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ABSTRACT

Motivation: A prerequisite for any protein study by NMR is
the assignment of the resonances from the “N—'H HSQC
spectrum to their corresponding atoms of the protein backbone.
Usually, this assignment is obtained by analyzing triple resonance
NMR experiments. An alternative assignment strategy exploits the
information given by an already available 3D structure of the same
or a homologous protein. Up to now, the algorithms that have been
developed around the structure-based assignment strategy have the
important drawbacks that they cannot guarantee a high assignment
accuracy near to 100%.

Results: We propose here a new program, called NOEnet,
implementing an efficient complete search algorithm that ensures the
correctness of the assignment results. NOEnet exploits the network
character of unambiguous NOE constraints to realize an exhaustive
search of all matching possibilities of the NOE network onto the
structural one. NOEnet has been successfully tested on EIN, a large
protein of 28kDa, using only NOE data. The complete search of
NOEnet finds all possible assignments compatible with experimental
data that can be defined as an assignment ensemble. We show that
multiple assignment possibilities of large NOE networks are restricted
to a small spatial assignment range (SAR), so that assignment
ensembles, obtained from accessible experimental data, are precise
enough to be used for functional proteins studies, like protein-ligand
interaction or protein dynamics studies. We believe that NOEnet can
become a major tool for the structure-based backbone resonance
assignment strategy in NMR.

Availability: The NOEnet program will be available under: http://
www.icsn.cnrs-gif.fr/download/nmr

Contact: carine@icsn.cnrs-gif.fr; eric.guittet@icsn.cnrs-gif.fr
Supplementary Information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

In order to resolve the molecular mechanism of proteins function, the
structural biology community has made huge efforts to determine 3D
structures of proteins at atomic resolution. Proteins function is not
solely inferred from the tridimensional structure of the protein, but
also from its interactions with other partners and from its dynamical
and energetic properties. Consequently, even if the tridimensional
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structure of the free protein is known, it is necessary to study
protein—ligand or protein—protein interactions and protein dynamics.
Solution nuclear magnetic resonance (NMR) is a method of choice
for those studies, through its unique ability to probe local dynamics
and local environment changes. However, to obtain information at
atomic resolution, NMR resonances first have to be assigned to their
corresponding atoms in the protein.

With the availability of 3D structures for a large number of
proteins, structure-based assignment strategies have been proposed.
Several types of experimental NMR data can be correlated with
the 3D structure. NOESY cross peaks (NOEs) between resonances
correspond to spatially neighbouring atoms. Residual dipolar
couplings (RDCs) measured in weakly aligning media are correlated
with the orientation of the inter-atomic vector with respect to
the magnetic field. Chemical shifts (CS) are nowadays more and
more accurately predicted from the knowledge of the 3D structure
(Neal er al., 2003; Shen and Bax, 2007). The comparison of these
experimental data with the 3D structure yields the assignment
constraints. This exploitation of the data cannot be done manually
due to the important combinatorics to accomplish.

The existing structure-based assignment strategies require several
different NMR data sources. For example, the nuclear vector
replacement (NVR) algorithm (Apaydin et al., 2008; Langmead and
Donald, 2004; Langmead et al., 2004) uses unambiguous LN _
IHN NOE-connectivity information, 155 —1HN RDCs obtained
in two different alignment media, 15N and 'HN chemical shifts
and results from H-D exchange experiment. It has been tested
on two small proteins and one moderate size protein (lysozyme,
129 amino acids). Another approach (Xiong et al., 2008), called
contact replacement, is not based on RDCs but on IgN _1gN and
TN _ 1H% NOE:s for the identification of the secondary structures.
It also requires a TOCSY experiment for the estimation of the
amino acid class of each N —1H HSQC peak. The TOCSY data
are analyzed by the program RESCUE (Pons and Delsuc, 1999)
that classifies each >N —! H HSQC peak in one of 10 amino acid
classes with an accuracy higher than 88%. The contact replacement
approach has been tested on three moderate size proteins (up to
166 amino acids) with experimental data. The overall assignment
accuracy varied from 60% to 80%, which is not sufficient in our
opinion, as a typical NMR user will only trust automated assignment
strategies, if they yield accuracies near to 100%. The low accuracy of
the contact replacement approach is probably due to the use of highly
ambiguous NOE data obtained from a 3D NOESY experiment, as
well as to the translation of the RESCUE output into hard constraints.
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Both approaches, the NVR and the contact replacement, will be
difficult to apply to large proteins, the first because of increased
ambiguity of RDC assignment constraints and the second because of
the increased overlap in TOCSY spectra. The PEPMORPH approach
(Erdmann and Rule, 2002) has been tested on synthetic datasets
of proteins with a size up to 414 amino acids. It combines NOE
and RDC data, it relies on unambiguous IgN _1gN NOEs and
two RDCs per residue of the spin pairs ISy _1B¢r 15y _13 cer,
The authors represent the NOE data and the 3D structure as
mathematical graphs and the algorithm matches the NOE graph onto
the 3D structure graph to obtain the assignment. Unfortunately, the
PEPMORPH approach has only been tested on synthetic datasets
that were highly idealized in comparison to realistic experimental
datasets.

The complete list of structure-based assignment strategies is to
our knowledge given by the following references: Dobson et al.
(1984), Bartels et al. (1996), Gronwald et al. (1998), Bailey-Kellogg
et al. (2000), Pristovsek et al. (2002), Pristovsek and Franzoni
(2006), Hus et al. (2002), Erdmann and Rule (2002), Pintacuda
et al. (2004), Langmead et al. (2004), Langmead and Donald (2004),
Apaydin et al. (2008), Xiong and Bailey-Kellogg (2007) and Xiong
et al. (2008). Despite the long list, we failed to find an approach
that is applicable to large proteins and that always yields high
accuracies near to 100%. The structure-based assignment problem
can be translated into either a constrained bipartite matching problem
(like for NVR) or a subgraph matching problem (like for contact
replacement or PEPMORPH). Both problems are non-polynomial
(NP)-hard, so that exact complete search algorithms solving the
structure-based assignment problem can require a runtime increasing
exponentially with the protein size. Because of this fact, the
majority of structure-based assignment strategies use incomplete
optimization algorithms giving a limited number of solutions (often
only one global assignment), with the drawback that their accuracy
is difficult to assess. As it is crucial to guarantee high accuracies
near to 100%, we decided to explore the feasibility of an exact
complete search algorithm for the structure-based assignment of
large proteins.

We present here a new structure-based NMR assignment program,
called NOEner that exploits the network feature of the NOE-
connectivities of unambiguous IgN _1gN NOEs and the 3D
structure of the protein. Instead of searching for a unique
global assignment, whose accuracy is difficult to assess, our
goal was to determine an assignment ensemble, containing all
possible assignments compatible with the available NMR data.
The complete search algorithm of NOEner ensures that the correct
assignment is always part of the obtained assignment ensemble,
if no erroneous constraint is introduced along the search process.
Multiple assignment possibilities are spatially restricted by the
assignment constraints. We thus introduce a quality factor for
multiple assignments through the concept of SAR. We demonstrate
here that restrained multiple assignments can be exploited for
numerous NMR applications, like protein-ligand or protein—protein
interaction.

2 METHODS

The assignment problem: the "N-HSQC assignment problem consists
in finding the assignment of the set of Np (1°N,'H) resonances
(also called peaks) P:{pl, D2y ey pNP} to the corresponding amino acid

R= { FLo2, e, rNR} in the protein sequence. A peak assignment defines the
assignment of a single peak py: px — r; or, in a simplified notation, k — i. The
set of peak assignment possibilities for a peak py is k— i1, iz, ..., iy, With
ng being the number of assignment possibilities for the peak py. The list
of peak assignment possibilities contains the peak assignment possibilities
for all peaks: k—iy,i,...,0y, fork=1,...,Np. Two peaks k and / can
share the same assignment possibility ix =i; in the list of peak assignment
possibilities. A global assignment defines an assignment of all peaks py —
ryy fork=1,...,Np with iy €{l,...,Ng} and iy #i;Yk#1. As the number
of global assignments increases exponentially with the number of multiple
peak assignments, it is in general impossible to give the full list of global
assignments, especially for sparse data. Only the list of peak assignment
possibilities can always be obtained. It characterizes the assignment ensemble
that should comprise all global assignments compatible with the data. Only
one of the compatible global assignments is the correct global assignment or
correct assignment. Using sparse data, it is in general impossible to reliably
find only the correct assignment. It is nevertheless possible to obtain an
accuracy of 100%, meaning that the assignment ensemble contains among
other compatible assignments also the correct assignment. The accuracy is
defined in this context as 1—N,/Np with N, the number of peaks that do
not have the correct assignment in their list of assignment possibilities and
Np the number of peaks. The quality of an assignment ensemble is not
only given by its accuracy, but also by its completeness. We define two
types of completeness: first the unicity completeness describing the ratio of
the number of uniquely and correctly assigned peaks to the total number of
peaks: C1 = Nunique /Np. The peaks with multiple assignment possibilities can
be classified by a quality factor obtained with the available 3D structure of
the protein. To obtain this quality factor, we calculate the inter-residue spatial
THN _1HV distances for all residue pairs taken from the peak assignment
possibilities for a specific peak py. We define the SAR as the maximum of
those distances and calculate it for each peak. This allows us to define a
second type of completeness: the ratio between the number of peaks with a
SAR-value below a given threshold (typically 10 A) to the total number of
peaks: C2(<10;\):NSAR<10A /Np. The uniquely assigned peaks are given a
SAR-value of zero.

Input NMR data: the minimal input for NOEnet is a list of unambiguous
'HY —'HY NOEs and the 3D structure in the Protein Data Bank (PDB) file
format. Unambiguous NOEs means that each NOE cross peak can be related
to exactly two unambiguous resonances of the >N — ' H HSQC spectrum.

Beside the peaks of the (ISN JH ) atom-pairs of the protein backbone,
some peaks correspond to the ('5N JH ) atom-pairs of side-chains.
Especially, the tryptophan (TRP) side-chains generate (15N , lH) peaks that
are not distinguishable from the peaks corresponding to the backbone of
the protein. We included the TRP side-chains as additional pseudo-residues.
The peak doublets corresponding to NH; groups of side-chains are assumed
to be identified by their identical '>N frequency, and were not included as
assignment possibility.

The conceptual bases of NOEnet: the main idea of NOEnet is to sample
all possible matches of the whole NOE network onto the connectivity
network of the 3D structure. In terms of graph theory, the algorithmic problem
is to find all possible subgraph monomorphisms or graph matchings; it
belongs to the class of NP-hard problems. No polynomial-time algorithm has
been found for NP-hard problems. Previously used algorithms for structure-
based assignment are mostly incomplete search algorithms that yield a
solution in polynomial time, but do not guarantee the correctness of this
solution. NOEnet employs a complete search algorithm, giving no guarantee
for a limited runtime, but ensuring the correctness of the obtained assignment
ensemble. In opposition to algorithms that search one or several assignment
solutions, NOEnet searches iteratively the assignment impossibilities, while
ensuring that the correct assignment is not removed. At the beginning of the
search, all peak assignments are in the (Mpeaks X Mresidues) assignment table
A. During the search, impossible peak assignments are removed from A.
NOEnet makes several refinement cycles, returning each time an assignment
ensemble in form of the assignment table A that will have less assignment
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Fig. 1. (a) Simplices and (simple) polytopes; (b) multiple neighbours;
(c) generalized polytope.

possibilities on each cycle. This approach allows the exploitation of the
current result, even if the complete search is still not finished. In general,
the first cycle will return rapidly an assignment ensemble almost as good as
the final assignment ensemble. The complete search is limited by different
types of thresholds, whose optimal values depend on the data source and its
quality. The first threshold is the 'HN — 'HN theoretical distance threshold
e that is used to generate the connectivity network of the 3D structure. The
complexity of the connectivity network and of the complete search increases
with this threshold. As long as each NOE has its corresponding 'HY — 1 HY
distance satisfied under the correct assignment, the complete search ensures
the correct assignment to be included in the assignment ensemble. The
accuracy will always be of 100% in those cases. If one or several NOEs
do not have their correct 'HY —'HV distance in the structure, the correct
assignment is likely to be excluded from the assignment ensemble, whose
accuracy will drop below 100%. As NOEnet treats the NOE network globally,
erroneous NOEs will create inconsistencies for the graph matching that can
be detected by the occurrence of holes in the assignment list, meaning that
some peaks have no assignment possibility left.

Graph Representation: the NOE network is represented by the
experimental NOE interaction graph G®P ={V“P E“P}. 1Its nodes

Vewr — {VTXP,VZXP, ...,vle\‘ff} are the resonances from the N —1H HSQC.
Its edges E“7 = {e?pﬁe?p, s ef\}fw } are the Nyogs unambiguous NOESY

cross peaks. The 3D structure of the protein is represented by the theoretical
contact graph Grheo — {Vth('o , Etheo } Tts nodes Vthm — {vtlheo , vtzheo e, v;‘\l}t[so }

are the 'H" atoms of the protein backbone and tryptophan side chains.

Its edges E™eo = {etheo gtheo gtheo & connect all pairs of nodes whose
1 2 Nist

associated amide protons ! HY are within a specified distance threshold d'<°.
Each contact in the 3D structure is a possible partner for a NOE-constraint.
Before the graph matching step, G and G™¢° are first preprocessed to
optimize the matching procedure by searching for high-level structures
called simplices and polytopes (Fig. la). A n-dimensional simplex or
n-simplex is a set of n+1 nodes S, ={vi,...,vy+1}, where each node
of S, has an edge to each other node of S,. In geometry, a O-simplex is
a point, a 1-simplex is a line segment, a 2-simplex is a triangle and a
3-simplex is a tetrahedron. n-dimensional simplices can then be grouped into
n-Dimensional polytopes, by a specific adjacency relation: two n-simplices
of the same dimension n are adjacent, if the number of nodes they have in
common is equal to n. We will call the nodes shared by two simplices the
simplex interface, that is, a lower dimensional simplex. We define adjacent
simplices as neighbours and the adjacency relation as neighbourship
relation. A polytope is perfect or simple (as used in PEPMORPH (Erdmann
and Rule, 2002)), if there is only one neighbour per simplex interface, i.e.
if each interface belongs to exactly two simplices. Otherwise, more than
two simplices [multiple neighbours (Fig. 1b)] share the same interface.
PEPMORPH (Erdmann and Rule, 2002) only matches perfect polytopes,
whereas our approach can use every possible network configuration by the
full combinatorial treatment of multiple neighbours. In order to represent all
possible networks with simplices, the neighbourship definition was relaxed
to a general neighbourship concept: for two simplices to be identified

fragments. A fragment F

peaks
ABCDEFGHLI
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N AN
AVAVAN
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Fig. 2. (a) Simple example of polytope matching possibilities: the
experimental NOE-network (in blue) is matched onto the theoretical
distance-network (in green) in different ways. (b) Example of an assignment
table.

as neighbours, it is sufficient that they share at least one node (Fig. lc).
Contrary to the PEPMORPH algorithm that considers only matches between
perfect polytopes, the two extensions—multiple neighbours and general
neighbourship—enable the use of the whole available NOE network
as constraint, without any decomposition into perfect polytopes, for the full
exploitation of the experimental data. Additionally, we also extended the
matching possibilities: a n-simplex can be matched on all simplices with a
dimension d >n. The restriction of the matching possibilities to polytopes
with the same dimension can indeed induce errors, due to the lower density
of the experimental NOE network compared with the 3D structure network.

Graph matching: the assignment problem is solved by identifying all peak
assignment possibilities that are compatible with the assignment constraints.
Therefore, NOEnet tries to find all possible graph matches of G*P onto G"¢°
(Fig. 2a). The graph G*? is in general composed of several disconnected
fxp = {Vf R ,Efx" } is a connected subgraph from
G*?. The matching process is done sequentially for each fragment F; ",
beginning with the largest fragment Fr. The intermediate assignment
table A (Fig. 2b) is then used as a constraint for the matching processes
of the next smaller fragments F ff’i

Fragment matching: the fragment matching is done by a backtracking
algorithm (Dechter, 2003). A startsimplex Sffp is chosen randomly among
the simplices of the current fragment F| Ie P Every simplex of F' f P becomes
one time the startsimplex, as explained at the end of this subsection. Before
each backtracking search, a variable ordering is determined, the variables
being the simplices Sl.e.x" of F f “P Beginning at the startsimplex Sff 7 the next
simplices Sf;p ,Sf;”, ,S;f,p are determined by a breadth first search (BFS)
(Sedgewick, 2002) on the graph of simplices GEPS"P = {V"“"”Si’"p , EexpSimp }
G is the graph of the peaks connected by NOEs, whereas G“PS"P is the
graph of the simplices connected by the general neighbourship definition. The
obtained variable ordering remains fixed during the whole fragment matching
for the specific startsimplex Sfi‘p . We also tested a variable ordering obtained
by a depth first search (DFS) (Sedgewick, 2002), but found that the ordering
obtained by a breadth first search resulted in a much better performance on
average.

The goal of the fragment matching is to find all possible matches of
the startsimplex Sff” on the graph of theoretical simplices G"¢o5P =
{viheoSimp pheoSimp}_One possible matching is found in the following way:
first, the n-dimensional simplex Sffp is matched to any SQ”" with the same
or higher dimension. For each simplex to simplex matching all possible
permutations on the nodes level are tested [(n+ 1)! node permutations for the
n-Dimensional startsimplex]. A particular match m; of the startsimplex Sffp
is the assignment of the nodes of Sff” to the nodes of S,’f’e" with a specific
permutation on the nodes level. m; is validated, if all other simplices of
fragment F’ f “P can be matched onto G"°S"P without overlapping and under
the constraint of the initial matching m; of Sffp. Therefore, m; is extended
with the predefined variable ordering of the simplices Sf;p ,Sf;p s ...,S;Cp
by a backtracking algorithm. If m; can be validated, the found fragment
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match M ={m,my,...,my} is registered as possible and is reused in
further iterations to reduce the runtime. The corresponding peak to residues
assignments are also registered as possible in the assignment table A. If m
cannot be validated, m; is registered as impossible but not the corresponding
peak to residues assignments. Only the simultaneous assignment of all nodes
of Sffp defined by m; can be excluded and not the independent assignment
at the peak-level. A change of the assignment of only one peak of Sffp can
indeed generate a possible matching m} #m;.

Once a fragment match M ={mj,my,...,my} is found, NOEnet
backtracks directly to the first variable, the startsimplex Sffp , as it is
practically impossible to sample all possible matches M with m; fixed. As not
all possible matches of the other simplices Sl.e;p ,Sgp s Sf,f,p are sampled,
each simplex S;.x” of F f P must become the root—the startsimplex of the
search one time.

Overlap check: an overlap check can be done optionally for each match
M of F” by testing its compatibility with the other fragments F;”j#k. In
case of an incompatibility, the match M is rejected. The overlap check can
reduce the number of final peak assignment possibilities, but will increase
the runtime.

Iterative growth of the NOE-network: in order to prevent combinatorial
explosion, the fragment matching is implemented as an iterative search.
The search begins with a subset fragment flezp containing only n nodes
of the whole fragment Fl.”P . The size n of ff;p is grown iteratively from
nyin to N;, the number of nodes of fragment F| ieXp . A complete run of the
fragment matching algorithm described above is performed for each value

of n on the subset fragment f;°7 . The iterative growth permits a progressive

nLn
search for matching impossibilities of foﬂ : first the easily detectable
matching impossibilities are found with the smaller subset fragments. As the
subset fragments are growing, more matching impossibilities are detected.
Therefore, the assignment possibilities of every simplex of fff,” are retested
again for each value of n. On the other hand, the already excluded assignment
possibilities are not retested.

Stop search: NOEnet limits further the runtime by stopping temporarily
the current search after a certain number of trials. For each initial matching
M, of the startsimplex STXP to an arbitrary S,’{he”, the number of trials
(singleTrials) to validate M is limited by the threshold maxSingleTrials (set
to one million by default). If the backtracking search for the extension of
M has been stopped, the corresponding peak assignments of M7 are marked
as stopped possibilities in the assignment table A. Stopped possibilities are
neither impossible assignments nor confirmed possible assignments. They
are retested again each time the subset fragment ff;p has grown to a number
of simplices n equal to a multiple of 10. If stopped possibilities remain in
the assignment table at the end of the matching of all fragments Fpr , all
matchings are redone with a higher maxSingleTrials threshold (by default a
factor of 10 larger). This procedure allows a first result to be obtained rapidly.
It is refined automatically during the following iterations.

Pseudocode: the pseudocode of NOEner with its most important
subfunctions is shown in the Supplementary Material (Fig. S5). It gives a
simplified overview of the more complicated NOEnet source code of about
20.000 lines written in C++.

NOE classes: the relation between the intensity of a NOESY cross-peak
and the distance between the corresponding residues depends on numerous
parameters that can be difficult to evaluate precisely (local dynamics,
mixing time of the experiment and proton density). NOESY cross-peaks
intensities are thus usually grouped into three distance classes for protein
structure determination (Wiithrich, 1986): strong, medium and weak that are
associated with short, medium and long range upper distances, respectively.
NOEret can exploit this classification by using a different theoretical upper
distance bound dzlnhti)(c) = (drtr’llg)(:,xhorl’ dr[r}lltzg,?,medium’dr’r’z’i?.long) for each class of
NOEs. The NOE classes are actually taken into account through additional
filters on the current assignments, obtained by the matching of G% to G"¢°.
G*? and G"° comprise all NOEs and contacts, respectively. The edges
of G*? are labelled with NOESY cross-peak intensity class [label Lyog =0
(weak), 1 (medium), 2 (strong)] and the edges of G0 are labelled according

to the three distance classes [label Lgis; =0 (long), 1 (medium), 2 (strong)].
For each matching the relationship Lgiss > Lyor is checked.

NOE outliers: NOEs of a certain intensity class correspond to different
distance values in the 3D structure. These distances are not equally
distributed over the interval of allowed distance values [0, d7¢°], as the upper

distance bound d”¢° should include all NOEs. Only a few NOEs correspond

max

to the higher distances [d? — Ad,d"°] and can thus be considered as
outliers of the distance distribution. The outlier range is defined by Ad. In
order to reflect this feature of the distance distribution associated to NOEs,
NOEnet can apply a NOE outlier filter during the search. For example,
instead of allowing a 7 A threshold for all NOE to distance matchings, all
NOEs matched to the upper range between 6 A and 7 A are considered as
outliers. During the fragment matching, the current assignment is rejected if
the number of NOE outliers is above a chosen threshold Tyog.

Detection of erroneous constraints: erroneous constraints yield
incompatibilities in the constraint framework. If the constraint framework
is dense enough, an incompatibility can leave some strongly constrained
peaks with no assignment possibility. This generates holes in the list of peak
assignment possibilities. The occurrence of a hole along the matching process
indicates that there must be one or more erroneous constraints in the dataset.
Inversely, if every peak has at least one assignment possibility at the end of
the matching process, it is highly improbable to have an error in this result.
Erroneous constraints can be caused by all data sources. Under the correct
peak v*? to residue V"¢ assignment, every NOE constraint efx” = (V;Xp, vty
in G®? must have a corresponding contact e/0 = (viheo ytheoy jp Giheo,
Otherwise assignment errors will occur during the matchings of G? onto
G™e°. Erroneous NOEs can be caused by too small distance thresholds
for building G, artefacts from the NOESY spectra or large differences
between the reference tridimensional structure and the structure of the protein
in solution.

3 MATERIALS

Experimental data for EIN: the structure of the 28 kDa protein EIN has
been determined by X-ray crystallography [PDB 1ZYM (Liao et al., 1996)]
and NMR [PDB 1EZA (Garrett et al., 1997b)]. The RMSD of the heavy
backbone atoms between 1ZYM and 1EZA is equal to 1.55A. A large number
of NMR experiments have been recorded on EIN (Garrett et al., 1997b),
especially a 4D N/’ N-separated NOESY experiment on perdeuterated
EIN with a mixing time of 170ms (Garrett et al., 1997b) and a 3D '>N-
separated NOESY with a mixing time of 100 ms (Garrett et al., 1997b).
The two experiments permitted the extraction of 555 HY —HN NOE-
constraints (PDB 1EZA). Since the X-ray structure is truncated at the
C-terminal end by 10 residues, we removed by hand the NOE-constraints
involving residues 250259, which left 535 out of the 555 HY — HY NOE-
constraints. We assumed that the NOE dataset could have been obtained by
a single 4D NOESY experiment. We thus removed from the NOE dataset
all NOEs that involve an ambiguous [N, 'HN] HSQC peak, defined
by the tolerance distances [foIN,tolH] equal to [0.2 p.p.m., 0.02 p.p.m.].
Removal of ambiguous NOEs reduced the number of NOEs from 535 to 407.
The average number of NOEs per residue is then r=407/250=1.6
for EIN.

NOE constraints were classified in three classes (strong, medium and
weak). Cross-peaks that appear only in the 4D NOESY with a long mixing
time of 170 ms and that have an intensity below 11% of I,,,:(4D) were
classified as weak. All cross-peaks from the 3D NOESY with a mixing time
of 100 ms were classified as strong, if their intensity was >14% of I,,,,x(3D).
All other cross-peaks were classified as medium. The 407 experimental NOEs
are thus divided into 36 strong, 208 medium and 163 weak NOEs.

Calculations: the runtimes indicated in the results section correspond
to the use of a single core of a Intel Xenon Woodcrest CPU at 2.66 GHz
with 1 GB of RAM. While several cores or CPUs allows the user to test
several parameters in parallel, the runtime of a single trial with NOEnet is
not reduced, as NOEnet is not programmed in a parallel manner.
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Figures: the figures of protein structures in this article were prepared with
the program MOLMOL (Koradi et al., 1996).

4 RESULTS

Introduction: the results of using NOEner on the BMRB dataset of
EIN, a large protein of 28 kDa, are shown in Figures 3 and 4, as well
as in Table 1. The assignment precision is given by SAR values.
A SAR value is defined for each HSQC peak as the maximum
LN 1N distance in the ensemble of possible assignments
for the peak (see Section 2). The idea behind our SAR concept
is that studies that do not require an exact positioning in the 3D
structure, as for example, chemical shift perturbation studies for
protein—protein interactions, can also exploit the peaks that are not
uniquely assigned (SAR=0A), but that have a small SAR value.
Typically, the assignment ensemble of a peak, whose SAR value
is lower than 30 A, remains quite well spatially restrained. This
concept is illustrated for three peaks of EIN HSQC in Figure S1.

Optimization of the Tnop parameter: in order to restrict the
assignment possibilities in the best possible way, the parameter
Tnok has to be optimized (see NOE outliers-part in Section 2). We
performed five runs in parallel with different Tyofg values (Table 1).
Large Tyog values allow more assignment possibilities than low
Tnok values. The optimal Tyog value is the smallest possible Tyor
value that does not introduce a high number of assignment errors.
Assignment errors can be detected by the appearance of holes in the
assignment table (Section 2). For the dataset of EIN, holes appear
for Tyog =1, so that Typor =2 has been chosen as the optimal
value. In the absence of holes, a limited number of assignment errors
can still be present. For Typg =2, the correct assignment was not
established for two peaks (a swap of assignment possibilities: residue
207 «>208) without being detected. For Tyog values higher than
two, no correct assignment has been removed, but the assignment
ensemble is less well restricted.

Results for the protein EIN: Figure 3 shows the SAR curves of
the two runs (case 4 and 6 in Table 1) with the optimal NOE outlier
threshold, here Tyor = 2. The first run (case 4 in Table 1, crosses in
Fig. 3) do not use the overlap check, described in Section 2, while
the second run does (case 6 in Table 1, circles in Fig 3). The overlap
check does not increase here the number of unique assignments
(SAR-value =0), but it increases significantly the number of peaks

~
=]

+no overlap check b
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Fig. 3. Quality of the assignment represented by the SAR for all HSQC peaks
of EIN. The peaks are ordered by increasing SARs. The crosses correspond
to case 4 in Table 1. The overlap check (see Section 2) has been deactivated
for this case, so that the runtime remained reasonable (18 h). The results of
case 4 are also represented in Figures 4 and 5. The circles correspond to
case 6 in Table 1. The activated overlap check resulted in a higher number
of peaks with a low SAR value at the expense of a longer runtime (44 h).

having a SAR value below 10 A. The comparison of Figure 4a with
Figure 4b shows that mainly the peaks corresponding to the longest
helix of EIN see their assignment possibilities reduced thanks to
the overlap check. Due to the calculation overhead caused by the
overlap check, the runtime yielding full convergence increased from
18 h without overlap check to 44 h with overlap check.

The size of EIN (28 kDa) is still quite challenging for a complete
search algorithm: the sampling of all possible graph matches of a
NOE network with 407 edges (Fig. 4a) onto the 3D structure with
1034 edges (Fig. 4d) and 243 nodes is not a trivial problem. Even
without the overlap check, full convergence is only obtained after
18 h of calculation time (case 4, Table 1). Despite the sparseness of
the input data, 53% of the peaks have a SAR value below 10 A
(Fig. 4a and Table 1). This is a sufficiently good result for the
use in protein—protein interaction studies, for example, as shown
in Figure 5. In Figure 4c, the two largest NOE network fragments
of EIN are shown. The NOE network fragment of the f-sheets of
EIN constrains the assignment possibilities of the S-sheet backbone
resonances very well (Fig. 4a). The NOE fragments of the «-helices
constrains less than the fragments of the B-sheets the assignment
possibilities of their peaks: the number of unique assignments is
lower, but the SAR values are still small (Fig. 4a). The accuracy for
EIN is below 100% (99.2%), because of two assignment errors:
residues 207 and 208 are interchanged for their corresponding
uniquely assigned peaks. This small assignment error remained
undetected as no hole occurred in the assignment list.

(c) (@)

Fig. 4. Assignment results on EIN. (a, b) The SAR values are mapped on the
NMR structure using the correct assignment and the indicated color code.
Unique assignments are shown in black [NMR structure 1EZA (Garrett ez al.,
1997b)]. (a) Without overlap check (case 4 in Table 1 and crosses in Fig. 3)
(b) With overlap check (case 6 in Table 1 and circles in Fig. 3). Thanks to
the overlap check, the SAR values of the peaks corresponding to the longest
helix of EIN are reduced significantly. The NOE fragment of the longest
helix is disconnected from the two largest fragments shown in (c). (¢) The
two largest disconnected NOE fragments (NMR structure 1EZA is shown).
All assignment possibilities of one fragment are colored by the color of the
fragment. (d) Theoretical contact graph. The 1034 theoretical contacts are
represented on the X-ray structure 1ZYM (Liao et al., 1996) by blue, green
and red lines corresponding to the three distance classes, short (d <4.5A),
medium (d <6A) and long (d < 7.54), respectively. The NOE connectivities
are represented by black lines in (a—c).
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Table 1. Tested Tyog values on EIN using only NOE data

No. TnOE Ad[A] Check overlap Runtime Status Errors % (%) % (%) Accuracy
1 5 1 No 4 days Not finished 5 24 100

2 4 " No 2.5 days Not finished 8 30 100

3 3 " No 6 days Not finished 11 32 100

4* 2 " No 18 h Finished One swap: 207 <208 28 53 99.2

5 1 " No 1h Hole

6 2 " Yes 44 h Finished One swap: 207 <208 28 69 99.2

The optimization of the Tyog parameter (see NOE outliers-part in Section 2) using only NOE data for EIN is shown in this table. The theoretical distance thresholds for the
three NOE classes are here d,’fl'g,‘(’ =(4.5A,6A,7.54), yielding Ny;s, = (391, 320, 323) distances in each class (short, medium, long) using the X-ray structure 1ZYM. The number of
experimental NOEs is here Nyogs = (36, 208, 163) for strong, medium and weak NOEs, respectively. The number of HSQC peaks is here Npeqrs =243. Columns: Typg: maximum
number of permitted NOE outliers for an arbitrary matching. Ad: the theoretical distance range [d/1¢¢ — Ad,d?] in Angstrom for which a NOE is considered as outlier. Check
overlap: indicates whether the overlap between the disconnected fragments is tested during the search. Runtime: the calculation time required for the presented result. Status: ‘hole’
indicates the presence of peaks that have no assignment possibility left in the assignment table; ‘finished’ and ‘not finished’ indicates whether the run converged or not for the given
runtime. Nypigye, number of uniquely assigned peaks. Ngag<104, number of peaks having a SAR-value below 10 A including the uniquely assigned peaks. The optimized Tyog

parameter that has been retained is marked by a asterisk.

Fig. 5. EIN-Hpr interaction site. Only the X-ray structure 1ZYM (Liao et al.,
1996) of EIN is shown here. (a) In red are shown the residues corresponding
to the peaks with a significant chemical shift perturbation (CSP) due to the
interaction EIN-Hpr (Garrett et al., 1997b). This plot require the knowledge
of the correct assignment possibility for each peak. In comparison, the plot
(b) is using the assignment ensemble shown in Figure 4a (case 4 in Table 1,
without overlap check). The assignment possibilities of the same perturbed
peaks as in (a) are plotted in (b). The unique assignments are plotted in black,
while the assignment possibilities of all perturbed peaks with a SAR value
below 30 A are plotted in red.

5 DISCUSSION

Philosophy of NOEnet: the design goal of NOEner was to find all
assignments compatible with the input NMR data and a 3D structure.
We implemented therefore a complete search algorithm specifically
developed and highly optimized for this purpose. NOEnet sets at the
beginning all peak assignments as possible and removes step by step
assignment impossibilities. This approach ensures to obtain always
a fully accurate assignment ensemble at each step of the complete
search. We found that the use of sparse or poorly constraining NMR
data for the structure-based assignment cannot lead to a unique
assignment of all peaks. Fortunately, the ambiguous assignments
can also be exploited. We introduced a quality factor for multiple
assignment possibilities by a SAR value. The peaks that belong to
large NOE networks have in general a low SAR value below 10 A
using NOEnet. Even if the number of uniquely assigned peaks is
quite low in the shown case, the total number of uniquely assigned
and low SAR peaks is the important number for applications
that do not need an exact localization for all peaks. Beside the
reference protein 3D structure, NOEnet requires only one data
source: unambiguous LgN _1HN NOEs. It uses the local and global
structural properties of the entire NOE network in comparison to

the available tridimensional protein structure, to obtain assignment
constraints. The graph matching procedure of NOEnet can handle
efficiently large NOE graphs, as shown on the 28 kDa protein EIN,
requiring only 1 day of calculation time.

Input NMR data: as NOEnet requires unambiguous NOEs, peaks
with degenerated [15 N, LN ] chemical shifts have to be identified in
advance (thanks to pH, salt or temperature variations) and removed
from the set of peaks to assign. The NOE cross-peaks that can be
related to more than two of the remaining HSQC peaks also have
to be excluded. To reduce the number of those ambiguous NOEs,
modern 4D 1SN/ 15N—separated NOESY experiments should be
employed, in general, for NOEnet, although the 3D version could be
sufficient for small proteins. The spectrometer time for the NOESY
experiment can be reduced by the implementation of recent advances
in projection methods, like GFT (Shen et al., 2005), or simply the
choice of asymmetric digital resolutions for the classical 4D NOESY
(Morshauser and Zuiderweg, 1999). As only the amide protons are
needed, partially or completely perdeuterated proteins can be used
for NOEnet. The perdeuteration will lead to an increase in resolution
for large proteins and reduce the effects of spin diffusion, allowing
longer mixing times for the generation of larger fragments inside
the NOE network.

TN _1gN NOESY are much less crowded than 'H—'H
NOESY. Although superpositions certainly becomes a drawback
for large proteins, amide chemical shifts of well-structured proteins
exhibit usually better dispersion than carbonyl or o carbons.
This dispersion is actually used for triple resonance experiments,
since these experiments all use the ( TH 15N plane as a basis
for the assignment procedure. The density of peaks in 3D cubes
extracted from 4D 15N / Y separated NOESY experiments is
actually expected to be comparable with that of a 3D-HNCACB
experiment used for sequential backbone assignment, and prior
sample optimizations performed to minimize ( TN 155 ) overlaps
are thus expected to be similar in both strategies.

Comparison of structure-based and triple resonance sequential
assignment procedures: backbone assignment of proteins is usually
performed using triple resonance experiments. In ideal cases, this
procedure can be automated and yields a unique assignment for
each backbone atom of the protein (see, Baran et al., 2004; Moseley
and Montelione, 1999 for review). However, for many cases, it
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still needs manual intervention and may require several weeks
of analysis, possibly with experimental condition or even protein
optimization. The key differences between the structure-based and
the triple resonance assignment procedures rely on the one hand
on the parameters that determine sensitivity of the experiments
performed and on the other hand on the type of constraints used. The
triple resonance assignment is based on polarization transfer through
bonds (relying on J-couplings), whose efficiency decreases with
increasing transverse relaxation rates R,. Especially, HNCA and
HNCACB, which are key experiments for sequential assignment,
are based on polarization transfer between 5N of residue i and Cg
of residues i and (i—1). The coupling constants between these two
nuclei are relatively weak (7-12 Hz). The balance between the delay
needed to transfer the polarization, governed by the inverse of the
coupling constants, and the NMR signal lifetime, governed by the
transverse relaxation becomes here a critical issue. Increased Ry
can come from larger size, but also from local dynamic processes or
local unfavourable geometry. This can hinder some magnetization
transfer processes, and thus break up the assignment course which
is in this strategy sequential.

Compared with this, our structure-based assignment approach
relies on a network of amide protons spatial proximities, revealed
by NOE data. NOE cross-peak intensities depend on longitudinal
relaxation rate constants R; which are not sensitive to the
same dynamic processes as Rp. Furthermore, in the special
case of NOEnet, only one NOESY experiment is required. This
eliminates the problems of correspondence and adjustments between
experiments that are often critical in the triple resonance strategy.
Finally, if the continuous gain in spectrometer sensitivity will hold,
our method could even be applied using 15N natural abundance
and would allow the analysis of proteins with no heterologous
expression.

As a conclusion, the two approaches use completely orthogonal
data, and the combination of both sources of information should
help to fill assignment gaps, occurring if only one of both sources
is available. Especially the assignment of large or difficult proteins
will clearly benefit from the combination of both approaches.

Assignment ensembles for functional NMR studies: peaks with
low SAR values can be exploited for the localization of dynamical
zones or the localization of interaction interfaces, as shown with
the assignment ensemble obtained on EIN (Fig. 5). Despite the low
percentage of unique assignments (30%) for EIN, the SAR concept
leads to useful results for the localization of the interaction site with
Hpr (Fig. 5). The comparison of the Figure 5a with Figure 5b shows
that it is possible to correctly define the interaction site, even if the
number of unique assignments is quite low among the peaks with
chemical shift perturbation. In order to test the generality of this
result, we first looked if the quality of the assignment ensemble
obtained for EIN allowed the characterization of other potential
interactions sites of the protein. The results obtained show that even
the assignment ensemble obtained without overlap check indeed
allows the localization of almost any interaction site on EIN (see
Supplementary Figs S2-S4).

More generally, a critical parameter for the obtaining of good
results is the fragmentation of the NOE network: larger fragments
have a lower number of possible matches in the 3D structure.
EIN is a good test case as it is composed of two sub-domains
connected by loops, one containing only «-helices and the other one
mainly B-sheets. Instead of a large connected fragment spanning

the whole protein, the resulting NOE network is composed of
two disconnected fragments—one for each sub-domain (Fig. 4c).
Despite this fragmentation of the NOE network, the assignment
ensemble obtained by NOEnet is sufficiently well restrained to
allow the localization of interaction sites. A lower fragmentation
of the NOE network can be expected for more globular and thus
more compact proteins, yielding even better restrained assignment
ensembles than for the case of EIN. We thus think that the result we
obtain with the protein EIN is quite general and that at least equally
good results should be obtained on globular proteins of smaller or
similar size than EIN and with NOE data of comparable quality.

6 CONCLUSION AND PERSPECTIVES

The availability of the tridimensional structures of a large number of
proteins, obtained mainly by X-ray crystallography, can be of help
for the assignment of the I5N-1H NMR spectra. We show here that a
network of 'HY — 1HN NOEsisa highly valuable NMR data source
for the structure-based assignment, up to the point that additional
data sources are not mandatory. The complete search algorithm
implemented in the program NOEnet ensures to always obtain a
high assignment accuracy, even with very sparse input data. The
unambiguous NOE:s alone yield already an important constraint for
structure-based assignment. While our approach does not allow to
reduce the measurement time in comparison to the classical approach
using triple resonance experiments, it uses completely orthogonal
NMR data, based on the NOE and not the J-coupling. Our approach
is not meant to replace the classical triple resonance approach, but
it demonstrates the power of NOE-networks for the structure-based
assignment problem. As J-couplings revealed by triple resonance
experiments are highly complementary to NOEs, the combination
of both data sources will yield an even more robust assignment
approach. NOEnet is a first step towards a highly robust automated
assignment approach, integrating triple resonance data with NOE
data. Further developments of NOEnet will focus on the possibility
to include more diverse data sources. The inclusion of methyl-methyl
NOEs can help for the assignment of large perdeuterated, methyl
protonated proteins. The capability of NOEnet to use homology
models as the reference 3D structure will also be evaluated.

A growing number of NMR studies focus on other aspects than
structure determination, like protein interactions or dynamics. We
show that they will clearly benefit from the introduced facilitation
of the resonance assignment stage, even in cases where it is not
unique.
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