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Virus-induced oxidative stress plays a critical role in the viral life cycle as well as the pathogenesis of viral diseases. In response to
reactive oxygen species (ROS) generation by a virus, a host cell activates an antioxidative defense system for its own protection.
Particularly, a nuclear factor erythroid 2p45-related factor 2 (Nrf2) pathway works in a front-line for cytoprotection and
detoxification. Recently, a series of studies suggested that a group of clinically relevant viruses have the capacity for positive and
negative regulations of the Nrf2 pathway. This virus-induced modulation of the host antioxidative response turned out to be a
crucial determinant for the progression of several viral diseases. In this review, virus-specific examples of positive and negative
modulations of the Nrf2 pathway will be summarized first. Then a number of successful genetic and pharmacological
manipulations of the Nrf2 pathway for suppression of the viral replication and the pathogenesis-associated oxidative damage
will be discussed later. Understanding of the interplay between virus-induced oxidative stress and antioxidative host response
will aid in the discovery of potential antiviral supplements for better management of viral diseases.

1. Virus-Induced Oxidative Stress

Utilization of oxygen as a final electron acceptor in the mito-
chondrial energy metabolism by a cell leads to inevitable
generation of oxygenated byproducts. Due to their high reac-
tivity, they are often referred to as “reactive oxygen species”
(ROS). Typical examples of them include superoxide (O2

−),
hydrogen peroxide (H2O2), hydroxyl radical (OH

−), and sin-
glet oxygen [1]. In general, most of ROS are considered
harmful due to their cell-damaging effects. Therefore, a vari-
ety of cellular defensive measures are designed in place to
control them. In general, oxidative stress is defined as an
imbalance between prooxidant and antioxidant systems.
The surplus amount of oxidative stress results in cellular
damage due to the oxidation of various essential host macro-
molecules. A series of so-called “phase II cytoprotective and
detoxifying enzymes” are in charge of a mission to serve as
a cellular guardian. A different kind of microbial infections
was also shown to be a strong inducer of oxidative stress
[2–5]. Interestingly, this infection-initiated oxidative stress
was demonstrated to play a key role in the activation of
innate immunity to fight off pathogenic microbes [6, 7].

Therefore, proper management of cellular oxidative stress is
an important cellular task not only for the preservation of
its cellular components but also for the maintenance of a
germ-free state in the host cell.

Understanding of the mutual interaction between a host
and a virus is a prerequisite to developing an effective anti-
viral strategy to control viral infection. Due to its limited
genome size, a virus has evolved a unique talent to take a full
advantage of host cellular environments to its favor. This
means that all the requirements necessary for the successful
completion of a viral life cycle are completely satisfied at the
expense of a variety of host metabolic processes. However,
these virus-induced changes on a host cellular metabolism
have to be in a tight control in order to minimize their
potentially detrimental effects on the overall health of the
infected host cell. Interestingly, a number of viruses were
shown to induce oxidative stress on purpose to facilitate
their replication inside the cell [8–14]. This virus-induced
oxidative stress and its proper management by a host cell
might be a perfect example to understand the harmonious
balance between a host and a virus. As previously men-
tioned, several critical antiviral signaling pathways such as
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Toll-like receptor and interferon (IFN) pathways are initiated
by infection-induced oxidative stress [15, 16]. In addition,
defective maintenance of an appropriate redox balance by a
host cell has been shown to contribute to the viral pathogen-
esis, resulting in massive induction of the oxidative stress-
induced cell death [17–19]. Basically, the imbalance between
ROS production and antioxidant defense system is in a direct
link with the disruption of normal cellular physiology [20–
22]. A growing number of papers have described this virus-
induced oxidative stress as one of the major pathogenic
mechanisms for inflammatory response and tissue injury by
a viral infection [23, 24]. Therefore, a better understanding
of the relationship between virus-induced oxidative stress
and antiviral response of a host cell will be a prerequisite
for the development of an effective therapeutic strategy to
combat various viral diseases.

2. Activation of the Nrf2 Pathway as a Defensive
Mechanism against Oxidative Stress

In order to neutralize the deleterious effects of oxidative
stress, mammalian cells established a unique antioxidative
defense system. This system is designed to be turned off
under a normal condition. However, upon encountering oxi-
dative stress, an oxidant-sensitive molecule is activated and
transcriptionally stimulate a series of genes responsible for
cytoprotection and detoxification. Nuclear factor erythroid
2p45-related factor 2 (Nrf2) is a transcription factor, which
has evolved for this purpose. It is one of the best-
characterized antioxidative transcription factors with an oxi-
dants/electrophile-sensor function [25]. This basic leucine
zipper protein consists of six conserved Nrf2-ECH homology
(Neh) domains [26]. Under normal condition, it forms a
complex with Kelch-like ECH-associated protein 1 (KEAP1),
a well-known negative regulator of Nrf2 [27]. Since KEAP1
serves as an adaptor protein for cullin-3-based E3 ubiquitin
ligase, this dimeric Nrf2/KEAP1 complex subjects Nrf2 to
constant ubiquitination and proteasomal degradation [28].
In regard to their oxidant-sensing mechanism, redox-
sensitive twenty-five cysteine residues of KEAP1 were shown
to play a key role in the regulation of the E3 ubiquitin ligase
activity [29]. Basically, these cysteine residues are very
susceptible to conjugation of a variety of ROS-inducing agents.
Once conjugated, the KEAP1-mediated ubiquitination of Nrf2
was severely diminished [30]. This leads to liberation of Nrf2
from the KEAP1-mediated restraint. Once stabilized, Nrf2 is
able to get inside the nucleus and form a complex with one
of small Maf proteins and other coactivators. Then binding
of this trimeric complex to the antioxidant response elements
(AREs) in the promoter regions facilities transcription of a
series of cytoprotective and detoxifying genes. Typical exam-
ples of these Nrf2-target genes include heme oxygenase-1
(HO-1), NAD(P)H quinone oxidoreductase-1 (NQO-1),
glutamate cysteine ligase catalytic and regulatory subunits
(GCLC and GCLM), glutathione S-transferase (GST), uridine
diphosphate glucuronosyltransferase (UDPGT), superoxide
dismutase (SOD), catalase (CAT), glucose 6 phosphate
dehydrogenase (G6PD), and glutathione peroxidase-1 (GPx)
(Figure 1) [31–34].

3. Positive and Negative Regulations of the Nrf2
Pathway by Viruses

A virus needs to express a number of nonstructural and
structural proteins inside a host cell to support the viral
genome replication and assembly of a new virion. Several
viral proteins have been shown to be responsible for the pro-
duction of various ROS [10, 11, 13, 22, 35–40]. This virus-
induced oxidative stress plays a central role not only in the
successful completion of the viral life cycle but also in the
overall viral pathogenesis [20, 35, 41]. However, too much
oxidative stress will be a burden on the host cell. Therefore,
a virus needs to keep oxidative stress in an optimal level,
which should be high enough to support the viral metabolism
and should not be too high enough to kill off a host cell. In a
way to control the ROS level, a virus has evolved to gain the
ability to manipulate the Nrf2 pathway to its favor. Many
studies found examples of positive modulation of the Nrf2
pathway by virus-induced oxidative stress [42–48]. However,
in some cases, a number of viruses were shown to actively
suppress the Nrf2 pathway [20, 43, 49–53]. Here, I would like
to introduce evidence of positive and negative modulations
of the Nrf2 pathway by various clinically relevant viruses
and their implications in the virally induced pathogenesis.
Detailed effects of each virus on the ROS level, redox defense
system, Nrf2, and its target genes are summarized in Table 1.

3.1. Moloney Murine Leukemia Virus ts1. Moloney murine
leukemia virus (MoMuLV) ts1 is a mutant retrovirus used
for the study of a progressive neurodegeneration induced
by a human immunodeficiency virus (HIV) [54, 55]. Accu-
mulation of an incorrectly processed viral envelop glycopro-
tein, pPr80env, the subsequent onset of ER stress, and the
following oxidative stress-induced apoptosis of the infected
microglia and astrocytes have been attributed to this virally
induced neurodegeneration [56]. However, a selected popula-
tion of infected astrocytes was able to survive the cytopathic
effects of a viral infection [57]. Particularly, upregulation of
the antioxidant defense system via activation of the Nrf2
pathway was suggested as a major mechanism for survival
of the infected astrocytes [58]. In this report, a significant
increase in the levels of Nrf2 and its transcriptional target
genes including cell surface cysteine-glutamate antiporter
(xCT), glutamate cysteine ligase catalytic and regulatory sub-
units (GCLC and GCLM), and glutathione peroxidase (GPx)
was observed in these cells. In addition, they were shown to
harbor the enhanced amounts of redox defense-related pro-
teins such as gamma-glutamyl transpeptidase (γ-GT) and
catalase [58]. Overall, they were able to maintain much
higher levels of intracellular glutathione (GSH) and cysteine
relative to those uninfected [58]. Based on these observations,
authors concluded that successful immobilization of the thiol
redox defense system via a positive modulation of the Nrf2
pathway contributed to the survival of the infected astrocytes
despite the cytotoxic effects of MoMuLV ts1 [58].

3.2. Human Immunodeficiency Virus Type 1. Human immu-
nodeficiency virus type 1 (HIV-1) plays an etiological role in
the development of acquired immunodeficiency syndrome
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(AIDS). Besides its immune-compromising effects, HIV-1
infection is also linked with the development of neurocogni-
tive disorders [59, 60]. Particularly, a viral gp120 protein was
suggested to play a causative role in the HIV-1-associated
neurodegeneration through induction of oxidative stress
[8]. In response to this virus-induced oxidative stress, the
Nrf2 pathway was found to be activated, leading to the
expression of a series of the Nrf2-dependent antioxidant
response genes includingHO-1 andNQO-1 [8]. Pretreatment
with both antioxidants and a calcium chelator antagonized
this gp120-induced Nrf2 activation, further implicating the
active involvement of oxidative stress and calcium signaling
in mounting an antioxidative defense measure [8]. Based
on these observations, the Nrf2 pathway was suggested to
play a protective role in promoting survival of the HIV-
infected astrocytes [8].

In addition to the gp120, one of three regulatory viral
genes, a Tat protein also has been shown to be responsible
for induction of oxidative stress upon HIV-1 infection [61–
64]. In regard to one of the potential mechanisms for the
Tat-induced oxidative stress, a direct involvement of the N-
methyl-D-aspartate (NMDA) receptor and spermine oxidase
(SMO) was proposed [65]. In this report, stimulation of the
NMDA receptor by Tat and the subsequently accelerated
catalysis of spermine into spermidine by SMO were sug-
gested as the main mechanism for an increased production
of H2O2 [65]. This, in turn, stabilized Nrf2 and transactivated
the Nrf2 target genes such as NQO-1, CAT, SOD1, and HO-1
[65]. These series of cytoprotective protein and enzymes

ultimately prevented the HIV-1 Tat-induced cell death [65].
Based on these findings, the Nrf2 pathway was proposed as
an important determinant for protection against HIV-1-
induced neurodegeneration [65].

The pulmonary complication is one of the leading causes
of death by HIV patients [66]. In particular, HIV-1 transgene
expression was shown to significantly impair alveolar macro-
phage phagocytic capacity in the HIV-1 transgenic rats [67].
In relation to this observation, HIV-1 gp120 and Tat were
identified as causative agents for oxidative stress and gluta-
thione depletion by HIV-1 infection [38]. However, contrary
to previous reports, Nrf2 expression was decreased in alveo-
lar epithelial cells from HIV-1 transgenic rats compared with
their wild-type counterparts [68]. This diminished expres-
sion of Nrf2 further increased epithelial barrier permeability
and decreased transepithelial electrical resistance in HIV-1
transgenic rats [51]. Suppression of the Nrf2 pathway was
also detected in human monocyte-derived macrophages
either infected with HIV-1 or exposed to HIV-related pro-
teins [53]. In line with this observation, accelerated aging
by HIV-1 infection was noticed in the HIV-1 transgenic rats
[50]. In these HIV-1 transgenic rats, a significant reduction
in the protein levels of Nrf2 and HO-1 was also confirmed
[50]. This further implicates the redox imbalance induced
by expression of HIV-1 transgenes as a causative for the pro-
motion of senescence in the transgenic rats [50]. Based on
these findings, the use of Nrf2 activators was suggested as a
promising approach to enhance lung innate immunity in
HIV patients [53].

Virus infection and replication

Production of ROS
ROS-induced cell injury

Infected cell death

Cys-S-ROS

Nuclear
translocation

Nrf2 KEAP1

CUL3

Coactivators

Maf Nrf2

Nrf2 target genes

HO-1, NQO-1, GCL, GST,
GPx, SOD, CAT, G6PD

Protection of host cell
Amelioration of cell injury

Activation of innate immunity

Suppression of virus
by Nrf2 modulators

Activation of
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Figure 1: Induction of oxidative stress by a virus infection and genome replication. Subsequent activation of the Nrf2 pathway and
amelioration of oxidative stress-induced cellular injury. Abbreviations used within the figure are as follows. Nrf2: nuclear factor erythroid
2-related factor 2; KEAP1: Kelch-like ECH-associated protein 1; CUL3: cullin-3; AREs: antioxidant response elements; HO-1: heme
oxygenase-1; NQO-1: NAD(P)H quinone oxidoreductase-1; GCL: glutamate cysteine ligase; GST: glutathione; GPx: glutathione
peroxidase; SOD: superoxide dismutase; CAT: catalase; G6PD: glucose 6 phosphate dehydrogenase.
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Transcriptional regulation of HIV-1 genes is controlled
by a distinct viral enhancer and promoter called “long termi-
nal repeats” (LTRs). A variety of host and viral transcrip-
tional factors bind this region in a concerted manner to
ensure a fine-tuning of viral gene expression. Particularly,
Tat was shown to play an essential role in a positive regula-
tion of the LTR-dependent transcription of viral genes [61].
Together with gp120, Tat is one of two main players respon-
sible for the production of increased levels of ROS and subse-
quent activation of the Nrf2 pathway in the HIV-1-infected
cells. Activation of the Nrf2 pathway by Tat was further man-
ifested by enhanced transcription of the downstream Nrf2
target genes such as NQO1, HO-1, and aldo-ketoreductase
1C1 (AKR1C1) [63]. Interestingly, the Nrf2 pathway turned
out to play a critical role in the inhibition of the LTR-
dependent transcription of viral genes [63]. These findings
suggested a pharmacological modulation of the Nrf2 path-
way as a plausible antiviral strategy for the abrogation of
the LTR-dependent transcription by HIV [63].

3.3. Hepatitis C Virus (HCV). HCV infection is responsible
for the development of chronic hepatitis [69]. Several HCV
proteins, including core, NS3, and NS5A, have been ascribed
to induction of oxidative stress in human hepatoma cells [36,
37, 70, 71]. Hepatocellular damage from HCV has been
linked to HCV-induced oxidative stress. [35]. On the other
hand, production of ROS by HCV infection was shown to
induce phosphorylation and nuclear translocation of Nrf2,
thereby transactivating its target genes such as NQO1,
HO-1, and γGCSH [48]. Particularly, cellular kinases includ-
ing JNK, ERK1/2, p38 mitogen-activated protein kinases
(MAPKs), phosphatidylinositol 3-kinase/Akt (PI3K-Akt),
protein kinase C (PKC), and casein kinase 2 have been impli-
cated in phosphorylation and activation of Nrf2 [72–75].
Based on these findings, the activation of the Nrf2 pathway
was proposed to be one of the potential mechanisms for the
survival of HCV-infected cells [48].

Chronic hepatitis C was shown to be in a frequent associ-
ation with steatosis, accumulation of lipid droplet [76]. In
order to study the HCV-induced steatosis, Sugiyama et al.
successfully established a persistently infected hepatoma cell
line and maintained it for more than a year [77]. As expected,
a remarkable accumulation of lipid droplets was detected in
this cell line [77]. Integrated analysis of metabolomics and
expression arrays revealed a constitutive upregulation of the
Nrf2 pathway-associated genes including NQO1, GCLC,
Maf, glucose 6 phosphate dehydrogenase (G6PD),methylene-
tetrahydrofolatedehydrogenase2 (MTHFD2), andasparagine
synthetase (ASNS) [77]. In particular, Nrf2 phosphorylation
was also found to be increased in the nuclear extract of these
cells [77]. Knockdown of Nrf2 significantly suppressed
steatosis and HCV infection [77]. These findings imply a
negative modulation of the Nrf2 pathway as a promising
strategy to dampen the HCV-induced steatosis.

Nrf2-dependent metabolic reprogramming and its pos-
itive implication in the HCV disease progression were
examined by Saito et al. [78]. In this study, a phosphomi-
metic version of p62, which is a negative modulator of
KEAP1, was designed and expressed [78]. Interestingly,

this phosphomimetic p62 was found to activate the Nrf2
pathway [78]. This, in turn, facilitated the malignant pro-
gression of hepatocellular carcinoma (HCC) by HCV
[78]. Downstream Nrf2 target genes such as phosphogluco-
nate dehydrogenase (PGD), GCLC, NQO1, and UDP-
glucose dehydrogenase (UGDH) were all found to be
upregulated at the transcriptional level by the phosphomi-
metic p62 [78]. Consequently, this p62-dependent Nrf2
activation gave rise to a robust GSH production, resulting
in tolerance to anticancer drugs and enhanced proliferative
capacity in infected hepatoma cells [78]. Based on these
findings, a specific inhibitor for KEAP1 and phospho-p62
interaction, K67, was identified by a high-throughput
screening [78]. This Nrf2 inhibitor was able to suppress
tumor growth and tolerance to anticancer agents, further
confirming the molecular targeting of p62 as a potential
chemotherapeutic strategy to combat HCC by HCV [78].

As previously noted, HCV associated with oxidative
stress leads to the activation of the Nrf2 pathway [72–75].
In contrast to this, Carvajal-Yepes et al. discovered a unique
mechanism for active downregulation of the Nrf2 pathway
by an HCV infection [49]. According to their study, the viral
proteins such as core and NS3 were able to induce mislocali-
zation of small Maf, which is a partner transcription factor
for Nrf2, resulting in inhibition of Nrf2-dependent expres-
sion of target genes such as NQO1, GCLC, and GPx [49].
Overall proteasomal activity was also downregulated in the
infected cells [49]. Therefore, depending on the cellular con-
texts and levels of oxidative stress, HCV infection seems to
exert a differential influence on the Nrf2 pathway [49].

3.4. Influenza Virus. Influenza viruses have been demon-
strated to be a causative agent for oxidative stress and respira-
tory inflammation by a number of studies [41, 79–82]. In line
with these observations, an influenza virus was shown to
induce apoptosis and cytotoxicity in alveolar epithelial cells,
as manifested by an increased expression of caspase 1, caspase
3, and a proinflammatory cytokine, IL-8 [44]. Therefore,
attenuation of oxidative stress and inflammation by a phar-
macological measure may be beneficial for lessening an influ-
enza virus-induced lung injury and exacerbation of existing
respiratory diseases. Interestingly, this influenza virus-
induced oxidative stress, in turn, was able to activate the
Nrf2 pathway through the facilitation of the nuclear translo-
cation of Nrf2 and subsequent expression of the Nrf2 target
genes like HO-1 in the human alveolar epithelial cells [44].
Consequently, induction of the Nrf2 downstream genes was
able to protect the infected cells against virus-induced cellular
injury [44]. Similar lung injury induced by lipopolysaccharide
(LPS) was also shown to be alleviated by activation of theNrf2
pathway [83]. However, in contrast to this observation, a pro-
teomic analysis performed by Simon et al. found a negative
impact of the influenza virus infection on the Nrf2 pathway
[84]. In this report, virus-infected human bronchial adeno-
carcinoma cells were found to have a lower amount of a phos-
phorylated form of Nrf2 in their nuclei [84]. Similar to HCV
infection, this cellular context-dependent differential modu-
lation of virus-induced antioxidative responses seems to be
another recurring theme in the case of the influenza virus.
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3.5. Respiratory Syncytial Virus. Respiratory syncytial virus
(RSV) is responsible for viral upper and lower respiratory
tract infections in infants and young children [85]. RSV
infection is associated with the development of severe lower
respiratory illness associated with bronchiolitis and respira-
tory failure [85]. RSV infection of airway epithelial cells was
shown to induce ROS production, which is involved in tran-
scription factor activation and chemokine gene expression
for inflammation and innate immune defense [86, 87]. In line
with these results, RSV infection was reported to induce a sig-
nificant increase in lipid peroxidation products as well as a
significant decrease in the GSH/GSSG ratio in human alveo-
lar type II-like epithelial cells and small airway epithelial cells
[20]. However, in spite of virus-induced oxidative stress, RSV
infection was able to abrogate activation of the Nrf2 pathway,
resulting in a reduction in the expression levels of Nrf2 target
genes including HO-1, SOD1, SOD3, GST, CAT, and GPx
[20]. Consequently, the virus-induced cellular oxidative
damage was further accelerated [20, 88]. Although another
group of researchers reported activation of the Nrf2 pathway
by RSV infection, as verified by the nuclear translocation of
Nrf2 and the increased expression of Nrf2 target genes such
as GCLC, UGT1, NQO1, HO-1, GST, and GPx in the normal
mice, this Nrf2 activation was very transient and disappeared
only one day after RSV infection [19]. In addition, lack of
Nrf2-dependent antioxidant expression in mice genetically
deficient in Nrf2 was also shown to exacerbate lung inflam-
mation and injury [19]. In line with this, analysis of bron-
choalveolar lavage proteins retrieved from RSV-infected
mice revealed a global reduction in expression of antioxi-
dant enzymes including SOD1, SOD3, CAT, GST, and
GPx through inactivation of the Nrf2 pathway [20, 89].
Collectively, RSV seems to be gifted with a special power
for active downregulation of the Nrf2 pathway to facilitate
its pathogenesis.

In regard to potential mechanisms for inactivation of the
Nrf2 pathway by RSV, dysregulation of posttranslational
modification of Nrf2 was suggested [90]. Basically, RSV-
induced deacetylation, SUMOylation, and the following pro-
teasomal degradation of Nrf2 were shown to be responsible
for downregulation of transcription of Nrf2-dependent genes
such as NQO1, CAT, and SOD1 [90]. In particular, a SUMO-
specific E3 ubiquitin ligase, RING finger protein 4 (RNF4),
was shown to play a central role in the process of RSV-
induced Nrf2 degradation [43]. In support of this mecha-
nism, treatment of the histone deacetylase (HDAC) inhibi-
tor, trichostatin A (TSA), significantly facilitated acetylation
and degradation of Nrf2 [90]. In addition, RSV infection gave
rise to a significant reduction in binding of the transacetylase,
CBP, to the ARE site of the SOD1 gene promoter [90]. Based
on these findings, a pharmacological recuperation of the Nrf2
pathway by an Nrf2 activator could be employed to produce
ameliorating effects on the RSV-induced pathogenesis.

3.6. Hepatitis B Virus (HBV). HBV is regarded as one of
the major etiological factors in the development of HCC
[91]. Accumulating evidence has suggested a constitutive
activation of the Nrf2 pathway in various human cancers
[92–96]. In many tumors, increased expression of Nrf2

target genes was considered beneficial for tumor cells’ escape
from chemotherapy-induced cytotoxicity through upregula-
tion of antioxidative response [97, 98]. Chronic inflamma-
tion and concomitant cellular stress due to permanent
overproduction of ROS-inducing viral proteins have been
associated with the development of HCC by HBV [15, 16].
HBV infection was reported to induce a strong activation of
the Nrf2 pathway [99]. More specifically, HBV protein X
(HBx) and large HBV surface protein (LHB) were shown to
be responsible for activation of the Nrf2 target genes such
as NQO1, GPx, and GCL [99]. This HBV-dependent induc-
tion of the Nrf2-regulated genes seems to protect infected
cells from oxidative damage [99]. In regard to a potential
mechanism for HBx-induced activation of the Nrf2 pathway,
ATM kinase, which is a well-known DNA damage sensor,
was implicated in this process [100]. In this report, HBx-
induced ROS generation increased a phosphorylated form
of ATM, resulting in facilitating the Nrf2-dependent tran-
scription of HO-1, NQO1, and G6PD genes [46, 100]. In this
report, HBx was able to augment the interaction between
KEAP1 and p62. Since p62 is a negative regulator of KEAP1,
increased association of KEAP1 with p62 by HBx liberates
Nrf2 from the KEAP1-Nrf2 complex, leading to the activa-
tion of the Nrf2 pathway. Consequently, transcription of
Nrf2 target genes including G6PD, NQO1, GST, and Cyp2a5
was increased [46]. Upregulation of another Nrf2 target gene,
the insulin receptor, by HBV infection was also described
[101]. However, in contrast to a robust induction of Nrf2
by HBV infection, infection by HBV genotype G was shown
to inhibit activation of the Nrf2 pathway due to intracellular
accumulation of subviral HBsAg particles [52]. Levels of the
Nrf2 target genes such as NQO1, AP1, and GPx were also sig-
nificantly decreased in these HBV/G replicating cells [52]. In
addition to the influenza virus and RSV, differential modula-
tion of the Nrf2 pathway based on cellular contexts also
seems to be applicable in the case of the HBV infection.

3.7. Herpes Virus. ROS production and its associated oxida-
tive tissue damage have been shown to play a causative role
in herpes simplex virus- (HSV-) 1-induced neuropathology
[102–104]. Subsequent antioxidant gene induction was also
observed during experimental herpes encephalitis [105]. Par-
ticularly, upregulation of the Nrf2 target genes such as HO-1
and GPx was confirmed in the herpes disease model [105]. In
this report, astrocytes were shown to mediate antioxidative
stress response upon HSV-1 infection [105]. Another type
of herpes virus, human cytomegalovirus (HCMV), also dem-
onstrated activation of the Nrf2 pathway for neutralization of
the cytotoxic effects of ROS [106]. In this report, HCMV-
infected cells have increased levels of Nrf2-dependent antiox-
idant and detoxifying enzymes such as SOD, GPx, GCLC,
HO-1, and NQO1 [106]. This led to an increase in the gluta-
thione levels in the virus-infected cells [106]. Lee et al. also
reported a similar result, which described the protection of
host cells from oxidative stress via upregulation of Nrf2
expression by HCMV infection [42]. In this study, expression
of the Nrf2 target genes such as HO-1 and GCLC was
induced by virus immediate early (IE) proteins irrespective
of ROS [42]. This suggests existence of a ROS-independent

9Oxidative Medicine and Cellular Longevity



mechanism for activation of the Nrf2 pathway in the case
of HCMV infection. Specifically, CK2 kinase was shown to
be involved in this HCMV-mediated activation of Nrf2
[42]. Another type of herpes virus, a Kaposi’s sarcoma-
associated herpesvirus (KSHV), plays an etiological role in
the development of Kaposi’s sarcoma and primary effusion
B-cell lymphoma [107, 108]. KSHV has been implicated in
the Nrf2 induction upon infection of endothelial cells [45].
In this report, de novo KSHV infection of human dermal
microvascular endothelial cells activated the Nrf2 pathway
through the ROS-mediated dissociation of KEAP1 from the
Nrf2-KEAP1 complex and subsequent Nrf2 phosphorylation
and nuclear translocation [45]. This led to an increased
expression of the Nrf2 target genes such as NQO1 and
HO-1 [45]. In particular, activated Nrf2 was found to be
colocalized with the KSHV genome as well as with the
latency protein LANA-1, further suggesting a potential role
of Nrf2 in the direct regulation of transcription and replica-
tion of KSHV genomes [45].

3.8. Dengue Virus. Dengue virus (DENV) is an arthropod-
borne tropical virus responsible for the development of den-
gue fever and related diseases [109, 110]. Study of DENV
infection suggests the presence of an important interplay
between the generation of oxidative stress and the immuno-
pathology of DENV disease. Preferential activation of the
Nrf2 pathway by a DENV infection in primary human
monocyte-derived dendritic cells was reported by using a
genome-wide transcriptome analysis [39]. In this report,
the cellular oxidative stress response is required for the
DENV-induced innate immune responses [39]. In particular,
accumulation of intracellular NOX-derived ROS in infected
cells was required for potentiation of the immune response
[39]. The Nrf2 target genes, which are stimulated by a DENV
infection, include HO-1, NQO1, SOD2, GCLM, and GCLC
[39]. Another example of the activation of the Nrf2 pathway
by DENV in mononuclear phagocytes was also described
[47]. In this study, DENV NS2B3 protein was shown to be
involved in ER stress induction and activation of the Nrf2
pathway. The NS2B3-induced activation of the Nrf2 pathway
resulted in upregulation of c-type lectin domain family 5,
member A (CLEC5A) and ultimately production of tumor
necrosis factor- (TNF-) α [47].

3.9. Marburg Virus. Marburg virus (MARV) is a causative
agent for lethal hemorrhagic fever in humans [111]. Two
separate research groups demonstrated activation of the
Nrf2 pathway by MARV infection through inhibitory effects
of the viral protein VP24 on KEAP1 [112, 113]. In their
studies, the VP24 binding site was found to be located
within the Kelch domain of KEAP1, which happened to
overlap with the Nrf2-binding site [112, 113]. Therefore,
expression of VP24 induced Nrf2 activation and transcrip-
tion of the Nrf2-dependent genes such as HO-1, NQO1,
and GCLM [112, 113]. Interestingly, VP24 dimerization
was shown to play a role in the regulation of VP24-
KEAP1 interaction since the loss of VP24 dimerization
resulted in increased KEAP1 binding and VP24-dependent
ARE promoter activity [114]. Therefore, pharmacological

inhibition of the Nrf2 pathway may be useful for dampening
the MARV-associated pathogenesis.

3.10. Spring Viremia of Carp Virus (SVCV). Spring viremia of
carp virus (SVCV) is the etiological agent of spring viremia of
carp [115]. SVCV infection was able to upregulate the cellu-
lar total antioxidant capacity and Nrf2 expression, leading to
an increase in the expression of the Nrf2 target genes such as
HO-1 and SOD1 [116, 117]. Elevated production of ROS
upon SVCV infection seems to be responsible for activation
of the Nrf2 pathway [116, 117].

3.11. West Nile Virus.West Nile virus (WNV) infection plays
an etiological role in the development of neuroinvasive dis-
ease such as a mosquito-borne encephalitis [118–120].
WNV infection was also shown to activate the Nrf2 pathway,
as evidenced by a significant increase in antioxidant gene
expressions such as GCLC, SOD, and GPx [121]. In this
report, increased GSH levels via activation of the Nrf2 path-
way inhibited arsenite-induced stress granule formation in
WNV-infected BHK cells. Based on these observations,
authors suggest that WNV-induced activation of the Nrf2
pathway protects infected cells against mitochondrial dam-
age induced by arsenite-induced ROS [121].

3.12. Red-Spotted Grouper Nervous Necrosis Virus. Red-spot-
ted grouper nervous necrosis virus (RGNNV), a pathogenic
fish virus, induced oxidative stress, apoptosis, and postapop-
totic necrosis in a grouper liver cell line [122]. RGNNV infec-
tion was shown to be capable of ROS production and
subsequent upregulation of antioxidant enzymes such as
Cu/Zn SOD and catalase in GF-1 cells [122].

4. Therapeutic Modulation of a Viral
Pathogenesis via an Nrf2-Dependent
Antioxidative Pathway

Some viruses induce oxidative stress on purpose for a success-
ful completion of a virus life cycle. However, uncontrolled
virus-induced oxidative stress exacerbates the condition of
the infected cells. Therefore, upregulation of the cytoprotec-
tive and detoxifying protein seems to be beneficial not only
for disruption of the ROS-dependent steps of the viral life
cycle but also for the amelioration of the exacerbated condi-
tions of the infected host cells. In this regard, numerous phar-
macological agents were shown to activate the Nrf2 pathway
and lessen the burden of virus-induced oxidative stress [10,
11, 14, 22, 35–38, 40, 123]. In addition, a number of Nrf2
overexpression and knockdown studies also demonstrated
the direct involvement of the Nrf2 pathway in the pathogen-
esis of some viruses [124–127]. Here, I would like to intro-
duce studies describing the effects of Nrf2 modulators and
genetic manipulation of Nrf2 on virus replication and virally
induced pathogenesis. Detailed effects of pharmacological
and genetic alterations of the Nrf2 pathway on Nrf2 protein,
Nrf2 target genes, ROS level, viral pathogenesis, and virus
replication are summarized in Table 2.

4.1. MoMuLV ts1. α-Luminol (monosodium 5-amino-2-3-
dihydro-1-4-phthalazine dione) is an anti-inflammatory
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drug extensively studied by Russian scientists [128]. Jiang
et al. demonstrated that treatment with α-luminol was able
to suppress oxidative stress induced by MoMuLV ts1 infec-
tion [40]. In addition, α-luminol abrogated upregulation of
Nrf2 in MoMuLV ts1-infected astrocytes, resulting in resto-
ration of increased GPx and cell surface cysteine-glutamate
antiporter (xCT) to a normal level [40]. This led to the reduc-
tion of H2O2 and recuperation of cellular DNA synthesis and
the GSH level [40]. In in vivo animal study, α-luminol was
able to suppress the neurodegeneration in MoMuLV ts1-
infected mice [40]. Particularly, early α-luminol treatment
even blocked ts1 replication and expression of the gPr80env
protein in the CNS of MoMuLV ts1-infected mice [40].
Based on these observations, they concluded that α-luminol
suppresses virus replication and virus-induced cytopathology
in the CNS by reducing oxidant stress [40]. In line with these
evidence, Scofield et al. also reported a positive role of α-
luminol in the preservation of epithelial cell cytoarchitecture
and promotion of thymocyte survival in MoMuLV ts1-
infected mice [129]. In particular, gPr80env accumulation
was completely prevented in mice treated with α-luminol
[129]. Similar protective effects of α-luminol were also
observed in the intestines of MoMuLV ts1-infected mice
[130]. Treatment of α-luminol was able to preserve crypt-
villus epithelial organization and allows survival of intestinal
T cells in theMoMuLV ts1-infected mice [130]. Interestingly,
intestinal epithelial cells were found to contain higher levels
of the Nrf2 protein after α-luminol treatment [130]. Suppres-
sion of ROS by treatment of α-luminol seems to be beneficial
in retarding the pathogenesis of MoMuLV ts1 infection
through Nrf2-dependent neutralization of virus-induced oxi-
dative stress [130]. On the other hand, Kuang et al. also dem-
onstrated a similar neuroprotective effect of minocycline
through direct radical scavenging and upregulation of Nrf2-
mediated antioxidant defenses [131]. In this report,
decreased Nrf2 levels by MoMuLV ts1 were enhanced by
treatment of minocycline [131]. However, in spite of treat-
ment of minocycline, a viral titer remained unaltered, sug-
gesting that a virus replication is not the primary target of
minocycline [131].

4.2. HIV. Epigallocatechin-3-O-gallate (EGCG), the predom-
inant catechin from tea, is known to exert a variety of biolog-
ical activities [132–135]. In particular, antiviral activities of
EGCG were shown in the context of HIV-1 infection [136,
137]. In regard to possible antiviral mechanisms by EGCG,
Zhang et al. reported modulation of Tat-induced LTR trans-
activation by EGCG [64]. In this paper, EGCG was able to
induce a significant improvement on the cellular alterations
associated with Tat-induced oxidative stress. These beneficial
effects of EGCG seem to be mediated by increasing nuclear
levels of Nrf2 and decreasing levels of NF-κB [64]. Based on
these results, the Nrf2 signaling pathway was suggested as
the primary target for prevention of Tat-induced HIV-1
transactivation. A similar antagonizing effect of another nat-
ural compound, called tanshinone II A, on Tat-induced HIV-
1 transactivation was also reported [62]. Tanshinone II A is a
lipid-soluble monomer derivative of phenanthrenequinone
extracted from the root of Salvia miltiorrhiza (Danshen)

[138, 139]. In this study, tanshinone II A was shown to
reverse Tat-induced ROS production and downregulation
of GSH levels through upregulation of Nrf2 expression
[62]. In particular, this inhibition of Tat-induced HIV-1
LTR transactivation by tanshinone II A was dependent on
the AMP-activated protein kinase- (AMPK-) nicotinamide
phosphoribosyltransferase (Nampt) pathway [62]. Based on
this observation, the authors proposed the AMPK/Nampt/
SIRT1 pathway as a promising anti-HIV target [62].

As previously noted, HIV-1 transgene expression in rats
significantly dampens alveolar macrophage phagocytic
capacity [67]. In particular, HIV-1-related viral proteins such
as gp120 and Tat seem to be directly involved in this oxida-
tive stress-cytotoxicity through glutathione depletion in tar-
get cells [38]. Fan et al. demonstrated downregulation of
Nrf2 expression via RNA interference inhibited Nrf2-
dependent antioxidant gene expressions such as GSSG,
GCLC, GST, glutathione reductase (GSR), and NQO1. These
changes induced by lack of Nrf2 were eventually translated
into decreased intracellular glutathione levels, increased epi-
thelial barrier permeability, and decreased transepithelial
electrical resistance (TER) in alveolar epithelial cells of HIV
transgenic rats [51]. In particular, alteration of tight junction
protein expression and localization was worsened by the
interference of Nrf2 expression [51]. In contrast, Nrf2 over-
expression improved epithelial barrier function as well as
tight junction expression and localization in alveolar epithe-
lial cells of HIV transgenic rats [51]. These data suggest the
importance of the integrity of the Nrf2 pathway in protecting
cells against oxidative stress induced by HIV-1 infection.

Sulforaphane (SFN) is an isothiocyanate abundant in
cruciferous vegetables. It is famous for its cytoprotective
effects shown by numerous in vivo and in vitro studies
[140, 141]. SFN has been found to be a powerful activator
of the Nrf2 pathway [142–144]. SFN increased Nrf2-
regulated cellular antioxidant response such as induction of
NQO1 and glutathione and protected alveolar epithelial cells
against HIV-1-induced barrier dysfunction [51]. SFN was
also shown to inhibit HIV infection of macrophage [145].
In this study, SFN suppressed HIV infection through block-
age of HIV envelope-mediated viral entry [145]. In addition,
SFN was able to restore the decreased phagocytic function of
the HIV-infected alveolar macrophages by stimulating Nrf2-
dependent antioxidative functions such as expression of
NQO1 and GCLC [53]. Cross et al. also showed another
Nrf2 activator, dimethyl fumarate (DMF), was able to sup-
press HIV replication and macrophage-mediated neurotox-
icity [146]. In this report, DMF treatment was able to
upregulate transcription of Nrf2 target genes such as HO-1,
GPx, and NQO1. It was also able to inhibit HIV replication
and HIV-mediated neurotoxicity in human monocyte-
derived macrophages [146]. Particularly, induction of HO-1
by DMF was demonstrated to reduce neurotoxin production
from human monocyte-derived macrophages [146].

4.3. HCV. HO-1 is one of the best-characterized Nrf2 target
genes, readily inducible in response to a variety of oxidative
stress and cytotoxic insult. HO-1 catalyzes the oxidation of
heme to biliverdin (BV), carbon monoxide, and iron [147].
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Zhu et al. demonstrated that a genetic or pharmacologic
induction of HO-1 led to inhibition of HCV replication
through blockage of a viral NS3/4A protease [148]. BV, an
end product of heme oxidation by HO-1, was also shown to
possess an anti-HCV activity [149]. Since free BV is rapidly
reduced to bilirubin by the enzyme biliverdin reductase
(BVR) in the hepatocyte, the antiviral activity of BV was sig-
nificantly enhanced by BVR knockdown [148]. In addition to
this mechanism, BV was also shown to interfere with HCV
replication by activation of antiviral IFN response including
increased expression of oligoadenylate synthetase (OAS),
protein kinase R (PKR), interferon- (IFN-) α, and heme-
regulated eIF2alpha kinase (HRI) [149]. Lucidone, a natural
compound, isolated from the fruits of Lindera erythrocarpa
Makino, was also found to suppress HCV replication by
Nrf2-mediated HO-1 induction [150]. In this report, luci-
done augmented antiviral IFN response by upregulation of
OAS1, 2, and 3 and PKR. It suppressed HCV NS3/4A prote-
ase activity through biliverdin production as well [150].
Andrographolide, the most abundant diterpene lactone in
the leaves and stems of A. paniculata [151, 152], was demon-
strated to work against HCV replication through upregula-
tion of HO-1 via the Nrf2 pathway [153]. In this study,
andrographolide enhanced the production of biliverdin,
resulting in activation of antiviral IFN response and suppres-
sion of HCV NS3/4A protease activity [153]. Particularly,
p38 MAPK was shown to be involved in this Nrf2-
mediated HO-1 increase by andrographolide [153]. In an
attempt to stimulate HO-1 activity, cholesterol-lowering
drugs, statins, were used to induce expression of the HO-1
in a variety of cells [154–156]. Among them, fluvastatin was
shown to inhibit HCV replication by induction of HO-1
[157]. On the other hand, Yu et al. showed suppression of
HCV replication by SFN through upregulation of HO-1
expression. In this study, SFN was able to stimulate BV pro-
duction to activate antiviral IFN response and suppress HCV
protease activity [158]. In regard to a more detailed mecha-
nism, SFN was found to stimulate PI3K phosphorylation,
which contributed to Nrf2/HO-1-mediated inhibition of
HCV replication [158]. Celastrol, a quinone methide triter-
pene isolated from Tripterygium wilfordii [159–161], was
also shown to inhibit HCV replication by upregulating HO-
1 via the Nrf2 pathway in human hepatoma cells [162].

Although previous data all pointed out inhibitory effects
of Nrf2-activating pharmacological agents on HCV replica-
tion through different mechanisms, following two studies
demonstrated differential effects of the Nrf2 pathway on
HCV replication. Sugiyama et al. showed knockdown of
Nrf2 neutralized the increasing effect of chronic HCV infec-
tion on levels of lipid droplets, resulting in inhibition of HCV
replication [77]. Saito et al. demonstrated that K67, a previ-
ously introduced Nrf2 inhibitor, was able to reduce the
expression of Nrf2 target genes such as NQO1, GCLC, and
UGDH. However, this drug failed to produce any direct
effects on HCV replication [78].

4.4. Influenza Virus. Kesic et al. showed suppression of Nrf2
gene expression enhanced influenza virus replication; mean-
while, pharmacological induction of Nrf2 via supplementation

such as SFN and EGCG suppressed viral replication [163].
This data indicates a causal relationship between the
EGCG-induced activation of Nrf2 and the ability to protect
against viral replication [163]. In regard to the antiviral
mechanism of action, a viral entry seems to be the plausible
step, which is negatively targeted by activation of the Nrf2
pathway [163]. In addition, antioxidant supplementation
with EGCG significantly increased the mRNA expression
levels of the innate immunity-related genes such as IFN-β,
RIG-I, and MxA [163]. Nrf2 knockout mice displayed ele-
vated oxidative stress and inflammatory gene expression by
an influenza virus infection, further emphasizing the impor-
tance of the Nrf2 pathway in protection against influenza
virus infection [127]. In addition, Nrf2 overexpression stim-
ulated expression of HO-1 and protected alveolar cells
against injury induced by the influenza virus and decreased
influenza infection in alveolar cells [44]. In line with the pro-
tective role of the Nrf2 pathway in the pathogenesis of an
influenza virus infection, Nrf2 knockdown downregulated
Nrf2 target genes such as HO-1, MX1, and OAS1 and sensi-
tized alveolar cells to oxidative injury induced by an influenza
virus [44]. Carbocisteine, also known as S-carboxymethyl
cysteine (S-CMC) or (2R)-2- amino-3-carboxymethyl sulfa-
nyl propanoic acid, is a mucoregulatory drug with an anti-
inflammatory property [164, 165]. Carbocisteine was able
to activate Nrf2 and enhance Nrf2-mediated antioxidant
gene expressions such as GCLC, GCLM, and HO-1 in macro-
phages [166]. Carbocisteine was also able to decrease the
expression of virus nucleoprotein, an indicator of viral repli-
cation [166]. In the clinical evaluation of the Nrf2 activator
for pulmonary diseases, a short-term ingestion of broccoli
sprout homogenates, which are enriched in SFN, was found
to significantly reduce an influenza virus-induced inflamma-
tion as well as virus quantity in smokers [167]. Compounds
isolated from S. baicalensis were reported to display an
anti-influenza activity through Nrf2 activation [168]. Baku-
chiol is a naturally occurring phenolic isoprenoid isolated
from the seeds of Psoralea corylifolia L. [169–171]. Shoji
et al. reported that bakuchiol and a series of compounds from
licorice induced Nrf2 activation and upregulated NQO1 and
glutathione S-transferase (GSTA3) mRNA levels, resulting in
reduced expression of influenza A virus H1N1 mRNAs and
proteins [172, 173]. Rupestonic acid, which is extracted from
Artemisia rupestris L., is a sesquiterpene with inhibitory
activities against influenza viruses [174, 175]. A rupestonic
acid derivative was shown to inhibit influenza replication
by upregulating HO-1 expression through promoting Nrf2
nuclear translocation [176, 177]. In particular, p38 MAPK
and ERK1/2 pathways seem to be implicated in this upregu-
lation of HO-1 by a rupestonic acid [176, 177]. In addition,
HO-1 induction by this compound augmented antiviral
IFN response without HO-1 enzymatic activity [176, 177].
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a nat-
ural anthraquinone compound from several traditional Chi-
nese medicinal plants [178, 179]. Emodin was also found to
have inhibitory effects on influenza virus replication through
an enhanced Nrf2 signal, resulting in the upregulation of
Nrf2 target genes such as HO-1, NQO1, GSH, SOD, GR,
CAT, and GPx as well as reduction of virus-induced
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oxidative stress [180]. Curcumin is a major active compound
of turmeric and is commonly used as a coloring agent and
spice in foods [181, 182]. Curcumin was shown to inhibit
the replication of the influenza virus and virus-induced oxi-
dative stress in vitro [183]. This inhibitory effects of curcu-
min on the influenza virus seem to be mediated via the
enhanced Nrf2 signal and increased IFN-β production via
the HO-1 pathway after influenza virus infection [183].

4.5. RSV. RSV infection is associated with a severe lower
respiratory illness characterized by bronchiolitis and respira-
tory failure. It is the leading cause of infant hospitalization
[85]. Loss of Nrf2-dependent antioxidant expression in
Nrf2 knockout mice has exacerbated lung inflammation
and injury [124–126, 184]. Cho et al. showed the antiviral
activity of Nrf2 in a murine model of RSV infection [19]. In
this report, RSV-infected Nrf2 knockout mice displayed
delayed viral clearance, potentiated viral replication, and
enhanced body weight loss with reduced expression of Nrf2
target genes such as GCLC, NQO1, HO-1, GST, and GPx
[19]. In addition, bronchoalveolar injury and inflammation
were more pronounced in these mice [19]. Overall, exacerba-
tion of lung histopathologic phenotypes was observed in
these mice. On the contrary, pretreatment of SFN, an Nrf2
activator, suppressed RSV infection and lung inflammation
in normal mice but not in Nrf2 knockout mice [19]. These
data suggested a key role for the Nrf2 pathway in host defense
against RSV [19]. Mata et al. showed the antiviral activity of
roflumilast, a phosphodiesterase 4 inhibitor, against RSV
infection [88]. In this study, roflumilast alleviated viral bur-
den following RSV infection, reduced RSV-induced intercel-
lular adhesion molecule- (ICAM-) 1 expression, and restored
cilia motility in well-differentiated human bronchial epithe-
lial cells [88]. In addition, roflumilast reversed the reduction
of Nrf2, HO-1, and GPx mRNA levels [88]. Roflumilast
inhibited RSV infection and mitigated the cytopathological
changes associated with RSV infection [88]. Butylated
hydroxyanisole (BHA) and its metabolite tert-butyl hydro-
quinone (tBHQ) have been shown to increase HO-1,
NQO1, and Nrf2 protein expressions, with significant ame-
lioration of RSV-induced oxidative stress in both primary
and cultured cells [90].

4.6. HBV. Protzer et al. showed the antiviral activity of HO-1
in HBV infection [185]. In this paper, HO-1 was either
induced by cobalt-protoporphyrin-IX or overexpressed by
adenoviral gene transfer [185]. This HO-1 induction pro-
tected mice from HBV-induced liver injury and prevented
HBV replication [185]. In addition, increased inflammation
and liver cell injury in the model of acute hepatitis B were
also ameliorated by HO-1 induction [185]. Based on these
results, they suggested the induction of HO-1 as a novel ther-
apeutic option for control of inflammation induced by HBV
infection [185].

4.7. Herpes Virus. Schachtele et al. reported negative modula-
tion of experimental herpes encephalitis-associated neuro-
toxicity through SFN treatment [105]. In this study, SFN
protected mixed neural cultures from HSV-stimulated

microglial toxicity through induction of Nrf2 target genes
such as HO-1, GPx, GCLM, and GSH [105]. In addition, sys-
temic SFN injections reduced brain inflammation and ROS
production in vivo [105].

4.8. DENV. DENV infection was shown to activate the Nrf2
pathway in mononuclear phagocytic cells [47]. Treating cells
with all-trans retinoic acid (ATRA), a potent inhibitor of
Nrf2, significantly decreased the DENV-induced Nrf2 activ-
ity [47]. In addition, ATRA inhibited c-type lectin domain
family 5, member A (CLEC5A) and tumor necrosis factor-
(TNF-) α expressions. This led to an increase in the survival
rate in suckling mice during DENV infection [47]. HO-1
induction by CoPP, andrographolide, and lucidone all sup-
pressed DENV replication, induced HO-1 expression, and
delayed DENV-induced lethality in the suckling mouse
model through upregulation of biliverdin, IFN-α, OASs,
and PKR and downregulation of NS2B/NS3 protease [150,
162]. They also significantly increased the IFN-mediated
antiviral response in vitro and in vivo [150, 162].

4.9. SVCV. Shao et al. showed pharmacological activation of
Nrf2 with SFN and bardoxolone enhanced the cellular total
antioxidative capacity by upregulation of SOD1 and HO-1
and dampened SVCV replication [116]. Knocking down the
expression of Nrf2 produced the opposite effects [116].

4.10. Coxsackievirus. Zhang et al. found that an isatin deriv-
ative was able to inhibit coxsackievirus replication through
the Nrf2-dependent upregulation of NQO1 and GCLM
[186]. Melittin is a major polypeptide in honey bee venom
that has been traditionally used against inflammation.
Wang et al. showed that melittin was able to ameliorate
coxsackievirus-induced myocarditis via activation of the
Nrf2 pathway, resulting in an increased expression of HO-1,
NQO1, and GCL [187].

4.11. Zika Virus. Huang et al. showed that hemin is able to
induce HO-1 expression via the Nrf2 pathway and this leads
to inhibition of Zika virus replication [188]. This inverse cor-
relation between hemin-induced HO-1 levels and ZIKV rep-
lication could be utilized to stimulate an innate cellular
response against Zika virus infection.

4.12. VSV. Vesicular stomatitis virus (VSV) is a prototypical
oncolytic virus that has demonstrated potent oncolytic activ-
ity in preclinical models and is being evaluated in clinical tri-
als [189–191]. SFN enhanced VSV replication and oncolysis
in PC-3 cells [39]. SFN-VSV combination therapy delayed
tumor progression and improved survival in xenograft ani-
mal experiments [39]. SFN treatment seemed to dampen
the innate antiviral response to assist VSV replication [39].

4.13. Theiler Virus. Intracerebral injection of Theiler’s
murine encephalomyelitis virus (TMEV) into susceptible
strains of mice causes a chronic demyelinating disease
[192]. Kobayashi et al. showed that DMF suppressed
TMEV-induced demyelinating disease by activating the
Nrf2 pathway, resulting in upregulation of HO-1, NQO1,
and GCLC [193].
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4.14. RHDV. Rabbit hemorrhagic disease virus (RHDV) is
used as an experimental model to study fulminant hepatic
failure [194]. Melatonin was shown to activate the Nrf2
pathway with the increased expression of SOD, GPx, and
GST. This activation of the Nrf2 pathway by melatonin
prevented a fulminant hepatic failure induced by RHDV
infection [195].

4.15. Porcine Circovirus Type 2. Porcine circovirus type 2
(PCV2), a single-stranded DNA virus, is the primary causa-
tive agent of several syndromes collectively known as porcine
circovirus disease [196]. Gan et al. showed that overexpres-
sion of pig selenoprotein S blocked the ochratoxin-induced
promotion of PCV2 replication by inhibiting oxidative stress
and p38 phosphorylation in PK15 cells [197].

5. Concluding Remarks

In this paper, the roles of virus-induced oxidative stress in the
viral life cycle and the pathogenesis of viral diseases were
reviewed. Particularly, the cellular management of this
virus-induced oxidative stress by cellular utilization of the
Nrf2 pathway and its implications in the viral replication
and the progression of the viral diseases were explained. In
addition, examples of positive and negative regulations of
the Nrf2 pathway by a number of pathogenic viruses were
described. Finally, various methods of pharmacological and
genetic modulations of the Nrf2 pathway as a potential ther-
apeutic option were listed. Considering the significant impact
of the Nrf2 pathway on the pathophysiology of both host cell
and virus, Nrf2 modulators may be able to serve as a promis-
ing supplement for viral diseases by therapeutic modulation
of virus-induced oxidative stress in the near future.
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