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Abstract: Innate lymphoid cells (ILCs) are innate lymphocytes playing essential functions in pro-
tection against microbial infections and participate in both homeostatic and pathological contexts,
including tissue remodeling, cancer, and inflammatory disorders. A number of lineage-defining
transcription factors concurs to establish transcriptional networks which determine the identity and
the activity of the distinct ILC subsets. However, the contribution of other regulatory molecules
in controlling ILC development and function is also recently emerging. In this regard, noncoding
RNAs (ncRNAs) represent key elements of the complex regulatory network of ILC biology and host
protection. ncRNAs mostly lack protein-coding potential, but they are endowed with a relevant
regulatory activity in immune and nonimmune cells because of their ability to control chromatin
structure, RNA stability, and/or protein synthesis. Herein, we summarize recent studies describing
how distinct types of ncRNAs, mainly microRNAs, long ncRNAs, and circular RNAs, act in the
context of ILC biology. In particular, we comment on how ncRNAs can exert key effects in ILCs by
controlling gene expression in a cell- or state-specific manner and how this tunes distinct functional
outputs in ILCs.

Keywords: innate lymphoid cells; noncoding RNA; microRNA; long noncoding RNA; circular RNA

1. Introduction

Innate lymphoid cells (ILCs) are a heterogeneous population of innate lymphocytes,
which originate from the common lymphoid progenitor but lack antigen-specific recep-
tors [1]. Based on their phenotype and the specific expression of transcription factors (TFs)
and cytokines, ILCs have been categorized into five prototypical subsets [2].

Natural killer (NK) cells and type-1 innate lymphoid cells, namely ILC1, are mainly
involved in the protective immune response against viruses and intracellular bacteria
as well as in cancer immunosurveillance. These subpopulations share the expression of
the TF T-BET and the ability to produce interferon (IFN)-γ, but only NK cells are highly
cytotoxic and require EOMES for their development [3]. Many of the phenotypic and
functional properties of NK cells and ILC1 are strictly tissue dependent; however, while
the border separating NK cells and ILC1 has become very thin in mice, how these two
subsets unambiguously segregate in humans is still puzzling [4–7]. In this context, a unique
ILC1-like subset can be generated from NK cells in distinct tissues, such as liver, salivary
gland, and intestine, as well as in the tumor microenvironment by transforming growth
factor-β (TGF-β) [8–10].

Type-2 innate lymphoid cells (ILC2) are characterized by high expression levels of the
TF GATA3 [11,12] and play a key role in allergic reactions and protection against parasitic
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infections via the secretion of interleukin (IL)-5, IL-9, IL-13, and amphiregulin [13,14]. ILC2
are enriched in several tissues, including intestine, lung, and bone marrow and can also
be found in the peripheral blood of healthy individuals, although at a very low frequency
(less than 0.1% of total leucocytes) as compared to NK cells. The heterogeneity of ILC2 has
been considered limited, compared to other ILC subsets. However, upon inflammation, an
ILC2 subset, referred to as “inflammatory ILC2”, can acquire the ability to recirculate and
to produce IL-17, both in mice and humans [15–19].

Type-3 innate lymphoid cells (ILC3) depend on the transcription factor RORγt and
secrete high amount of IL-17 and IL-22 [20]. ILC3 are mainly localized in tonsils and intesti-
nal lamina propria, and subsets of these cells are generally distinguished by the presence or
absence of NCR receptors (NKp44 in humans and NKp46 in mice) [20,21]. ILC3 stimulate
the differentiation of epithelial cells from intestinal stem cells, promote the antimicrobial
response by epithelial cells, and induce neutrophil recruitment/activation [22,23]. Finally,
lymphoid tissue inducer (LTi) cells regulate the formation of lymph nodes and Peyer’s
patches during embryonic development, mainly through the production of lymphotoxin.
The development of these cells depends on the TF RORγt, which also controls the fate of
LTi-like cells present in the adult lymphoid and nonlymphoid tissues [24,25].

In roughly the last 10 years, our understanding of ILC biology has rapidly grown;
however, the molecular pathways controlling development and functions of ILCs are still
widely expanding. The TF EOMES, T-BET, GATA3, and RORγt, mentioned above, are
also referred to as lineage defining TFs (LDTFs), since these molecules dictate ILC fates
and are required for determining the effector functions of mature ILC subsets [26,27].
LDTFs represent the first layer of ILC regulation, although the establishment of specific
developmental programs and effector functions is now seen as the result of complex TF
networks rather than the effect of one single “master” regulator [28].

Whole-transcriptome RNA sequencing data suggest that transcription can occur
across almost the entire genome, generating a myriad of RNA molecules without protein-
coding functions, named noncoding RNAs (ncRNAs). ncRNAs have relevant regulatory
properties and control several biological processes. ncRNAs include microRNA (miRNAs),
ribosomal RNA (rRNAs), transfer RNA (tRNAs), long ncRNAs (lncRNAs), and circular
RNAs (circRNAs) [29]. Some of the most widely studied classes of nc-RNAs, miRNAs,
lncRNAs, and circRNAs are active in the control gene expression [30]. Moreover, several
pieces of evidence showed that they are also involved in innate or adaptive immune
responses [31–33]. Regarding ILCs, miRNAs are known regulators of NK cell biology and
control their development, activation, and effector functions [34]. However, the miRNA
content and regulatory function in other human ILC subsets have been poorly investigated.
More recently, some studies described the functions of specific lnc- and circ-RNAs in
distinct ILC subpopulations. Here, we summarize the latest research on ILC subsets
related to miRNAs, lncRNAs, and circRNAs and discuss their critical roles in mechanisms
underlying ILC development, activation, and function.

2. Regulation of ILC Activity by miRNAs
2.1. Properties of miRNAs

The discovery of the first miRNA in 1993 paved the way for the hypothesis that gene
regulation was not only coordinated by proteins but also by RNA molecules [35,36]. The
biogenesis of miRNA starts in the nucleus, where miRNAs are transcribed in primary
transcripts (also known as pri-miRNAs) by RNA polymerase II and processed into long
hairpin precursors of∼70–100 nucleotides (pre-miRNAs) by Drosha [37,38]. After that, pre-
miRNAs are transported to the cytoplasm where pre-miRNAs are cleaved by Dicer to form
mature miRNAs [39]. This cleavage creates a double strand of ∼22-nucleotides, including
a mature miRNA guide strand and a mature complementary passenger strand. Mature
miRNAs are then loaded into the RNA-induced silencing complex (RISC). The recruitment
of the RISC complex to the target mRNA, mediated by binding of the mature miRNA to a
complementary sequence in the 3′UTR of target mRNAs, leads to mRNA degradation or
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translational suppression [40]. Each miRNA can regulate several mRNAs, and one single
mRNA can be targeted by different miRNAs, generating a complex regulatory circuit able
to control several biological processes, including differentiation, development, metabolism,
proliferation, apoptosis, viral infection, tumorigenesis, and immunity [41,42].

2.2. miRNAs and ILCs

In 2007, the findings obtained by two independent groups by knocking out miR-155 in
mice provided evidence for the central role that miRNAs can have in controlling biological
processes, and, specifically, the immune system [43,44]. In this regard, miRNAs control de-
velopmental pathways and effector functions of several immune cells [45–47]. Integrative
approaches combining comprehensive analysis of chromatin modifications, transcrip-
tome, and miRNome of mouse developing and differentiated adaptive and immune cells
have shed light on the complex mechanisms regulating miRNA-specific expression and
abundance during lymphopoiesis [48]. These findings corroborated the hypothesis for a
developmental regulation of miRNA strand accumulation and also showed that lympho-
cyte specific expression of miRNAs is obtained via epigenetic regulation, involving gene
silencing through the trimethylation of lysine 27 of the histone 3 (H3K27me3). Recently,
the miRNA profiles of 63 primary mouse immune populations, also including spleen and
liver NK cells from healthy or cytomegalovirus infected mice, have been established within
the context of the ImmGen program, unveiling the expression of both shared and unique
miRNAs by each cell type. By integrating data from miRNA profiles with global DNA-
accessibility, histone mark distribution, and nascent RNA profiles, it has emerged that
miRNAs can use multiple promoters as a mechanism capable of maintaining specificity and
abundance in each immune population, thus adding further information on the regulatory
landscape of immune cells [49].

The pleiotropic role for miRNAs in NK cell biology was initially suggested by studies
employing mouse models, in which the ablation of Dicer was induced by drug (Tamox-
ifen/CreERT2 system) or in cells expressing NKp46 (Ncr1iCRE-mediated Dicer1 inactiva-
tion) [50,51]. Indeed, these mice were characterized by severe defects in NK cell matura-
tion/differentiation and significant phenotypical and functional alterations, including the
ability to protect against cytomegalovirus infection and cancer growth. Since then, the
regulatory mechanisms underlying the impact of distinct miRNAs on the development,
activation, and effector functions of mouse and human NK cells have been elucidated.
The importance of miRNAs on NK cell biology has been intensively reviewed and is not
discussed here (interested readers are referred to other outstanding reviews [52–55]. We
focus on the role of miRNAs in the other ILC subsets (Figure 1, upper panel).

Among miRNAs, miR-142-3p/5p, encoded by Mir142 gene, are required for the devel-
opment of different hematopoietic cells, such as mast cells, dendritic cells, erythrocytes,
and adaptive lymphocytes [56,57]. As well, miR-142-3p/5p play a broad role in regulation
of ILC functions. These miRNA isoforms are present in high levels in mature ILC1, and
their expression can be further increased by IL-15. Both germline and conditional deletion
of Mir142, by using Ncr1-cre × Mir142fl/fl mice, have highlighted the importance of this
miRNA in ILC1 homeostasis and function [58]. The loss of Mir142 causes a strong reduc-
tion of ILC1 and NK cell compartments, the latter results mainly represented by ILC1-like
NK cells, due to the altered activity of two crucial cytokines for NK/ILC1 homeostasis,
IL-15, and TGF-β [59,60]. Indeed, while miR142-5p inhibits the expression of the negative
regulator of the IL-15 signaling, Socs1; miR142-3p directly targets Tgfbr1. Consequently, in
miR142-deficient mice, the homeostatic activity of IL-15 is compromised by the enhanced
Socs1 levels, explaining the lower number of NK cells and ILC1. On the other hand, the
TGF-β signaling is directly potentiated, likely inducing ILC1-like NK cells. Along with
the regulation of NK cell/ILC1 homeostatic functions, mir142 exerts important regulatory
functions also in the mouse ILC2 compartment. This miRNA plays a cell-intrinsic role in
defining the homeostatic pool of bone marrow ILC2, and it also controls the phenotypic
and functional properties of mature ILC2 at mucosal sites [61]. The absence of miR-142
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results in the accumulation in ILC2 in the bone marrow, and this is independent from the
effects on the earliest fully committed helper-like ILC precursor (ILCp) and α-lymphoid
progenitors (αLP). In the peripheral tissues, Mir142−/− ILC2 have enhanced the surface
expression of typical ILC2 markers, including CD25, Sca-1, Klrg1, ST2 (IL-33R), and IL-25R.
Even though the phenotypic features observed in Mir142−/− ILC2 might be associated
with an enhanced activation state, these cells are severely defective in their proliferative
and effector responses during N. brasiliensis infection, as well as at baseline. While miR142
isoform expression levels could be reduced by IL-33 and IL-25, the direct miR142 targets
include important regulators of the cytokine-induced pathways, such as Socs1 and Gfi1 [62].
As described for ILC1, the loss of miR142 enhances Socs1 expression, leading to a defective
γc-cytokine signaling in ILC2. In addition, the transcription factor Gfi1 could also regulate
the responsiveness of ILC2 to IL-33 by inducing the expression of its receptor ST2.
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Profiling the miRNA expression of lung ILC2 showed that Socs1 could also be targeted
by another miRNA, miR19a [63]. This miRNA is part of the miRNA 17–92 cluster which
plays a critical role in lung ILC2 homeostasis. Lung ILC2 lacking this cluster exhibited
defective proliferation and cytokine production at a steady state and during allergic re-
sponse. In addition to Socs1, the mir19a-mediated repression of Tnaifp3, encoding for A20,
a negative regulator of NF-kB, specifically regulates IL-5 and IL-13 production. Accord-
ingly, the depletion of Tnaifp3 and Socs1 in Mir17-92−/− mice or miR19a transfection is
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sufficient to increase ILC2 cytokine production. miRNA 17-92 cluster is included within a
large group of miRNAs shared between ILC2 and Th2 cells, consistently with their similar
gene expression and cytokine profiles. These findings suggest that the overlapping miRNA
repertoires could be used by innate and adaptive lymphocytes to generate similar effector
functions; thus, we cannot exclude that this also occurs for ILC1 vs. Th1 and ILC3 vs.
Th17. In this regard, several miRNAs described in Th cells could be able to target shared
pathways in ILCs. For instance, miR-29 has been shown to be essential for suppression
of Th1 differentiation and for limiting NK cell functions by directly targeting the LDTFs
T-bet and Eomes and the type 1 signature cytokine, IFN-γ [64,65]. In addition, miR-221 and
miR-222 are able to limit generation of pathogenic Th17 by targeting Maf and Il23r [66].
Whether and how these and other miRNAs could regulate ILCs remain to be addressed.

As mentioned above, miR155 plays a pivotal role in regulating the functions of im-
mune cells, and emphasis has been given to its role on the adaptive branch of the immunity.
However, miR155 also represents a critical regulator of ILC2 and NK cell biology, im-
pacting development and functions [67,68]. In the context of ILC2, a number of studies
focused on mouse models of allergic airway inflammation demonstrated a strong impact
of this miRNA on these lymphocytes via the alteration of IL-33 signaling required for their
proliferation and function as well as via direct changes of their gene expression [11,69].
Mir155-deficient mice are protected against the allergic inflammation because of a lower
number of neutrophils, lymphocytes, eosinophils, and ILC2 in the lung. Importantly, the
lack of miR155 negatively affects IL-33 signaling causing reduced IL-33 production and
increased expression of its receptor ST2. However, IL-33 is not sufficient to increase ILC2
numbers in miR155−/− mice and to enhance IL-13 production and GATA3 expression or
proliferation of Mir155−/− ILC2s. These findings highlight the relevance of a cell-intrinsic
role of miR155 in ILC2, and IL-33-induced miR155 may regulate cytokine secretion and the
expansion of ILC2. Among miR155 targets, an important role is also assumed for c-Maf, a
TF known to suppress IL-4, IL-5, IL-9, and IL-13 production [70]. Like miR155, a member
of the miR146 family, miR146a controls IL-33/ST2 pathway in mouse ILC2. Treatment of
ILC2 with IL-33 results in the enhanced levels of miR146a, which inhibits the expression
of TRAF6 and IRAK1, two key proteins of IL-33/ST2 signaling. Consistently, miR146a
inhibits ILC2 proliferation and function [71].

The role of miRNAs in the regulation of ILC3 biology remains poorly investigated,
and current evidence is restricted to ILC3 isolated from the human decidua and tonsils [72].
Like NK cells, decidual ILC3 (dILC3) regulate the implantation and maintenance of preg-
nancy because of their role in neoangiogenesis, tissue remodeling, and placentation [73].
A comprehensive miRNA expression analysis of NCR+ dILC3 isolated during the first
trimester of pregnancy revealed a unique miRNA profile for these cells, compared with
those of decidual (dNK) and peripheral blood NK cells (pbNK) [74]. In particular, the
miR-125a-5p, let-7e-5p, and miR-574-3p resulted as highly expressed in dILC3. These
miRNAs can potentially regulate genes involved in different biological processes (e.g.,
innate immune response, cytokine production, and tissue remodeling), sharing target genes
implicated in the regulation of inflammatory response (e.g., IL6, IL6R, and STAT3), and
angiogenesis (e.g., angiopoietin 2). These findings suggest that, during the early phases of
pregnancy, the regulation of gene expression by these miRNAs contribute to limiting the
excessive response of dILC3 that could compromise implantation and tissue remodeling.
Tonsil ILC3 also express high levels of miR-125a-5p, let-7e-5p, and miR-574-3p suggesting
a role for these miRNAs in defining the identity and functions of this population. Profiling
the miRNome in distinct ILC3 subsets from different tissues is helpful for addressing
this possibility.

3. Regulation of ILC Activity by lncRNAs
3.1. Properties of lncRNAs

LncRNAs are classified as long RNA transcripts with more than 200 nucleotides. This
cutoff of 200 nucleotides helps to discriminate lncRNAs from the classes of small RNA, such
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as transfer RNA and miRNAs. The estimated number of lncRNA loci ranges from 10,000 to
over 100,000 in the human genome (ENCODE Project Consortium, 2012), and compared to
other RNAs, lncRNAs are less conserved and have lower expression levels [75]. Although
most lncRNAs are transcribed by RNA Polymerase II and share several processes with
mRNA biogenesis (capping, polyadenylation, and splicing), their transcription, processing,
and export occur through distinct mechanisms which are strongly connected with cellular
fate, localization, and function [76]. The lncRNA map in different genomic locations and
based on their position relative to gene loci encoding protein-coding mRNA can be found
as intronic sequences, antisense regions, within coding genes, or as bidirectional and
intergenic regions. LncRNAs can act close to their site of transcription (in cis) or at distant
locations (in trans) by several molecular mechanisms functioning as signal, decoy, guide, or
scaffold molecules [77]. These transcription products play a crucial role in the fine-tuning of
nuclear organization, RNA processing, transcriptional and post-transcriptional machinery
and in the modulation of crucial functions of other ncRNAs [78].

3.2. LncRNAs and ILCs

While the number of lncRNAs identified in immune cells is growing, our knowledge
of the impact of these molecules on immune cells [79,80] and, in particular, on ILCs is still
limited (Figure 1, middle panel). The whole-genome RNA-seq profiling of thymocytes, ma-
ture T cells and distinct Th cell populations in humans and mice has led to the identification
of thousands of genomic regions able to generate lncRNAs, which are generally adjacent to
and co-expressed with, protein-coding genes regulating immune functions [81,82]. This
evidence implies a role of lncRNAs in the regulation of T-cell development and polariza-
tion. In addition, distinct LDTFs, namely T-BET and GATA3, as well as STATs, can drive
Th1/Th2 specific expression of lncRNAs [81]. Among the Th-specific lncRNAs, a cluster
comprising four alternatively spliced lncRNAs is selectively expressed on Th2, and it is
able to regulate the expression of type 2 cytokines [82]. This lncRNA cluster overlaps the
RAD50 gene in humans, which is located between the Il13 and Il5 loci, and is contiguous
with the Th2 locus control region (LCR) described in mice, and for this reason, it has been
designated as Th2-LCR lncRNA. This aspect is highly relevant in the context of ILC2 regu-
lation of gene expression, since Th2 and ILC2 undergo a substantial convergence of their
regulomes during infection and the DNA accessibility profile of the type 2 locus highly
overlaps the two populations [83]. As an example of common mechanism of regulation in
diverse immune cells, Ifng-as (also referred as NeST and Tmevpg1) controls Ifng expression
in T lymphocytes and NK cells [84]. By using a genetic approach targeting either the entire
locus or only Ifng-as1 RNA transcription, it has been observed that a double mechanism
involving both the Ifn-as1 DNA locus and its transcript is necessary for the optimal ex-
pression of Ifng. In particular, the Ifn-as1 locus is an important cisregulatory element for
Ifng required for proper remodeling of the chromatin structure. In addition, Ifng-as1 RNA
serves to promote the binding of transcription factors and/or chromatin modifiers, but it
can also exert effects on mRNA stability. Interestingly, the induction of Ifng-as1 expression
is dependent upon Stat4 and T-bet transcription factors, also required for Ifng transcription.
Despite these molecular events having been dissected in T cells, NK cells from Ifng-as1
deficient mice also produce reduced levels of IFN-γ. Moreover, the regulatory function of
this lncRNA seems preserved in human NK cells where the overexpression of IFN-AS1
enhances IFN-γ secretion [85], and the amount of this lncRNA is significantly increased by
activating cytokines, such as IL-12 alone or in combination with IL18.

Based on the specific transcriptional programs underlying the specification of ILC fates,
it is plausible that ILC identity is also defined by the expression of precise sets of lncRNAs.
The comparison of global lncRNA expression in human pbNK, cord blood (cbNK), and dNK
cells has revealed NK-lncRNA signatures consisting of 1632 lncRNAs [86]. Most of these
lncRNAs are coexpressed among the different human NK cell populations; however, pbNK
and cbNK cells share more lncRNAs with each other, with respect to dNK cells. Among the
shared lncRNAs, the possible involvement in the regulation of NK cell biology has been
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hypothesized for lncRNA AK096651 and AB128931 (also named lncCD56), based on their
predicted targets. Indeed, AK096651 putative targets include CD160, a receptor triggering
NK-mediated IFN-γ production, which defines ILC1 populations able to provide potent
IFN-γ responses both in the intestinal epithelium and liver [87,88]. On the other hand, lnc-
CD56 has been predicted to interact with the TFs TBX21, IRF2, IKZF2, ELF4, and EOMES
and to target CD56, a classical human NK cell surface marker. The regulation of CD56
has been validated by in vitro studies showing that the silencing of lncCD56 significantly
reduces the surface expression of CD56 on dNK cells. As an adhesion molecule, CD56
regulates contact-dependent processes between developing NK cells and stromal cells [89].
Accordingly, the knockdown of lncCD56 also compromises the differentiation of NK cells
from CD34+ hematopoietic progenitor cells.

The possibility that lncRNAs contribute to determining phenotypes and functions
of NK cells derived from different cell compartments is also supported by evidence on
the changes in the lncRNA expression pattern among diverse cell states and in pathologic
conditions. Accordingly, 67 lncRNAs were found specifically expressed in dNK cells
isolated from patients with early nonchromosome-related missed abortion (MA) but not
in healthy controls [90]. The dysregulated expression of these lncRNAs was associated
with defects in IL-1- and IL-15-mediated signaling and the phosphatidylinositol signaling
system, but also in pathways regulating cell adhesion and metabolism. Thus, a specific
profile of lncRNAs may account for dNK cell abnormalities in the case of MA, suggesting
that further investigation of the role of these lncRNAs in NK and other ILC populations
would improve our knowledge on the regulatory circuits underpinning their activity in a
variety of disease conditions, including inflammation and cancer. To this regard, pbNK
cells from patients with liver cancer can express reduced levels of the lncRNA GAS5, and
this correlates with NK cell dysfunctions and worse patients’ prognoses [91]. The lncRNA
GAS5 expression was elevated in IL-2 activated-NK cells and serves as a positive regulator
of NK cell functions through indirect regulation of the activating receptor NCR1/NKp46.
The lncRNA GAS5 is a decoy for miR544 and blocks its activity. In particular, the binding of
the lncRNA GAS5 to miR-544 prevents the repression of RUNX3, a relevant transcriptional
activator of the NCR1 gene. The upregulation of NKp46 expression leads to enhanced NK
cell cytokine production and cytotoxicity.

Regulatory functions of lncRNAs have been also described in ILC1 and ILC3. Mowel
and colleagues identified the lncRNA Rroid as being specifically expressed in NK cells and
ILC1 but not in other ILC subsets [92]. Mice deficient of the Rroid locus (Rroid−/−) display
decreased frequency and number of NK cells and ILC1 in most tissues including spleen,
liver, lung, and intestine but comparable amounts of intestinal and lung ILC2 and ILC3,
compared with wild-type mice. The reduction of NK cells and ILC1 is dependent on a
defective expression of Id2, a negative regulator of the E-protein TFs, which are responsible
for the activation of T- and B-cell lineage-specific genes [93,94]. Although Id2 determines
the commitment and maintenance of the entire NK/ILC lineage, Rroid−/− mice have no
defects in common helper ILC progenitors and in other ILC subsets, implying that specific
regulatory elements control Id2 transcription during different developmental stages of
ILCs. In particular, for NK cells and ILC1, these regulatory mechanisms are regulated
by IL-15. At a mechanistic level, the Rroid locus, but not lncRNA itself, is required for
IL-15/STAT5 mediated-activation of Id2 promoter. The Rroid locus and the Id2 promoter
are adjacent and can form a long-range loop which renders chromatin properly accessible
to favor the binding of STAT5 to Id2 promoter.

The lncKdm2b, instead, is specifically highly expressed in ILC3 and plays a key reg-
ulatory function in these cells. Accordingly, two different mouse models, established to
delete lncKdm2b in the hematopoietic system or only in ILC3, revealed selective effects
of lncKdm2b on this subset, with a strong decrease in the absolute number and effector
functions. These effects are due to the capability of lncKdm2b to control ILC3 prolifera-
tion, and the regulation of the expression of the TF Zfp929 has an important role in this
mechanism. At a molecular level, lncKdm2b binds Satb1, a genome-organizer protein able
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to recruit the chromatin-remodeling complex NURF to Zfp929 promoter and to trigger its
transcription [95].

4. Regulation of ILC Activity by circRNAs
4.1. Properties of circRNAs

circRNAs represent a category of nc-RNAs characterized by a continuous RNA se-
quence without open 3′ and 5′ end. Thanks to their covalent closed-loop structure, circR-
NAs are protected from degradation by RNases, thus displaying a higher stability than
linear RNAs [96,97]. For decades, circRNAs have been considered as the anomalous prod-
ucts of splicing, but recent advances in high-throughput RNA sequencing have unveiled
new information about their functions. There are four main subtypes of circRNAs: exonic
circRNAs (ecircRNAs), mainly characterized by a single or several exons; circular intronic
RNAs (ciRNAs), containing only introns; exonic–intronic circRNAs (EIciRNAs), including
both introns and exons; and tRNA intronic circRNAs (tricRNAs), formed by the splicing
of pre-tRNA intron. Most of the circRNAs are composed of single or multiple exons [98],
and their expression is developmentally regulated and tissue and cell-type specific [99].
CircRNAs are produced by a lariat-driven circularization or back-splicing, a process that
occurs in a reversed orientation as compared with canonical splicing [98]. MiRNA sponge
activity is the most frequently described function of circRNAs. They interact with miR-
NAs by preventing their inhibitory activity on canonical mRNA targets. Other annotated
functions include the sponging of proteins, scaffolds for protein complex, modulation
of transcription, and splicing [100,101]. Recent studies indicated that some cytoplasmic
circRNAs can be also translated into regulatory peptides. Thus, these circRNAs can exert
their biological functions both through encoded peptides and/or by RNA-based regulatory
mechanisms. In particular, circRNA-translated proteins play pivotal roles in cancer by
promoting/inhibiting tumorigenesis [101,102].

4.2. circRNAs and ILCs

The immunoregulatory properties of circRNAs are now starting to be understood [103].
circRNAs have been implicated in immune responses against microbial infections and
cancer. Recent studies have demonstrated the critical functions of circRNAs in NK cells
and ILC3 (Figure 1, lower panel). They can regulate the antitumor NK cell activity [104]. In
both tumor tissues and plasma exosomal RNA of patients with hepatocarcinoma (HCC),
the expression of the UHRF1-derived circular RNA, named circUHRF1, circUHRF1 is
increased and is associated with decreased NK cell proportion and tumor infiltration.
Exosomal circUHRF1 secreted by HCC cells can be delivered into NK cells, by inducing the
expression of the inhibitory receptor TIM-3 and inhibiting IFN-γ and TNF-α production.
At the molecular level, a peculiar regulatory circuit connects this circRNA with a miRNA
able to target TIM-3 mRNA, the miR-449c-5p. The circUHRF1 acts as a binding platform
for miR-449c-5p and inhibits its activity, thus promoting the expression of TIM-3 in NK
cells. The relevance of this circRNA in mediating NK cell dysfunction in liver cancer has
been highlighted by observations on its role in anticancer therapy. In a mouse xenograft
model, the subcutaneous implantation of circUHRF1-knockdown HCCLM3 cells resulted in
sensitivity to anti-PD1 treatment and in increasing in the overall survival rate; consistently,
a retrospective study on a cohort of 30 HCC patients treated with anti-PD1 mAb suggested
that high levels of tumor circUHRF1 positively correlate with progressive disease. These
findings suggest the possibility to use this circRNA both as a prognostic biomarker as well
as a therapeutic target.

In the context of intestinal inflammation, circZbtb20 and circKcnt2 exert relevant
effects on ILC3 activity. CircZbtb20 knockout mice show a reduced percentage and number
of intestinal ILC3, also defective in IL-22 production, and increased the susceptibility to C.
rodentium infection. Such effects can be attributed to the alteration of the Notch pathway
required for ILC3 proliferation and functions [105]. Mechanistically, upon interaction
with Nr4a1 mRNA, CircZbtb20 recruits the Alkbh5 demethylase to remove the m6A
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modification responsible for its stability. Thus, the CircZbtb20 promotes the expression of
transcription factor Nr4a by enhancing the stability of its mRNA. Then, Nr4a1 directs the
expression of genes correlated to the Notch signaling pathway, such as Notch2.

While CircZbtb20 is constitutively present in intestinal ILC3, circKcnt2 transcription
is activated only in colitis-associated ILC3. Mice lacking circKcnt2 displayed much more
innate colitis and more IL-17 production by ILC3 [106]. A transcriptome analysis of ILC3
circKcnt2−/− vs. circKcnt2+/+ contributed to elucidating the molecular mechanisms of
circKcnt2 in the promotion of colitis, by revealing Batf as the most upregulated TF in
the absence of the circRNA. The circKcnt2 recruits a transcriptional repressor, the NuRD
complex on Batf promoter, and suppresses its transcription also leading to the inhibition of
IL-17a expression, one of target genes of this transcription factor.

5. Conclusions

It is now clear that ncRNAs can control the gene expression by generating fine-
tuned regulatory circuits. Recent advances in next-generation sequencing techniques
and bioinformatics approaches have enabled the profiling of miRNAs, lncRNAs, and
circRNAs in a large variety of cells and have elucidated their role in diverse biological
processes. Tight control mechanisms guarantee the concerted action of multiple ncRNAs
generating complex regulatory RNA networks also strictly interconnected with many other
regulatory elements.

The contribution of these regulatory circuits to the molecular programs required for
the development and functions of ILCs is also emerging (Table 1). However, our knowledge
in this field is still limited and puzzling. While the role of miRNAs in NK cell biology
has been investigated, how they operate in other ILC subsets remains to be elucidated.
Genetic approaches in mice have led to the identification of specific functions of miRNAs in
ILCs. Interestingly, the shared expression of discrete groups of miRNAs among ILCs opens
the possibility that these molecules could help determine innate vs. adaptive signatures.
Differently, the specific patterns of expression of miRNAs can account for the peculiarities
of distinct ILC subpopulations. Comprehensive comparisons of miRNome among ILC
subsets and between ILCs and Th cell counterparts would be helpful for understanding
whether and how these regulatory RNAs concur to generating the heterogeneity of these
lymphocytes. Similar approaches should be also used to profile lnc- and circRNAs in these
immune cells. Despite the limited information on lncRNAs and circRNAs in ILCs, the
evidence encourages further investigation of their pattern of expression and regulatory
functions; it is plausible that also these ncRNAs are crucial for the imprinting of ILC
identity and functions. A further level of complexity comes from difficulties in translating
mouse studies to humans, due to the limited conservation of ncRNAs among species and to
the phenotypical and functional differences between human and mouse ILCs. Additional
studies might provide further insight into the roles of ncRNAs in ILCs.

Table 1. Functional ncRNAs in ILCs.

ncRNAs Cell Regulator Target Biological Effect References

miRNAs
miRNA-142-3p ILC1 IL-15 TGFBR1 ↓ TGFβ signalling [58]
miRNA-142-5p ILC1 IL-15 SOCS1 ↑ IL-15 signalling [58]
miRNA-142 ILC2 - SOCS1 ↑ γc-cytokine signalling [62]
miRNA-142 ILC2 - GFI1 ↓ ST2-IL-33 signalling [62]
miRNA-19a ILC2 - SOCS1 ↑ JAK/STAT signalling [63]
miRNA-19a ILC2 - TNFAIP3 ↑ IL-13 and IL-5 signalling [63]
miRNA-155 ILC2 IL-33 c-Maf ↓ IL-4, IL-5, IL-9 and IL-13 production [11,69]
miRNA-146a ILC2 - TRAF6, IRAK1 ↓ ST2-IL-33 signalling [71]
lncRNAs
lnc-CD56 NK - CD56 ↑ NK cell differentiation [86]
lnc-GAS5 NK IL-2 RUNX3 ↑ NK cell cytotoxicity [91]
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Table 1. Cont.

ncRNAs Cell Regulator Target Biological Effect References

lncRNAs
lnc-ifng-as NK STAT-4/

T-BET,
IL-12/IL-18

IFN-γ ↑ IFN-γ production [84,85]

Rroid locus ILC1 IL-15 Id2 ↓ T and B cell lineage [92]
lncKdm2b ILC3 - Zfp929 ↑ ILC3 proliferation [95]
circRNAs
circUHRF1 NK Tumor TIM-3 ↓ IFN-γ and TNF-α production [104]
circZbtb20 ILC3 - Nr4a ↑ ILC3 proliferation [105]
circKcnt2 ILC3 Inflammation Batf ↓ IL-17a expression and

ILC3 activation
[106]

↑: Increase; ↓: Decrease; - Not determined.

To date, a role for ncRNAs on ILC plasticity has not been demonstrated. However,
several studies reported the regulation of these transcripts by cytokines, which are critical
factors to driving the behavior and function of ILCs [107], thus suggesting the involvement
of ncRNAs in these mechanisms. Although still challenging from a technical point of view, it
will be highly important to profile ncRNAs in immune cells at single cell resolution, both in
homeostatic and pathological conditions. Indeed, beyond the importance of deconvoluting
ncRNA-dependent regulatory circuits, this information is particularly relevant in the design
of therapeutic approaches based on ncRNA delivery.
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TGF-β transforming growth factor-β
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LTi lymphoid tissue inducer
LDTF lineage defining TF
ncRNA noncoding RNA
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tRNA transfer RNA
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circRNA circular RNA
RISC RNA-induced silencing complex
H3K27me3 trimethylation of lysine 27 of the histone 3
ILCp ILC precursor
a-LP a-lymphoid progenitors
dILC3 decidual ILC3
dNK decidual NK
pbNK peripheral blood NK cells
cbNK cord blood NK
ecircRNAs exonic circRNAs
ciRNAs circular intronic RNAs
EIciRNAs exonic–intronic circRNAs
tricRNAs tRNA intronic circRNAs.
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