to be the better option to use as a baseline

because we could, at a minimum, guarantee that there would

be no overlap in the training and testing data sets. This is

because the entirety of the data we used for testing was released

after netMHCpan4.0-EL was published.

We do acknowledge that a comparison of MHCrank with this

new version may still be desired. As such, we still report the

percent improvement of MHCrank relative to netMHCpan4.1-

EL in Table S4, where we used the command line, pre-trained,

software version of netMHCpan4.1-EL to do the prediction.

While the performance of MHCrank is not significantly better

than that of netMHCpan4.1-EL for k > 10, the performance at

k = 10 still supports the use of MHCrank. This is because dur-

ing vaccine and drug development, only a handful of peptides

will be selected and optimized. As such, it is more valuable

to have high performance at lower values of k. Furthermore,

the reduced performance at higher levels of k could be influ-

enced by the discrepancy in amount of data each model is

trained on. That is, while MHCrank better identifies the peptides

that are most likely to be processed for presentation, the

increased data made available to netMHCpan4.1-EL may

have allowed it to learn feature differences between the pep-

tides that are less likely to be processed and the less trivial de-

coys. As the more difficult decoys are exhausted, the perfor-

mance of MHCrank relative to netMHCpan4.1-EL rises again.

Additionally, netMHCpan4.1-EL’s exposure to the majority of

positive testing instances during training may also account for

the dip in MHCrank’s performance relative to netMHCpan4.1-

EL from k = 25 to k = 500 that was observed in Table S4.
12 Cell Reports Methods 2, 100293, September 19, 2022
Thus, even when MHCrank and netMHCpan4.1-EL are

compared, the foregoing discussion supports the notion that

MHCrank is better at ranking the peptides most likely to be pro-

cessed at the very top.

Limitations of the study
Despite MHCrank’s strong performance, there are multiple im-

provements that might further strengthen its relevance and

applicability for drug and vaccine development. First, the imple-

mentation of a combinatorial approach that incorporates binding

affinity as well—similar to O’Donnell et al.’s presentation score

predictor (O’Donnell et al., 2020)—might improve upon the cur-

rent presentation predictions achieved for the MHC class I

molecule.

Second, given that the purpose of predicting MHC presenta-

tion is to aid in the development of drugs and vaccines that stim-

ulate the adaptive immune response through T cell activation,

future endeavors may benefit from predicting both the magni-

tude and type of response a specific antigen will elicit. For

MHC class I presented antigens in particular, this might be

accomplished by training models to identify complementary se-

quences between the presented peptide’s central amino acids

and the TCR’s active site to which it binds.

Finally, MHCrank and other MHC binding prediction models

do not effectively utilize protein structure for predictions. While

BLOSUM62 (Henikoff and Henikoff, 1992) and other popular

embedding schemes aim to encapsulate sequence homology

and (dis)similarities among amino acids, this is a suboptimal

approach. The sequence of a peptide is not, in and of itself,

deterministic of an antigen’s ability to be processed, presented,

and recognized. Rather, it is a product of physicochemical prop-

erties that result from individual interactions of amino acids

(Wieczorek et al., 2017). The utilization of structural data requires

a structure to first be resolved in a lab setting, rendering the

approach infeasible. However, as structural prediction algo-

rithms improve and become increasingly biologically relevant,

abandoning sequences for structures will likely improve model

performance. Specifically, the use of geometric DL models

seems poised to yield the highest probability of success (Gainza

et al., 2020). We will investigate along these lines in our future

research.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Training data

B Testing data processing

B Baseline methods

B MHCrank methods

B Peptide pre-processing

https://tinyurl.com/netMHCpan41Data

Report
ll

OPEN ACCESS
B Amino acid representation

B MHCrank learning

B Convolution over N-flank and C-flank

B Convolution over peptide

B Convolution over peptide

B Incorporating original peptide length

B Combining all information

B Ensemble methods and model selection

B Model training

B Computing resources

B Hyperparameters

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Evaluation metrics

B Statistical analysis

B Multiple hypothesis correction

B Site-specific amino acid enrichment

B Cosine similarity
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

crmeth.2022.100293.

ACKNOWLEDGMENTS

This project was made possible, in part, by support from the National Institute

of General Medical Sciences (2R01GM118470-05) and an AWS Machine

Learning Research award. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the authors and do not

necessarily reflect the views of the funding agencies.

AUTHOR CONTRIBUTIONS

Conceptualization, X.N.; methodology, X.N. and P.J.L.; software, P.J.L.; vali-

dation, X.N. and P.J.L.; formal analysis, X.N. and P.J.L.; investigation, X.N.

and P.J.L.; resources, X.N.; data curation, P.J.L.; writing – original draft,

P.J.L.; writing – review & editing, X.N. and P.J.L.; visualization, P.J.L. and

X.N.; supervision, X.N.; project administration, X.N.; funding acquisition, X.N.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: December 9, 2021

Revised: March 17, 2022

Accepted: August 19, 2022

Published: September 19, 2022

REFERENCES

Abele, R., and Tampé, R. (2004). The ABCs of immunology: structure and func-

tion of TAP, the transporter associated with antigen processing. Physiology

19, 216–224. https://doi.org/10.1152/physiol.00002.2004.

Abelin, J.G., Harjanto, D., Malloy, M., Suri, P., Colson, T., Goulding, S.P.,

Creech, A.L., Serrano, L.R., Nasir, G., Nasrullah, Y., et al. (2019). Defining

HLA-II ligand processing and binding rules with mass spectrometry enhances

cancer epitope prediction. Immunity 51, 766–779.e17. https://doi.org/10.

1016/j.immuni.2019.08.012.

Boehm, K.M., Bhinder, B., Raja, V.J., Dephoure, N., and Elemento, O. (2019).

Predicting peptide presentation by major histocompatibility complex class I:

an improved machine learning approach to the immunopeptidome. BMC Bio-

inf. 20, 7. https://doi.org/10.1186/s12859-018-2561-z.
Center, O.S. (1987). Ohio supercomputer center. http://osc.edu/ark:/19495/

f5s1ph73.

Chen, Z., Min, M.R., and Ning, X. (2021). Ranking-based convolutional neural

networkmodels for peptide-MHCclass I binding prediction. Front. Mol. Biosci.

8, 634836. https://doi.org/10.3389/fmolb.2021.634836.

Comber, J.D., and Philip, R. (2014). MHC class I antigen presentation and im-

plications for developing a new generation of therapeutic vaccines. Ther. Adv.

Vaccines 2, 77–89. https://doi.org/10.1177/2051013614525375.

Gainza, P., Sverrisson, F., Monti, F., Rodolà, E., Boscaini, D., Bronstein, M.M.,

and Correia, B.E. (2020). Deciphering interaction fingerprints from protein mo-

lecular surfaces using geometric deep learning. Nat. Methods 17, 184–192.

https://doi.org/10.1038/s41592-019-0666-6.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning (The MIT

Press).

Guo, H.C., Jardetzky, T.S., Garrett, T.P., Lane, W.S., Strominger, J.L., and Wi-

ley, D.C. (1992). Different length peptides bind to HLA-Aw68 similarly at their

ends but bulge out in the middle. Nature 360, 364–366. https://doi.org/10.

1038/360364a0.

Henikoff, S., and Henikoff, J.G. (1992). Amino acid substitution matrices from

protein blocks. Proc. Natl. Acad. Sci. USA 89, 10915–10919. https://doi.org/

10.1073/pnas.89.22.10915.

Jurtz, V., Paul, S., Andreatta, M., Marcatili, P., Peters, B., and Nielsen, M.

(2017). NetMHCpan-4.0: improved peptide–MHC Class I interaction predic-

tions integrating eluted ligand and peptide binding affinity data. J. Immunol.

199, 3360–3368. https://doi.org/10.4049/jimmunol.1700893.

Kared, H., Redd, A.D., Bloch, E.M., Bonny, T.S., Sumatoh, H., Kairi, F., Car-

bajo, D., Abel, B., Newell, E.W., Bettinotti, M.P., and Benner, S.E. (2021).

SARS-CoV-2–specific CD8+ T cell responses in convalescent COVID-19 indi-

viduals. J. Clin. Investig. 131. https://doi.org/10.1172/JCI145476.

Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T.,

and Kanehisa, M. (2008). AAindex: amino acid index database, progress report

2008. Nucleic Acids Res. 36, D202–D205. https://doi.org/10.1093/nar/

gkm998.

Kloetzel, P.M. (2001). Antigen processing by the proteasome. Nat. Rev. Mol.

Cell Biol. 2, 179–187. https://doi.org/10.1038/35056572.

Lundegaard, C., Lund, O., Buus, S., and Nielsen, M. (2010). Major histocompat-

ibility complex class i binding predictions as a tool in epitope discovery. Immu-

nology 130, 309–318. https://doi.org/10.1111/j.1365-2567.2010.03300.x.

O’Donnell, T.J., Rubinsteyn, A., and Laserson, U. (2020). MHCflurry 2.0:

improved pan-allele prediction ofMHCClass I-presented peptides by incorpo-

rating antigen processing. Cell Syst. 11, 42–48.e7. https://doi.org/10.1016/j.

cels.2020.06.010.

Phloyphisut, P., Pornputtapong, N., Sriswasdi, S., and Chuangsuwanich, E.

(2019). MHCSeqNet: a deep neural network model for universal MHC binding

prediction. BMC Bioinf. 20, 270. https://doi.org/10.1186/s12859-019-2892-4.

Reynisson, B., Alvarez, B., Paul, S., Peters, B., and Nielsen, M. (2020).

NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen

presentation by concurrent motif deconvolution and integration of MS MHC

eluted ligand data. Nucleic Acids Res. 48, W449–W454. https://doi.org/10.

1093/nar/gkaa379.

Rock, K.L., and Goldberg, A.L. (1999). Degradation of cell proteins and the

generation of mhc class I-presented peptides. Annu. Rev. Immunol. 17,

739–779. https://doi.org/10.1146/annurev.immunol.17.1.739.

Rock, K.L., York, I.A., and Goldberg, A.L. (2004). Post-proteasomal antigen

processing for major histocompatibility complex class I presentation. Nat. Im-

munol. 5, 670–677. https://doi.org/10.1038/ni1089.

Sarkizova, S., Klaeger, S., Le, P.M., Li, L.W., Oliveira, G., Keshishian, H., Har-

tigan, C.R., Zhang,W., Braun, D.A., Ligon, K.L., et al. (2020). A large peptidome

dataset improves HLA class I epitope prediction across most of the human

population. Nat. Biotechnol. 38, 199–209. https://doi.org/10.1038/s41587-

019-0322-9.

Shraibman, B., Barnea, E., Kadosh, D.M., Haimovich, Y., Slobodin, G., Rosner,

I., López-Larrea, C., Hilf, N., Kuttruff, S., Song, C., et al. (2019). Identification of
Cell Reports Methods 2, 100293, September 19, 2022 13

https://doi.org/10.1016/j.crmeth.2022.100293
https://doi.org/10.1016/j.crmeth.2022.100293
https://doi.org/10.1152/physiol.00002.2004
https://doi.org/10.1016/j.immuni.2019.08.012
https://doi.org/10.1016/j.immuni.2019.08.012
https://doi.org/10.1186/s12859-018-2561-z
http://osc.edu/ark:/19495/f5s1ph73
http://osc.edu/ark:/19495/f5s1ph73
https://doi.org/10.3389/fmolb.2021.634836
https://doi.org/10.1177/2051013614525375
https://doi.org/10.1038/s41592-019-0666-6
http://refhub.elsevier.com/S2667-2375(22)00175-8/sref8
http://refhub.elsevier.com/S2667-2375(22)00175-8/sref8
https://doi.org/10.1038/360364a0
https://doi.org/10.1038/360364a0
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.4049/jimmunol.1700893
https://doi.org/10.1172/JCI145476
https://doi.org/10.1093/nar/gkm998
https://doi.org/10.1093/nar/gkm998
https://doi.org/10.1038/35056572
https://doi.org/10.1111/j.1365-2567.2010.03300.x
https://doi.org/10.1016/j.cels.2020.06.010
https://doi.org/10.1016/j.cels.2020.06.010
https://doi.org/10.1186/s12859-019-2892-4
https://doi.org/10.1093/nar/gkaa379
https://doi.org/10.1093/nar/gkaa379
https://doi.org/10.1146/annurev.immunol.17.1.739
https://doi.org/10.1038/ni1089
https://doi.org/10.1038/s41587-019-0322-9
https://doi.org/10.1038/s41587-019-0322-9

Report
ll

OPEN ACCESS
tumor antigens among the HLA peptidomes of glioblastoma tumors and

plasma. Mol. Cell. Proteomics 18, 1255–1268. https://doi.org/10.1074/mcp.

RA119.001524.

Snyder, T.M., Gittelman, R.M., Klinger, M., May, D.H., Osborne, E.J., Tanigu-

chi, R., Zahid, H.J., Kaplan, I.M., Dines, J.N., Noakes, M.T., et al. (2020).

Magnitude and dynamics of the T-cell response to SARS-CoV-2 infection at

both individual and population levels. Preprint at medRxiv. https://doi.org/

10.1101/2020.07.31.20165647.

Wagih, O. (2017). ggseqlogo: a versatile R package for drawing sequence

logos. Bioinformatics 33, 3645–3647. https://doi.org/10.1093/bioinformatics/

btx469.
14 Cell Reports Methods 2, 100293, September 19, 2022
Wieczorek, M., Abualrous, E.T., Sticht, J., Álvaro-Benito, M., Stolzenberg, S.,

Noé, F., and Freund, C. (2017). Major histocompatibility complex (MHC) class i

and MHC class II proteins: conformational plasticity in antigen presentation.

Front. Immunol. 8, 292. https://doi.org/10.3389/fimmu.2017.00292.

Yewdell, J.W., Reits, E., and Neefjes, J. (2003). Making sense of mass destruc-

tion: quantitating MHC class I antigen presentation. Nat. Rev. Immunol. 3,

952–961. https://doi.org/10.1038/nri1250.

Zeng, H., and Gifford, D.K. (2019). DeepLigand: accurate prediction of MHC

class I ligands using peptide embedding. Bioinformatics 35, i278–i283.

https://doi.org/10.1093/bioinformatics/btz330.

https://doi.org/10.1074/mcp.RA119.001524
https://doi.org/10.1074/mcp.RA119.001524
https://doi.org/10.1101/2020.07.31.20165647
https://doi.org/10.1101/2020.07.31.20165647
https://doi.org/10.1093/bioinformatics/btx469
https://doi.org/10.1093/bioinformatics/btx469
https://doi.org/10.3389/fimmu.2017.00292
https://doi.org/10.1038/nri1250
https://doi.org/10.1093/bioinformatics/btz330

Report
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Training data for MHCrank ensembles (O’Donnell et al., 2020) https://doi.org/10.17632/zx3kjzc3yx.3 (see Data S5)

Multialleleic benchmark dataset (O’Donnell et al., 2020) https://doi.org/10.17632/zx3kjzc3yx.3 (see Data S1)

Kared et al. SARS-CoV-2 dataset (Kared et al., 2021)

supplemental data

https://doi.org/10.1172/JCI145476

Snyder et al. SARS-CoV-2 dataset (Snyder et al., 2020) https://doi.org/10.21417/ADPT2020COVID

Software and algorithms

Python Python Software Foundation v3.6.6

Tensorflow Google v2.2.1

MHCrank This paper https://doi.org/10.5281/zenodo.6999030

MHCflurry-2.0 (O’Donnell et al., 2020) https://github.com/openvax/mhcflurry

netMHCpan-4.0 (Jurtz et al., 2017) https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.0

netMHCpan-4.1 (Reynisson et al., 2020) https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.1

DeepLigand (Zeng and Gifford, 2019) https://github.com/gifford-lab/DeepLigand

MHCSeqNet (Phloyphisut et al., 2019) https://github.com/cmb-chula/MHCSeqNet

Other

CPU Ohio Supercomputer Center Intel Xeon 8268s Cascade Lakes

GPU Ohio Supercomputer Center NVIDIA Volta V100
RESOURCE AVAILABILITY

Lead contact
Further information and requests should be directed to and will be fulfilled by the lead contact, Xia Ning (ning104@osu.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources

table.

d All original code as been deposited at https://github.com/ninglab/mhcrank and is publicly available as of the date of publica-

tion. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in the paper is available from the lead contact upon request.
METHOD DETAILS

Training data
Our training data set was identical to that which was used by O’Donnell et al. to train their MHCflurry-AP predictor (O’Donnell et al.,

2020). This data set was compiled from two studies (Abelin et al., 2019; Sarkizova et al., 2020) and comprised the aggregate data from

100 mass spectroscopic (MS) experiments, including measurements on 8,537,960 distinct peptides and 92 different HLA alleles.

Based on the nature of the MS experiments, bound peptides (hits) must have first underwent processing for MHC Class I presenta-

tion. Hits with a sequence length between eight and fifteen amino acids were selected as this range is optimal for presented peptides.

O’Donnell et al. randomly generated 99 negative decoys per hit. Each decoy was the same length and was extracted from the same

protein as the hit to which it corresponds. O’Donnell et al. used their binding affinity predictor to select decoys most similar to hits in

terms of their predicted binding affinities. The hits and decoys selected were within the top 2% of predicted binding affinities for hits

and decoys, respectively. The exclusion of weak binding hits and decoys from the data set was aimed at facilitating the model’s abil-

ity to learn features that strongly influence a peptide’s likelihood to be processed for presentation as opposed to learn features
Cell Reports Methods 2, 100293, September 19, 2022 e1

mailto:ning104@osu.edu
https://github.com/ninglab/mhcrank
https://doi.org/10.17632/zx3kjzc3yx.3
https://doi.org/10.17632/zx3kjzc3yx.3
https://doi.org/10.1172/JCI145476
https://doi.org/10.21417/ADPT2020COVID
https://doi.org/10.5281/zenodo.6999030
https://github.com/openvax/mhcflurry
https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.0
https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.1
https://github.com/gifford-lab/DeepLigand
https://github.com/cmb-chula/MHCSeqNet

Report
ll

OPEN ACCESS
associated with binding affinity. This yielded 399,392 peptides in the training data, 44% of which were hits (O’Donnell et al., 2020).

The data was split into 4 training subsets (folds) by randomly withholding 10 MS experiments from each. As a result, the number of

samples in each fold was 365,746; 352,144; 361,864 and 358,374, respectively. Additionally, each fold had 10% of its samples

randomly withheld for validation.

Testing data processing
We used the same testing set to evaluate our MHCrank model as was used by O’Donnell et al. to evaluate their model (O’Donnell

et al., 2020). The data in the testing data set was compiled from 2 studies published in 2019; these studies comprised 20 experiments

and identified 27,007 binding peptides (Sarkizova et al., 2020; Shraibman et al., 2019). According to O’Donnell et al., these specific

experiments were withheld for testing as they were not yet published when their baseline methods, such as netMHCpan, were

created (O’Donnell et al., 2020). Therefore, none of the models being evaluated would have been exposed to the testing data for their

training. 99 decoys were introduced for each hit in the testing set, bringing the total number of testing peptides up to 2,700,700. The

testing set was also used by O’Donnell et al. to benchmark their binding affinity predictors. This required each peptide to be paired

with multiple, distinct HLA alleles. However, for HLA-independent models, such as MHCrank and our baselines, which do not use

HLA allele information, these distinct combinations are instead interpreted as duplicated samples that achieve identical scores.

As a result, duplicated samples dominate the results and can either negatively or positively bias ranking performance. To prevent

this, we removed any duplications of a peptides from the test set, leaving a remaining 2,409,183 peptides. Approximately, 0.73%

of the remaining peptides were hits.

Baseline methods
MHCrank was compared to two baseline methods: MHCflurry-AP and netMHCpan4.0-EL. Both the baselines, similar to MHCrank,

are AP prediction models. MHCflurry-AP was selected for its high performance. Note that because MHCrank architectures were

leveraged from MHCflurry-AP, by comparing MHCrank to MHCflurry-AP, any improvements in performance exhibited by MHCrank

may be associated with the introduced architectural alternations. The other baseline, netMHCpan4.0-EL, was selected as it was

identified by O’Donnell et al. to be the best performing AP predictor available (O’Donnell et al., 2020). netMHCpan4.0-EL utilizes

an ensemble of neural networks with 2 hidden layers that output predictions of both binding affinity and eluted ligands (Jurtz

et al., 2017). Given the focus of our study was to improve predictions of which peptides are more favorable to be processed, we

used only the eluted ligand output from netMHCpan4.0-EL. The predictions we used to evaluate the performance of MHCflurry-

AP and netMHCpan4.0-EL were those reported by O’Donnell et al. (O’Donnell et al., 2020).

MHCrank methods
The MHCrank architecture is presented in Figure 1. The proposed MHCrank takes three types of information as input: 1) uniform-

length sequence N-flank + peptide + C-flank, 2) C-flank cleavage site sequence, and 3) the peptide’s original length. The N- and

C-flanks are defined as the first five amino acids adjacent to a peptide on its amine (N-) and carboxyl (C-) terminal ends, respectively.

The C-flank cleavage site sequence is comprised of the terminal r amino acids of the peptide and the initial r amino acids of the

C-flank. In the following subsections, we present how MHCrank learns from a peptide and its N- and C-flanks to predict antigen

processing.

Peptide pre-processing
As in other methods, all input N-flank + peptide + C-flank sequences are first processed to obtain uniformity in length before being

passed to MHCrank. Peptides of various lengths (8–15 amino acids as in our data set) can bind to MHC Class I molecules because

only their termini interact with and anchor to the molecules (Rock et al., 2004). The central amino acids of a bound peptide create an

arch-like formation as the peptide bows increasingly away from the pocket with increased length (Guo et al., 1992). As the central

amino acids do not contribute directly to binding, their inclusion in MHCrank may be uninformative and ultimately detract from

the model’s predictive ability. Thus, unlike other methods, the sequence processing and representation in MHCrank was designed

to favor the amino acids near an antigen’s termini – it unifies the sequences of various lengths to length 10 (MHC Class I molecules

favor peptides with 8–10 amino acids). Figure S1 presents the antigen representation process.

Specifically, if the peptide sequence is shorter than 10 amino acids, additional pseudo amino acids, represented by an ambiguous

’X’, are added at the center positions of the peptide S1a. When the peptide’s original length is odd, one amino acid is padded offset

towards theN-terminal side. This was motivated by past studies demonstrating that the C-terminal amino acids of a candidate an-

tigen are more influential than the N-terminal amino acids with respect to whether or not a peptide will be processed for presentation

(Kloetzel, 2001; Rock et al., 2004). If the peptide sequence is longer than 10 amino acids (Figure S1B), a number of amino acids will be

trimmed from the center of the peptide sequence, with one amino acid offset from the center towards the N-terminal if necessary.
e2 Cell Reports Methods 2, 100293, September 19, 2022

Report
ll

OPEN ACCESS
Amino acid representation
Once the peptide sequences are processed into uniform length, their remaining amino acids will be embedded as vectors to capture

the sequence contents in a computer-readable representation. We evaluated MHCrank has using six distinct amino acid represen-

tation methods, denoted as BLOSUM, embedding, em-BLO, PC, NormBLO, and PC-NormBLO, respectively. We discuss the

methods below:

BLOSUM In the BLOSUM method, each amino acid is represented by its corresponding 21-dimension vector extracted from the

BLOSUM62 substitution matrix (Henikoff and Henikoff, 1992); this is the convention for amino acid representation. BLOSUM is

abstracted from evolutionary similarities and difference of amino acids. This does not guaranteed the embeddings to be relevant

for all tasks. Moreover, the presence of unrelated features could reduce model performance.

embedding, em-BLO Thus, in the embedding embeddingmethod, we allowedMHCrank to learn the amino acid representations as

a part of its training process. Each amino acid is first represented by an initial, random 21-dimension embedding vector; the embed-

dings will be learned (Chen et al., 2021) in MHCrank so as to maximize their presentation power and facilitate optimal performance.

The intuition being that it may enable the identification of amino acid features that are more highly correlated with determining a pep-

tide’s favorability for MHC Class I processing. We selected 21 to be the dimensionality of each embedding vector as this is same

dimensions as the BLOSUM. This was done so that any improvement garnered by learning the the amino acid embeddings is

due to the data-driven, stronger expressiveness of the learned embeddings rather than excessive dimensionality. We concatenate

these two methods in the em-BLO method to determine if the possess unique information that through their combination increases

model performance. This yields a 42-dimension vector. Note that the padded pseudo amino acid, X, is represented as a zero vector

by embedding.

PC, NormBLO, PC-NormBLO We also constructed a novel embedding method using physiochemical properties obtained from

data in the AAIndex (Kawashima et al., 2008). We refer to this as the PC embedding method. Specifically, using this method,

each amino acid is represented by an 8-dimension vector that corresponds to hydrophobicity, polarizability, isoelectric point, vol-

ume, molecular weight, sterics, helix probability, sheet probability. Given that physiochemical properties are more determinate of

peptide binding, we thought that the information conveyed might be more relevant than the BLOSUM method. However, because

the length of vectors produced by PC is much shorter than from BLOSUM, it is possible that it lacks the expressivity of BLOSUM,

which could negatively impact performance.

To, account for this, we first normalized the values of the BLOSUMmethod to be within the same range as PC (NormBLO). The PC

and NormBLO methods were then concatenated to produce the PC-NormBLO embedding method. BLOSUM was first normalized

as its values were much larger than those of PC, which could result in the BLOSUM portion receiving more weight than PC when

combined. We present results comparing various portions of the embedding methods in the following Results sections: ‘Amino

acid embedding: Learned vs. hard-coded features’, ‘Amino acid embedding: Representation method’, and ‘Amino acid embedding:

MHCrank embedding dimension parameter study’.

MHCrank learning
Given the amino acid representations in a processed peptide, each peptide’s embedding matrix is further padded, following

MHCflurry-AP (O’Donnell et al., 2020), and forwarded to a 1-D convolutional layer with nk1 kernels of size k, which aggregates

different local information (k-mers) in the peptide. The output feature mapping is then forwarded to a number of components as

described below that capture various signals from the training peptides and learn how each peptide’s flanking regions affect the

probability that a peptide will undergo antigen processing.

Convolution over N-flank and C-flank
Aswas done inMHCflurry, the portion pertaining to the N-flank sequence is extracted from the featuremapping output of the first 1-D

convolution layer. Mean pooling is conducted over the N-flank’s specific feature mapping to achieve the per-channel average for

each amino acid in the N-flank. The results are then forwarded to a dense layer, which outputs a single value representing the flank’s

favorability as a cleavage site. Identical operations are applied to the C-flank sequence.

Convolution over peptide
Following MHCflurry-AP (O’Donnell et al., 2020), convolutions are also applied to the peptide to learn the relationship between the

cleavage favorability of its N-terminus/C-terminus and the cleavage favorability of its central amino acids. The intuition is that pep-

tides with a higher cleavage favorability at their terminal position relative to their central amino acids are more likely to be pro-

cessed for presentation than peptides in which this is not the case. To learn this relationship near the N-terminus, the portion per-

taining to the peptide sequence is extracted from the feature mapping output of the first 1-D convolution layer and is subsequently

forwarded to two stacked 1-D convolutional layers. The first layer has nk2 channels; the second layer has 1 channel. Both of the

stacked convolutional layers employ kernels of size 1. The output of the second layer contains a score for each amino acid in the

peptide that represents the residue’s likelihood of being an N-terminal cleavage site. The scores corresponding to the N-terminal

and C-terminal amino acids within the peptide (A in Figure 1) are forwarded to the downstream learning. A max pool is applied over
Cell Reports Methods 2, 100293, September 19, 2022 e3

Report
ll

OPEN ACCESS
the non-N-terminal amino acids to identify the overall highest favorability for N-terminal cleavage to occur within the central amino

acids. A max pool is also applied over the non-C-terminal amino acids to identify the overall highest favorability for C-terminal

cleavage to occur within the central amino acids.

Convolution over peptide
A novel component of MHCrank is the global-kernel based convolution over the C-terminal cleavage site. The C-terminal cleavage

site is comprised of the terminal r amino acids of the peptide and the initial r amino acids of the C-flank, where r is the cleavage radius.

The global kernel, referred to as a cleavage site-specific kernel and denoted as CSSK, is applied on amino acid representations of the

cleavage site sequence to capture global signals useful for cleavage and processing. This was motivated by the fact that the C-ter-

minal end of the peptide is more influential than the N-terminal with respect to cleavage and processing (Kloetzel, 2001; Rock et al.,

2004). Because the C-terminus is the primary anchor point between the antigen andMHCmolecule during binding, explicitly learning

from the C-terminal cleavage site could enable additional, useful signals to predict a peptide’s favorability to be processed. The

global kernel is used with the intuition that there are motifs located in this region, which are recognized by the peptidases and pro-

teases that process peptides for presentation, that would be more easily learned and recognized by a global kernel.

Incorporating original peptide length
Compared to other methods, MHCrank has a novel, single node whose input is the peptide’s original length before padding or trim-

ming. The downstream convolution’s use of the peptide’s original length in MHCrank is motivated by the fact that peptide length is a

significant contributing factor to both processing and presentation (Rock et al., 2004; Comber and Philip, 2014).

Combining all information
Two fully-connected layers are applied in succession to the concatenated output of all the above components. Each layers possess

nk2 nodes. The output is then forwarded to an output layer that predicts the probability of a peptide undergoing antigen processing.

Peptides more likely to undergo antigen processing receive higher probabilities.

Ensemble methods and model selection
Ensembles (Goodfellow et al., 2016) have been an effective strategy inmakingmore accurate predictions compared to that of a single

model by reducing prediction variance. We developed the following six ensemble strategies to leverage and integrate multiple

models, where themodel performance on each fold was accessed using AUC score on each fold’s validation data, and overall model

performance was accessed using the average AUC score across all four folds.

d Fw-top1 (fold-wise top-1): for each fold, we identified its best model and then combined these models. That is, the final

ensemble consists of 4 total models – 1 from each of 4 folds. Please note that 4 models may correspond to different hyperpara-

meters.

d Fw-top2 (fold-wise top-2): for each fold, we identified its top-2 best models and then combined these models. That is, the final

ensemble consists of 8 total models – 2 from each of 4 folds. Please note that 8 models may correspond to different hyperpara-

meters.

d Ba-top1 (best average top-1): we first identified the best performing hyperparameter set that had the best average AUC over

the 4 folds.

We then trained amodel on each fold using the hyperparameter set. The final ensemble consists of 4 total models – 1 from each of 4

folds. Please note that these 4 models correspond to the same set of hyperparameters.

d Ba-top2 (best average top-2): we first identified the top-2 best performing hyperparameter sets that had the best average AUC

over the 4 folds.

We then trained amodel on each fold using the hyperparameter set. The final ensemble consists of 8 total models – 2 from each of 4

folds.

Please note that 4 models (1 from each of 4 folds) correspond to a single set of hyperparameters; the remaining 4 models (1 from

each of 4 folds) correspond to another single set of hyperparameters.

Furthermore, the set of hyperparameters belonging to the first 4models is distinct from the set of hyperparameters belonging to the

second 4 models.

d C-top1 (combo top-1): we combined the Fw-top1 and Ba-top1 models. That is, the final ensemble consists of 8 total models, 4

from Fw-top1 and 4 from Ba-top1.

d C-top2 (combo top-2): we combined the Fw-top2 andBa-top2models. That is, the final ensemble consists of 16 total models, 8

from Fw-top2 and 8 from Ba-top2.
e4 Cell Reports Methods 2, 100293, September 19, 2022

Report
ll

OPEN ACCESS
The predicted scores from the ensemble models are calculated as the mean of the predicted scores from each of its component

models. Table S7A outlines the specific hyperparameter sets of themodels selected for each of the ensembles. The hyperparameters

listed in Table S7A are only those that underwent tuning. The full set of hyperparameter options used to construct our MHCrank

models can be found in Table S7B. The training and validation AUC of the models selected for inclusion in each ensemble is detailed

in Table S1.

Model training
Three distinct model variations, each corresponding to one of the embedding, BLOSUM, em-BLO amino acid representation

methods, combined with each hyperparameter set, were trained on each of the four training data folds. More information on the

amino acid representations can be found in the ‘Amino acid representation’ section. See ‘Training data’ section for details regarding

how the data was split into folds for training and validation. All hyperparameters utilized are listed in Table S7B. Optimization was

achieved using an Adam optimizer and a binary cross-entropy loss function. Models were trained for 500 epochs with an early stop-

ping patience of 30 epochs.

Computing resources
Data processing and model training, validation, and testing were all executed on Pitzer clusters of the Ohio Supercomputer Center

(1987). We implemented models using Python-3.6.6 and TensorFlow-2.2.1. We trained models with 1 Intel Xeon 8268s Cascade

Lakes CPU node and 1 NVIDIA Volta V100 GPU totaling 32 GB of memory.

Hyperparameters
A total of 729models were trained across each of the 4 folds and evaluated. Eachmodel was produced using a unique combination of

hyperparameters. The specific hyperparameter options evaluated is presented below in Table S7B. Note that while the table presents

only 243 unique combinations, these would be applied to each of the 3 amino acid representation methods: embedding, BLOSUM,

and em-BLO.

QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluation metrics
Model were evaluated for ensemble selection by the AUC they achieved on validation folds. The fold and validation AUC for any

model included in a MHCrank ensemble is presented in Table S1. MHCrank ensembles were compared to the MHCflurry-AP and

netMHCpan4.0-EL baselines via AUC, precision@ k, and NDCG@ k for k = f10; 25;50;100;250;500g.

d AUC: It is the area underneath a receiver operating characteristic (ROC) curve designed for binary classification problems.

ROC a probability curve depicting true positive rates vs false positive rates over various prediction thresholds.

Thus, AUC measures how well a model is capable of distinguishing between two classes (e.g., hits and decoys).

Higher AUC values indicate better distinguishing capacity.

d Precision@ k: It measures the proportion of top-k ranked peptides that are also hits. It is calculated as follows,
Precision@k =
RkXH

Rk

;

where Rk is the set of top-k ranked peptides, and H is the set of hits.

Higher precision@ k scores indicate higher probabilities of correctly detecting hits within the top-k peptides.

Note that precision@ k is equivalent to the ’PPV’ metric reported in O’Donnell et al. (O’Donnell et al., 2020).

d NDCG@ k: It is the normalized discounted cumulative gain (DCG) for top-k ranking.

DCG@ k is calculated as follows:

DCG@k =
Xk

i = 1

2reli � 1

log 2ði + 1Þ;

where reli is the relevance of an peptide at position i indicatingwhether the recommended peptide is a hit (1) or a decoy (0); the numer-

ator of the DCG@ k equation awards relevant peptides and punishes decoys; the denominator gives more weight to higher ranked

recommendations.

NDCG@ k is the normalized DCG@ k.

Higher NDCG@ k scores indicates better performance.
Cell Reports Methods 2, 100293, September 19, 2022 e5

Report
ll

OPEN ACCESS
Statistical analysis
Weobtained 1,000 sets of 100,000 peptides via bootstrap resampling of our testing data. Processing likelihood scores were obtained

for each of these peptides from both our ensembles and the baseline methods. For each sampling iteration, we calculate the AUC,

precision@ k, and NDCG@ k performance metrics. We perform pairwise t-tests to compare the performance of each of the MHCrank

ensembles against each baseline. Hypothesis correction was implemented as discussed below:

Multiple hypothesis correction
We perform multiple-hypothesis correction to determine the significance levels reported in both Tables 1, 2, 3, and S2. Specifically,

we employ the Bonferroni method Given that we are making 6 pairwise comparisons: each of the 6 MHCrank ensembles compared

against either netMHCpan4.0-EL or MHCflurry-AP (Tables 1, 2, and 3 and S2, respectively). the corrected significance thresholds are

given by the following: p%0:1 : = 0:1
6 ; p%0:05 : = 0:05

6 ; p%0:1 : = 0:01
6 ; and p% 0:1 : = 0:001

6 .

Based on our analysis, there were very limited changes to the initially interpreted significancewhen using the Bonferroni correction.

MHCrank retains significance for all the reported improvements over MHCflurry-AP and netMHCpan4.0-EL for AUC and over

MHCflurry-AP for precision@ k and NDCG@ k for all values of k. Additionally, the use of a Bonferroni correction removes the signif-

icance from MHCrank’s Fw-top2 ensemble at k = 25 for precision@k; MHCrank’s C-top1 ensemble at k = 50 for NDCG@k;

MHCrank’s C-top2 ensemble at k = 50 for both precision@k and NDCG@k. However, because practically, interest lies in determining

whether a given model outperforms another through direct comparison, in our case, multiple hypothesis correction may not be

necessary for the evaluation of model performance. Furthermore, the SARS-CoV-2 case studies presented in the Results section

‘Case studies using SARS-CoV-2 data’ further demonstrates MHCrank’s real-world utility over netMHCpan4.0-EL.

Site-specific amino acid enrichment
A set of 50,000 randomly selected hits were obtained from the training peptides. For each model, the set of the top

100-recommended peptides were selected. The peptides in each set were processed to a length of 9 amino acid residues via the

method outlined in Figure S1 and the ‘Peptide pre-processing’ section. We produced a site-specific amino acid enrichment visual-

ization from each set of peptides using the R package: ggseqlogo (Wagih, 2017).

Cosine similarity
Cosine similarity uses inner product space tomeasure the similarity between two vectors. The cosine similarity was calculated for the

embedding vectors of each amino acid-pair and is given by the following:

Cosine Similarityða;bÞ = 1 � a! $ b
!

k a!k k b!k
;

where a!$ b
!

is the dot product of two vectors. Higher values indicate higher similarities.
e6 Cell Reports Methods 2, 100293, September 19, 2022

	Improving MHC class I antigen-processing predictions using representation learning and cleavage site-specific kernels
	Introduction
	Results
	Performance evaluation
	Evaluation of AUC
	Evaluation of precision@k
	Evaluation of NDCG@k
	Percent improvement
	Evaluation of model performance with reduced decoy-to-hit ratios

	Enrichment of training and top-ranked peptides
	Evaluating training peptides
	Evaluating training and testing hits and decoys
	Evaluation of MHCrank’s top-ranked peptides
	Evaluation of MHCflurry-AP’s top-ranked peptides
	Evaluation of netMHCpan4.0-EL’s top-ranked peptides

	Evaluation of allelic biases in site-specific amino acid enrichment and MHCrank’s allele-specific performance
	Amino acid embedding: Learned versus hard-coded features
	Evaluation of precision@k and NDCG@k
	Evaluation of AUC

	Similarities of learned amino acid embeddings
	Amino acid embedding: Representation method
	Amino acid embedding: MHCrank embedding dimension parameter study
	Case studies using SARS-CoV-2 data
	Kared et al.
	Snyder et al.

	Discussion
	Rationale for benchmarking against netMHCpan version 4.0 over version 4.1
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Training data
	Testing data processing
	Baseline methods
	MHCrank methods
	Peptide pre-processing
	Amino acid representation
	MHCrank learning
	Convolution over N-flank and C-flank
	Convolution over peptide
	Convolution over peptide
	Incorporating original peptide length
	Combining all information
	Ensemble methods and model selection
	Model training
	Computing resources
	Hyperparameters

	Quantification and statistical analysis
	Evaluation metrics
	Statistical analysis
	Multiple hypothesis correction
	Site-specific amino acid enrichment
	Cosine similarity

