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Abstract: Despite the availability of effective antifungal therapy, cryptococcal meningoencephalitis
(CM) remains associated with elevated mortality. The spectrum of symptoms associated with the
central nervous system (CNS) cryptococcosis is directly caused by the high fungal burden in the
subarachnoid space and the peri-endothelial space of the CNS vasculature, which results in intracra-
nial hypertension (ICH). Management of intracranial pressure (ICP) through aggressive drainage of
cerebrospinal fluid by lumbar puncture is associated with increased survival. Unfortunately, these
procedures are invasive and require specialized skills and supplies that are not readily available
in resource-limited settings that carry the highest burden of CM. The institution of pharmacologic
therapies to reduce the production or increase the resorption of cerebrospinal fluid would likely
improve clinical outcomes associated with ICH in patients with CM. Here, we discuss the potential
role of multiple pharmacologic drug classes such as diuretics, corticosteroids, and antiepileptic agents
used to decrease ICP in various neurological conditions as potential future therapies for CM.
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1. Introduction

Cryptococcal meningoencephalitis (CM) is accountable for more than 220,000 infec-
tions and 181,000 deaths each year, including approximately 15% of AIDS-associated deaths
worldwide [1–3]. Although advanced HIV infection is an important risk factor for CM,
other risk factors are also crucial to consider, including—but not limited to—transplant,
sarcoidosis, immunoglobulin disorders, cell-mediated immunodeficiencies, diabetes melli-
tus, use of several biologicals, immunosuppressive agents, including corticosteroids, and
several hematologic malignancies [4,5].

Cryptococcus infects immunocompetent individuals but remains dormant until an
opportunity arises when individuals become immunocompromised [6]. In humans with
immunosuppression, Cryptococcus encounters limited resistance in its route of entry [7].
Once reaching the lung parenchyma, Cryptococci enter through the respiratory tract and into
the bloodstream and the central nervous system (CNS) [8]. Cryptococcus takes a transcellular
route to the cerebrospinal fluid (CSF), perivascular spaces, and brain parenchyma to
cross the blood-brain-barrier (BBB) but without affecting the blood–CSF barrier at the
choroid plexus and the integrity of the BBB [9]. Another potential mechanism proposed
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for entry into the CNS is a “Trojan horse”, whereby Cryptococcus enters hidden inside
mononuclear cells [10]. Cryptococci likely enter through spaces at different segments of
the microvasculature such as the pial arteriolar trajectories into the subarachnoid space
by allowing yeast access into the CSF, through arteriolar penetration in the subpial space
allowing fungi to cross into the perivascular spaces, and via parenchymal capillaries that
facilitates Cryptococci entry into the brain parenchyma [11]. The current review aims to
present a comprehensive narration of the potential mechanisms involved in CM-associated
intracranial hypertension (ICH), as well as to identify compounds used for ICH in other
neurological conditions that can be repurposed for CM-associated ICH.

2. Intracranial Hypertension in the Setting of CNS Cryptococcosis

Studies indicate that ICH develops in around 75% of CM patients [12–15], and is
responsible for early mortality and cognitive sequelae [15,16]. Symptoms in CM patients
such as lethargy, altered mentation, personality changes, and memory loss have been linked
to increased intracranial pressure (ICP) [14], including advanced HIV patients potentially
caused by CSF outflow obstruction [17]. This, however, has been challenged by other
instances where these symptoms appear in CM patients with no changes in ICP [15]. The
fungal burden in many patients has been measured to be more than a million yeasts per
milliliter of CSF, with increased polysaccharide antigen titers correlating to degree of
ICP [18], which is confirmed in a retrospective study in the African population [19]. The
precise mechanism for ICH and its causal link to the symptoms remains to be identified.
There is, however, evidence that the CSF outflow blockage has been caused by the deposits
of shed capsular polysaccharides and capsulated yeasts at the arachnoid villi, perivascular
spaces, and in the brain parenchyma [20].

The brain is susceptible to rapid increases in ICP because of its containment in a rigid
cranium restricting any increase in volume due to edema or any imbalance in the CSF
production, circulation, or clearance [17,21]. The expansion of one of the cerebrum, CSF, or
intravascular blood is at the expense of a reduction of another component.

3. Significance of Increased ICP in CM

Increased ICP has been correlated with increased morbidity and mortality in CM [15,22].
The increase in ICP mainly results from the cryptococcal yeast cells and shed, undegrad-
able capsule polysaccharides that swell absorbing water and cause a physical obstruction,
leading to CSF resorption abnormalities [23]. The increased ICP is associated with the
number of organisms and the number of capsule polysaccharides in the arachnoid granula-
tions [23,24]. Around three-quarters of patients with CM are projected to maintain a CSF
pressure of greater than 25 cm H2O, as the normal range is between 6 and 25 cmH2O [25].
Previous studies reveal that patients with increased ICP have lower short-term survival
than subjects with baseline pressures of less than 25 cm H2O [15]. Increased ICP may
manifest as headache, vomiting, papilledema, confusion, visual acuity loss, and cranial
nerve palsies [26–28]. Although a higher incidence of headache and neurologic findings
is related to raised CSF opening pressures, ICH can occur without overt symptoms [15].
Currently, all ICP monitoring techniques are invasive. The two gold-standard approaches,
external ventricular drain (EVD) and intraparenchymal probe, share a risk of bleeding or
infection [29–31]. Another method to determine ICP is a lumbar puncture (LP), which is
painful, highly invasive, and requires appropriately trained staff [32]. The World Health
Organization (WHO) recommends performing serial lumbar punctures to lower ICP and
determine the frequency of CSF drainage based on the symptom (accessed on 1 May
2022) [33]. A lumbar puncture should be repeated within 24 h if the opening pressure
cannot be determined initially. If the manometer is unavailable, around 20 mL of CSF is
recommended to be eliminated [34]. A lumbar puncture procedure to reduce ICP in CM
patients is not always successful because, at times, the procedure fails to remove 20 mL
of fluid [35]. Interestingly, decompression of the CSF volume by ventricular drainage,
and therapeutics such as acetazolamide (AZA), have been reported to alleviate the raised
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CSF pressure in several non-CM-related neurological conditions [36]. Further, medical
techniques associated with hyperosmolar therapy using agents such as mannitol and hy-
pertonic saline are considered an effective primary treatment for elevated ICP by draining
water [37]. Although the effectiveness of the above drugs has not been examined in CM
patients with increased ICP, the success of these treatments with ICP in other diseases
such as idiopathic intracranial hypertension (IIH), which is high pressure around the brain
causing vision changes and headaches, suggests that these treatments may be useful in the
management of ICP in CM patients.

4. Lessons from the Preclinical Studies

Several preclinical studies performed in animal models of ICP [38] have provided
important clues as to the likely benefits of several drugs to manage CM patients and char-
acterized their mechanisms of action (Tables 1 and 2). Two diuretics, AZA and furosemide,
were investigated and compared for their efficacies in animal models in relieving ICP. Stud-
ies have revealed that AZA and furosemide have comparable efficacies in rabbits [39,40]
with AZA causing a reduction in ICP and modulation of the CSF secretion pathway [41].
Another study in healthy rats found no significant reduction in ICP on AZA [42]. Such
discrepancies in results by various groups demand further preclinical research determining
the potential beneficial effects of AZA for reducing ICP in CM and identifying associated
molecular mechanisms.

Whereas ICP treatment in healthy rats using clinically relevant and at higher furosemide
found no significant effect [43], a study conducted on dogs revealed a slight reduction in
ICP generated by extradural mass lesion by furosemide [44]. Furosemide administration in
newborn, preterm, and term rabbit pups substantially lowered ICP and led to a prominent
decrease in CSF formation [45]. These effects might be attributable to the diuretic action
of the therapy and/or hindrance to the production of CSF. A combination of furosemide
and mannitol at 4-8-fold higher than the clinical doses caused a robust reduction in ICP
in healthy dogs [46], and reduced brain water volume compared to only mannitol [43],
possibly due to increased plasma osmolality.

Amiloride, a potassium-sparing diuretic, was effective for lowering elevated ICP in
experimental brain edema in rats [47,48], but not in healthy rats [42], suggesting that the
drug could be beneficial as adjunctive therapy in the treatment of ICH. We believe that the
diverse outcomes between the above two studies could be due to the dissimilarities in the
models that were used.

Because glucagon-like peptide-1 receptor (GLP-1R) agonists influence fluid homeosta-
sis, some have attempted to repurpose these agents to treat ICP in CM patients. Intraperi-
toneally administered exendin-4 could modulate the production of cerebrospinal fluid
(CSF) at the choroid plexus (CP) and hence lower ICP [49]. Accordingly, exendin-4 reduced
ICP in normal and hydrocephalic rats, suggesting that this drug could be repurposed to
manage ICH [50]. Likewise, subcutaneously administered 200 µg/kg Liraglutide, reduced
cerebral edema in peri-contusional regions in a traumatic brain injury (TBI) rat model [49].

Although preclinical studies have revealed the mechanisms of the disease progression,
how various treatments work mechanistically, and what outcomes can be expected in their
use to treat ICP in various neurological conditions, none of the studies were performed
in CM patients. Therefore, the information cannot be directly extrapolated to develop
treatments for CM-associated ICP in patients. Nevertheless, because of the similarities in
the development of ICP in various neurological diseases, the results provide reasonable
optimism that some, if not all of the drugs investigated in the preclinical models may
potentially be developed for the treatment of ICP in CM patients.

5. Pharmacological Considerations in the Treatment of CM

Treating CM is especially challenging as the distribution of therapeutics into the brain
tissues is restricted by BBB and the lowering of drug concentration in the CNS by efflux
pumps [12]. In addition, few antifungal agents are available to treat cryptococcosis, with
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amphotericin B deoxycholate (or its liposomal forms) with or without flucytosine used in
induction therapy followed by long-term fluconazole maintenance therapy [51]. In addition
to the limitation in the treatment options, C. neoformans can become resistant to flucytosine
and fluconazole [52,53].

The management of CM comprises three antifungal therapy phases, which are “induc-
tion”, “consolidation”, and “maintenance” treatment [17]. Sterilization of CSF is the goal of
the induction antifungal therapy, since a lower rate of fungal clearance is associated with
a high number of deaths in the second and tenth weeks [54]. For the induction therapy,
the WHO guideline recommends intravenous administration of 1.0 mg/kg/day of ampho-
tericin B for one week along with 100 mg/kg/day of flucytosine, followed by fluconazole at
a high dose (1200 mg/day) for seven days for the treatment of CM [33,55]. The combination
of amphotericin B and flucytosine demonstrated enhanced survival against amphotericin
B alone in a landmark trial [56]. For the consolidation phase, fluconazole at a modest
dose (800 mg/day) for 8 weeks is recommended [33]. After that, patients will continue
fluconazole at a lower dose (200 mg daily) for maintenance therapy for at least one year
depending on immune reconstitution [33,51]. Long-term usage of fluconazole is beneficial,
preventing relapse [57].

Table 1. Compounds and their mechanisms of action in reducing intracranial pressure.

Drug Structure (PubChem) Mechanism of Action Ref.

Furosemide
CAS: CAS 54-31-9
MF: C12H11ClN2O5S
MW: 222.3 g/mol
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of 200 μg/kg. 
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• Reduced Na+- and K+-dependent adenosine
triphosphatase activity, a key regulator of
CSF secretion.
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Table 2. Pre-clinical studies on compounds targeting ICP in experimental animal models.

Drug Animal
Effect

Healthy Animals Disease Model Ref.

Furosemide

Rats
No effect on intracranial pressure (ICP) with a
clinically relevant dose but a high dose reduces
brain volume.

[43]

Dogs Robust reduction in ICP on a high dose. A slight reduction in ICP. [44]

Rabbits Prominent reduction in ICP. [40]

Amiloride Rats No change in ICP. Lowers elevated ICP. [42]

Acetazolamide Rats

Mixed response: While one study revealed a
reduction in ICP at a 200 mg dose, another
study reported no change despite administering
high doses (oral or subcutaneous).

55% reduction in cerebrospinal
fluid production. [41,42,60]

Topiramate Rats
Significant decrease in ICP at low and high
clinically related doses by 32% and 21%,
respectively.

[42,65]

Exendin-4 Rats Reduced ICP. Reduced ICP in hydrocephalus [50]

Liraglutide Rats

Reduced cerebral edema in
peri-contusional regions in the
traumatic brain injury (TBI) at a
dose of 200 µg/kg.

[49]

6. Clinical Studies on the Pharmacologic Management of Elevated ICP in CM and
Non-CM Patients

Several clinical trials have been performed on the pharmacological management of ICP
in patients with various neurological disorders (Table 3). Most of these studies, however,
are performed in non-CM patients. Whether or not these treatments will be effective in CM
patients is yet to be determined. Whereas some of these clinical trials were not successful
in patients, refined formulations and conditions may be potentially helpful for treating CM
patients.

AZA is widely used in the clinical setting to manage IIH [69], which is suggested
to reduce CSF production, thus reducing the elevated ICP in IIH patients [69]. AZA re-
versibly inhibits water conduction using aquaporin-4 (AQP4), which has been implicated
in cytotoxic brain edema resulting from water intoxication, brain ischemia, or meningi-
tis [61]. The efficacy of AZA was addressed in a multicenter, randomized, double-masked,
placebo-controlled study in subjects undergoing IIH and mild visual loss [70,71]. However,
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this trial did not incorporate patients with high ICP caused by CM. The outcome of this
trial revealed that in conjunction with a low-sodium weight-reduction diet, usage of AZA
moderately improves visual field function [71]. Moreover, AZA was found to improve the
quality-of-life outcomes at six months [70]. However, its use is associated with common
side effects, including loss of taste, nausea, and tingling in hands and feet [69].

Table 3. Clinical trials on treatments targeting intra-cranial pressure in patients with neurological
diseases.

Drug Study Population Outcome Adverse Effects Ref.

Acetazolamide

Multicenter,
randomized,
double-masked,
placebo-controlled trial.

Subjects undergoing
Idiopathic intracranial
hypertension (IIH) and
mild visual loss.

In combination with a
low-sodium weight-reduction
diet, it moderately improved
visual field function. It also
improved the quality-of-life
outcomes at six months.

Changed taste, nausea,
fatigue, and tingling of
the hands and feet.

[38]

A randomized,
double-blinded,
placebo-controlled trial.

Adults with HIV +
Cryptococcus
Meningoencephalitis
(CM) + headache +
>20 cm H2O CSF
opening pressure.

Discontinued for safety reasons.

Electrolyte imbalance,
particularly in
bicarbonate and chloride
levels, often
hyperchloremic acidosis.

[72]

A randomized
controlled trial. IIH but not CM. Failed due to insufficient sample

size.

48% of the subjects
discontinued the drug for
its side effects.

[61]

Retrospective cohort
study.

3–15-year-old children
with non-Cryptococcus-
related
meningitis.

AZA as adjunctive therapy to the
standard therapeutics showed no
added advantage of AZA in
reducing elevated CSF.

[73]

Furosemide Single-center
retrospective study.

Non-CM neurological
subjects with >25 cm
H2O.

Continuous infusion of 3% HS
with Furosemide was safe and
effective in controlling ICP.

[37]

Topiramate Uncontrolled
open-label study.

Non-CM patients with
IIH.

It was effective and well-tolerated
for the management of IIH.

Distal paresthesia and
concentration difficulties,
in addition to weight loss.

[69]

Hypertonic
saline

Non-CM patients with
traumatic brain injury
(TBI).

Effective at lowering ICP in
concentrations ranging from 3%
to 23.4%.

Acute heart or kidney
failure, severe pulmonary
edema, and myelinolysis.

[74]

Dexamethasone A randomized
controlled trial. CM patients.

The study was stopped
prematurely for no disparity in
mortality rate or immune
reconstitution inflammatory
syndrome (IRIS) among two
groups at 10 weeks.

Risks of disability and
clinical adverse events
were higher.

[75]

A randomized controlled trial conducted on the use of AZA in IIH but not in CM
patients failed due to insufficient sample size, as 48% of the subjects discontinued the drug
for its side effects [76]. Coinciding with the above reports, a retrospective cohort study with
AZA as adjunctive therapy to the standard therapeutics also showed no added advantage
of AZA in reducing elevated CSF pressure in children between 3 to 15 years of age with
non-cryptococcus-related meningitis [73]. A study on the use of AZA in treating ICH in CM
patients was prematurely discontinued for safety reasons [72]. This randomized, double-
blinded, placebo-controlled trial in patients with HIV diagnosed with CM associated with
headache and CSF opening pressure of more than 20 cm H2O was linked to hyperchloremic
acidosis, and several severe side effects that may have been complicated by deoxycholate
amphotericin B that was co-administered [72].

Like AZA, Furosemide is suggested to lower ICH by reducing water volume and
consequently alleviating the brain bulk in neurosurgical subjects [37,59]. Mechanistically,
Furosemide increased serum osmolarity and decreased the water content in the brain [58].
Furosemide inhibits the sodium-potassium-2 chloride (Na+-K+-2 Cl−) symporter located
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in the ascending loop of the renal tubule [77]. The single-center retrospective study by
Li et al. investigated the efficacy and safety of Furosemide as a supportive therapy with
micro-pump infusions of 3% hypertonic saline (HS) in non-CM neurosurgical patients [37].
Continuous infusion of 3% HS with furosemide was found to be safe and effective for
controlling ICP in neurological subjects with >25 cm H2O [37].

Topiramate, a sulfamate-substituted monosaccharide, has demonstrated a significant
decrease in ICP in a preclinical study at both low and high clinically related doses by
32% and 21%, respectively [42]. Because of its ability to increase GABA activity and in-
hibit glutamate activity, Topiramate is used to treat patients with migraines and prevent
seizures [65]. Topiramate also blocks voltage-gated sodium channels [78] and has demon-
strated an effect in IIH reduction in two case reports, which prompted investigators to
conduct an uncontrolled open-label study for IIH comparing the efficacy of topiramate to
AZA [62,63,69]. In this trial, topiramate was found to be well tolerated and effective for
managing IIH by reducing the production of CSF and decreasing body weight, particularly
in obese patients [69]. Nevertheless, some patients receiving topiramate complained of dis-
tal paresthesia, concentration difficulties, and weight loss [69]. The above studies, however,
did not include patients with CM; hence, the efficacy of Topiramate in alleviating ICP in
CM patients is yet to be determined.

Mannitol has been retrospectively evaluated in patients living with HIV who had
CM [67]. Mechanistically, mannitol promotes diuresis by increasing the concentration of fil-
trates in the kidneys and blocking the reabsorption of water by the kidney tubules [79]. The
trial demonstrated that mannitol alleviated neurologic symptoms, particularly headaches
associated with high ICP in CM [67]. Mannitol can induce the plasma to be relatively
hypertonic, leading to an osmotic gradient from the CSF to the blood and then decreasing
the high ICP [15] in CM patients. Although mannitol is the most commonly used hyper-
osmolar agent for the treatment of ICP [80], it is not used routinely, possibly due to the
excessive dehydration, electrolyte abnormalities caused by the shift of free water into the
intravascular space, and the possibility of crystal formation at low temperature [81].

Hypertonic saline (HS) demonstrated potential in lowering ICP in concentrations
ranging from 3% to 23.4% in TBI patients [82] because of its reduced penetrability to the
BBB, thereby drawing water from the CSF out of the cranium [83]. Therefore, it has been
used as a gold standard for treating high ICP in various neurological diseases [74,84–86],
including in children [68]. However, some adverse effects such as acute heart or kidney
failure, severe pulmonary edema, and myelinolysis can appear due to receiving HS [66].
The efficacy of HS therapy in relieving ICP in CM patients is yet to be determined.

Corticosteroids are anti-inflammatory drugs that can suppress inflammation and
edema caused by infection and hence are suggested for bacterial meningitis [87]. Dex-
amethasone has been assessed for its safety profile in patients with CM [75]. The study
that was conducted on patients with HIV who had CM to determine whether adjunctive
treatment with dexamethasone would improve patient survival reported that frequent use
of dexamethasone was associated with a significantly higher risk of death or disability
than placebo. Nevertheless, Dexamethasone was associated with a larger reduction in
CSF opening pressure during the first 2 weeks than placebo. Since there was no disparity
in mortality rate or Immune Reconstitution Inflammatory Syndrome (IRIS) determined
among the two groups at 10 weeks, the study was stopped prematurely. Moreover, risks of
adverse events and disability were higher and linked to the usage of dexamethasone in
these patients [75].

Studies that are focused on Cryptococcus-induced changes in the endothelium and BBB
contributing to brain edema are limited. As of today, most BBB studies in CM patients are
focused on the route of infection [25,88–92]. Whether or not these contribute to brain edema
is unclear. Accordingly, there is a critical need to understand the mechanistic pathway for
CM at the BBB and vascular levels contributing to increased ICP and cerebral edema in CM
patients.



Pathogens 2022, 11, 783 8 of 12

7. Aquaporins (AQPs) as the Novel Therapeutic Targets for Treating Increased ICP

Aquaporins (AQPs), a family of membrane water channels, are expressed in various
organs [93,94]. AQPs play essential roles in promoting passive water transport to cells [94].
Thirteen AQPs have already been identified in humans, including AQP1 and AQP4, which
are extensively expressed in the CNS and thus appear to be a potential and attractive
pharmaceutical target for many neurological diseases [95]. AQP1 has an essential function
in the water transportation across the choroid plexus (CP) epithelial cells [96]. Since the
apical membrane of the epithelial cells is extensively enriched with AQP1, its involvement
in CSF production is anticipated [97]. A direct link could not be established for many years
until a study revealed that AQP1-/- mice had significantly impaired CSF secretion and
maintained lower ICP than wild-type mice [60]. The study proposes that novel therapeutic
options for decreasing high ICP could be achieved via AQP1 inhibition.

AQP4 is the primary water channel in the brain and is abundantly expressed in astro-
cytes in the CNS [94,95]. Astrocytic foot processes alongside the microvessels at the BBB are
another area that is predominantly rich in AQP4 expression [96]. Expression modulation of
AQP4 may affect the rate of edema formation [94]. AQP1-/- mice had significantly reduced
infarct size and edema in response to transient focal cerebral ischemia [98]. Contradictory
to the finding of the beneficial effect of targeting AQP4 in stroke, another study showed
that AQP4 knockout mice had higher mortality and exacerbated neurological impairments,
implying that AQP4 contributes to the pathogenesis of stroke [99]. AQP4 may possess
dual functions which are harmful in the development of edema and beneficial in resolving
edema due to water removal [98,99]. A study on brain edema in AQP4-deficient mice
after a focal ischemic stroke induced by middle cerebral artery occlusion illustrated that
AQP4 deletion improved neurological outcomes [100]. More importantly, cerebral edema
in these mice was lowered by 35% compared to wild-type (AQP4+/+) mice. Although
these studies have not utilized the preclinical models of CM-induced ICP, the results from
AQP4-deficient mice and stroke models suggest the potential utility of targeting AQP4 to
reduce ICP in CM patients as well.

In the Streptococcus pneumoniae meningitis model, deletion of AQP4 produced a signif-
icant reduction in ICP and brain water accumulation in mice, suggesting that improved
clinical outcomes could be achieved via blockage of AQP4 function [101]. Another study
revealed increased ICP and death on intraperitoneal water-injection-induced severe water
intoxication in transgenic mice overexpressing AQP4 specifically in glial cells [102]. Sur-
prisingly, AQP4 deletion also led to elevated ICP along with higher water volume in the
brain in a brain abscess model in mice [103]. Investigation of the complex interactions
and temporal dynamics of AQPs would be important to understand these contradictory
findings, and will be not only beneficial for the treatment of stroke and TBI, but also to treat
patients suffering from ICP because of CM.

It is important to note that despite the recent advances in AQP4 research in CM,
this is still in a conceptual stage. Because AZA has been demonstrated to enhance AQP4
in astrocytes, AZA may have a role in pharmacologically modulating AQP4 expression
in astrocytes in CM patients experiencing increased ICP. However, the potential risks of
nephrotoxicity and electrolyte disturbances, associated with both AZA and antifungal
therapies, will need to be minimized in future clinical trials.

8. Conclusions

The clinical and animal studies indicated diverse consequences of several drugs
discussed in the current review. The best way to identify a successful pharmacological
approach in the management of raised ICP caused by CM is by studying the effect of
various drugs at the molecular level, followed by evaluating outcomes at a clinical-stage in
the process of the bench to bedside transition. There is also a need for drug repurposing if
the potential of the current therapeutic options is uncertain despite modulating the dose.
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