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Abstract: Due to the complicated pathogenic pathways of coronavirus disease 2019 (COVID-19),
related medicinal therapies have remained a clinical challenge. COVID-19 highlights the urgent need
to develop mechanistic pathogenic pathways and effective agents for preventing/treating future
epidemics. As a result, the destructive pathways of COVID-19 are in the line with clinical symptoms
induced by severe acute coronary syndrome (SARS), including lung failure and pneumonia. Accord-
ingly, revealing the exact signaling pathways, including inflammation, oxidative stress, apoptosis,
and autophagy, as well as relative representative mediators such as tumor necrosis factor-α (TNF-α),
nuclear factor erythroid 2-related factor 2 (Nrf2), Bax/caspases, and Beclin/LC3, respectively, will
pave the road for combating COVID-19. Prevailing host factors and multiple steps of SARS-CoV-2
attachment/entry, replication, and assembly/release would be hopeful strategies against COVID-19.
This is a comprehensive review of the destructive signaling pathways and host–pathogen interaction
of SARS-CoV-2, as well as related therapeutic targets and treatment strategies, including potential
natural products-based candidates.

Keywords: coronavirus; SARS-CoV-2; COVID-19; signaling pathway; inflammation; oxidative stress;
apoptosis; autophagy; natural products

1. Introduction

As a global pandemic, an outbreak of novel coronavirus, named severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2), caused the coronavirus disease 2019
(COVID-19). It has been a serious leading cause of morbidity and mortality worldwide [1,2].
Coronaviruses (CoVs) are a group of single-stranded enveloped ribonucleic acid viruses
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which are classified into four genera, including α, β, γ, and δ. In the past two decades,
two members of the β-CoVs with a zoonotic origin, including SARS-CoV and Middle East
Respiratory Syndrome (MERS)-CoV, caused two epidemics in China during 2002–2003 and
in the Middle East in 2012, respectively [3–5].

The clinical manifestations of COVID-19 mainly encompass pneumonia-related symp-
toms, such as fever, cough, and shortness of breath [6]. In severe patients, it would lead to
acute respiratory distress syndrome (ARDS), cardiovascular, neurological, hepatic, renal,
and gastrointestinal complications [7,8], which all seemed to be correlated with dysreg-
ulated mechanisms. It has been well-established that the SARS-CoV-2 genome is closely
related to the first SARS-CoV [9]. The underlying mechanisms by which SARS-CoV-2
elicits its detrimental effects remained unclear; however, possible mechanisms encompass
inflammation, oxidative stress, apoptosis, autophagy, and the processes associated with
virus entry into host cells, such as the endocytic pathway and angiotensin-converting
enzyme 2 (ACE2) pathway [8,10–12]. As of yet, no specific antiviral drug has been discov-
ered for SARS-CoV-2; hence, extensive studies have been ignited to find effective drugs
for targeting the aforementioned pathways and for combating COVID-19. In light of the
outbreak, several non-specific medications have been exploited, such as broad-spectrum
antiviral, anti-inflammatory, antioxidant, and antiapoptotic therapies, immunotherapeutic
agents, antibiotics, and supportive care such as supplementary oxygen [13–15]. Despite
advancements in providing antiviral drugs, their associated toxicity and high financial
costs are a significant hurdle in their clinical applications [16]. Therefore, there exists a
dire need to discover new, safe, and more efficacious treatment alternatives to achieve
successful healing therapies.

In recent reviews, the role of oxidative stress [17], inflammation [18,19], and some host
factors [20] were developed separately, with no focus on all the therapeutic agents, thera-
peutic targets, host–pathogen interaction, and dysregulated signaling pathways involved
in the pathogenesis of SARS-CoV-2. In the present review, we describe the dysregulated
signaling pathways and host–pathogen interaction of SARS-CoV-2, as well as relative ther-
apeutic targets and treatment strategies, concentrating on oxidative stress, inflammation,
apoptosis, autophagy, the immune system, and virus life cycle.

2. COVID-19: Genetics and Structure

SARS-CoV-2 is a single-stranded enveloped ribonucleic acid virus with a genome
size of 29,903 nucleotides [21]. This single strand of RNA is covered by a phosphorylated
capsid protein which, together, both form a nucleocapsid. Phospholipid bilayers shield the
nucleocapsid and are coated by spike glycoprotein and, probably, hemagglutinin-esterase
protein [22]. The virus genome is comprised of two untranslated regions (UTRs) at the
5′ and 3′ ends, which constitute 265 and 358 nucleotides, respectively, as well as 11 open
reading frames (ORFs) that encode 27 structural, non-structural, as well as accessory pro-
teins [23,24]. Two overlapping ORF 1a and 1b contain two-thirds of the genome and encode
16 non-structural proteins (NSPs) within the pp1ab gene. These proteins comprise NSP3
(papain-like), NSP5 (3C-like protease domain), NSP12 (RNA-dependent RNA polymerase),
NSP13 (helicase), NSP14 (3′–5′ exonuclease), as well as other NSPs that are engaged with
the transcription and replication of the viral genome [25,26]. The remaining ORFs code
structural proteins including spike protein (S), envelopes protein (E), membrane protein
(M), as well as nucleocapsid protein (N), and at least six accessory proteins such as orf3a,
orf6, orf7a, orf7b, orf8, and orf10 [27]. In some cases, the hemagglutinin esterase gene pro-
posed to increase the virus entry mediated to S protein has been located between ORF1b
and ORF S [28].

3. Clinical Features of COVID-19 Disease

Most patients infected with SARS-CoV-2 exhibit respiratory complications such as
pneumonia and ARDS. ARDS is a common leading cause of death in patients with
COVID-19, which is characterized by pulmonary and interstitial tissue devastation [29].
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The genetic material of SARS-CoV-2 has been identified in cerebrospinal fluid, indicating
that SARS-CoV-2 can directly attack the central nervous system, which contributes to
several neurological damages. This procedure develops neurological complications, includ-
ing headache, encephalitis, impaired consciousness, epilepsy, taste/smell disorders, and
nausea/vomiting [30–32]. SARS-CoV-2 exploits neuronal pathways, such as the olfactory
pathway and blood circulation pathway, to enter the nervous system [33–35]. During
SARS-CoV-2 infection, impairment of the respiratory gaseous exchange leads to hypoxia
and anaerobic metabolism, as well as acidic conditions in the brain, which, in turn, partici-
pate in cerebral edema and occlusion of the cerebral circulation, and subsequently lead to
headache and acute cerebrovascular disease [36]. SARS-CoV-2 also exerts its deleterious
effects on the nervous system through an intracranial cytokine storm [37]. Activation
of macrophages, microglia, and astrocytes enhances the release of pro-inflammatory cy-
tokines and provokes nerve degeneration and the apoptotic death of neuronal cells [38].
A growing number of patients infected with SARS-CoV-2 manifest signs or symptoms
of liver dysfunction that can be attributed to the respiratory distress syndrome-induced
hypoxia and the release of huge circulating detrimental inflammatory mediators with the
ability to invade liver cells, causing hepatocyte damage and elevated liver enzymes [39].
Additionally, the downregulation of ACE2 by SARS-CoV-2 may enhance blood pressure,
and thereby elevate the risk of intracranial hemorrhage [40].

A growing number of patients infected with SARS-CoV-2 manifested signs of liver
dysfunction that can be attributed to the respiratory distress syndrome-induced hypoxia
and the release of huge circulating detrimental inflammatory mediators with the ability to
invade liver cells, causing hepatocyte damages and elevated liver enzymes [39].

Cardiovascular complications such as acute myocardial infarction, venous thromboem-
bolic events, myocarditis, and heart failure may also occur in patients with COVID-19 due
to direct virus invasion through ACE2, endothelial dysfunction, hypoxia, excessive inflam-
matory responses, oxidative stress, elevated level of angiotensin (Ag) II, and atherosclerotic
plaque rupture [41,42]. Besides, elevated cardiac biomarkers, including troponin T, have
also been demonstrated to be associated with increased inflammatory markers, suggesting
that myocardial injury is linked to inflammation [43].

Gastrointestinal symptoms, such as vomiting, diarrhea, or abdominal pain, are other
common clinical manifestations of COVID-19 during the early phases of the disease. Intesti-
nal dysfunction leads to changes in intestinal microbes, thereby promoting inflammatory
cytokines [44]. Consequently, ACE2 is highly expressed in the gastrointestinal tract and
SARS-CoV-2 directly invades the gut tract through binding with ACE2 receptors. In this
regard, ACE2 is considered a key regulator of intestinal inflammation and can enhance the
risk of colitis and other gastrointestinal symptoms [45].

Clinical data have demonstrated the presence of SARS-CoV-2 particles in urine sam-
ples of patients infected with COVID-19 [46]. It has been reported that SARS-CoV-2
possesses detrimental impacts on kidney function and causes signs/symptoms of acute
kidney injury [47]. The expression of ACE2 on podocytes and tubule epithelial cells makes
the kidney a host candidate for SARS-CoV-2 [48]. Local inflammatory/immune reaction,
direct cytotoxic viral effect, hypoxia, as well as secondary infections/sepsis induce the oc-
currence of endothelial dysfunction, tubular injury, and heavy proteinuria [49]. Therefore,
given the involvement of host factors such as ACE and related complications attributed to
oxidative stress, as well as inflammation, apoptosis, and autophagy in the complications of
COVID-19, targeting them is of great importance.

4. SARS-CoV-2 Infection

SARS-CoV-2 undergoes various steps of fusion, uncoating, nucleic acid synthesis, in-
tegration, protease, and assembly/release towards infection; therefore, detailed knowledge
of infection pathways is critical to tackling COVID-19. It has been well-established that
SARS-CoV-2 enters the host cells via two pathways, including the endocytic pathway and
non-endosomal pathway, with the help of proteases (e.g., TMPRSS2); both contribute to
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the release of the nucleocapsid into the cytoplasm [22]. Among those factors, SARS-CoV-2
utilizes the endocytic pathway as the principal mechanism for viral entry into several types
of host cells. The S protein on the surface of a coronavirus can interact with the receptor
and then invade the host cells through clathrin-mediated endocytosis [11]. Recent advances
have highlighted the critical role of such host receptors, including ACE2, glucose-regulated
protein 78 (GRP78), cluster of differentiation 147 (CD147), and dipeptidyl peptidase (DPP4)
in viral infection.

4.1. ACE2

Revealing the first phase of viral entry into the host cells, fusion/entry through facilitating
co-receptors could be targeted by appropriate therapeutic agents [50]. Recent advances have
highlighted the critical role of such host receptors in viral infection, including ErbB1, tyrosine
kinase receptors (TKRs) [51], toll-like receptors (TLRs) [52], TNF-α, ILs, interferon (IFN)-γ,
and other receptors affecting the immune system [53]. The involvement of other receptors
related to T cells has also been shown to play critical roles in viral infection, such as cytotoxic T-
lymphocyte antigen 4 (CTLA-4), programmed death1 (PD-1), as well as T-cell immunoglobulin
(Ig) and mucin domain-containing molecule 3 (TIM-3) [54,55].

Continuous uncoating and nucleic acid synthesis with the involved enzymes of RNA
polymerase are other steps in virus replication, including for SARS-CoV-2. Viral chain
terminase and proteases have also been shown to be promising targets against COVID-19
complications. As the final step of viral infection, the viral release could also be a hopeful
target in combating COVID-19. Nowadays, host co-receptors have been considered critical
agents with undeniable roles in stimulating the immune system and increasing viral
infection [56]. The analysis of nucleic acid sequence within the spike proteins of SARS-
CoV-2 predicted the role of ACE2 in the cellular entry of the virus, which was confirmed
by an in vitro study [56].

Synthesized ACE2 is folded and N-glycosylated in the endoplasmic reticulum (ER)
then passes to Golgi apparatus for further modifications and packaging and is then trans-
ported to the plasma membrane [57]. Cleavage of ACE2 by A disintegrin and metallopro-
teinase 17 (ADAM17) leads to the release of soluble ACE2 into the extracellular environ-
ment. Consequently, angiotensin receptor I (AR I) enhances ADAM17 expression which,
in turn, elevates soluble ACE2, and can therefore prevent SARS-CoV-2 entrance [57,58].
Additionally, in response to SARS-CoV-2, binding via clathrin-mediated endocytosis and
the internalization of both the virus and its receptor, ACE2, occur [59].

The rate expression of ACE2 and its cleavage from the cell membrane contribute
to the regulation of ACE2 activity [60]. It has been well-established that Ag II, which
mitigates ACE2 expression, passes through type II alveolar (AT2) and type I alveolar
(AT1)-extracellular-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK)
pathway, thereby playing a pivotal role in the regulation of associated receptors [61]. Addi-
tionally, hypoxia-induced factor-1α (HIF-1α) enhances the production of ACE, which, in
turn, boosts the production of Ag II, and then leads to a reduced level of ACE2 [62]. SARS-
CoV-2-induced downregulation of ACE2 leads to an augmentation of the pro-inflammatory
factor, Ag II, and causes lung injury [63]. The recognized receptor of SARS-CoV-2, ACE2, is
mainly expressed in a small subset of lung cells [64]. Only minimal percentages of mono-
cytes/macrophages in the lung expressed ACE2 [64]. It presents the possibility of direct
cellular infection (with no ACE2 engagement) or the existence of other receptors involved
in SARS-CoV-2 entrances [65,66]. In general, the critical role of the renin–angiotensin
system (RAS) has been indicated in various pathological and physiological processes. Con-
sequently, angiotensinogen is converted to Ag I by renin. Ag I is, in turn, converted to
Ag II then to Ag (1–7), and Mas by ACE1 and ACE2, respectively. While Ag II binds to
AR I and makes pathological outcomes, Mas binds to MasR to exert protective responses
against COVID-19 [67,68]. Therefore, ACE2 could play the double-edged role of being
a co-receptor for SARS-CoV-2 entry and generating Mas for protection [69]. As attained
by COVID-19 clinical trials, susceptibility to COVID-19 infection is in a direct correlation
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with the activity of ACE2. Since this enzyme is enriched in the lungs, heart, brain, kid-
neys, intestine, testes, and placenta [70–72], there is a higher rate of virus presence and
pathogenesis [73]. These results indicated that Ag II is likely to be the primary target of
SARS-CoV-2 in the lungs [68]. Moreover, there are sex differences in the expression of
ACE2. Sex hormones in males made a higher expression of ACE2 than in females, with
a greater infectious rate [68,74]. The ACE/ACE2 activity ratio in male serum is higher
than in females. Individuals with coexisting disorders, including pneumonia [73], dia-
betes [75], along with aging [74,76,77], cigarette use [78], pregnancy [71,79], hypoxia, and
HIF-1α [62,80], were shown to be more susceptible to the dysregulation of the ACE/ACE2
ratio. Overall, the molecular mechanisms and signaling pathways by which SARS-CoV-2
elicits its harmful effects are incompletely understood, and a few molecules have been
identified as a target of SARS-CoV-2. For instance, it has been shown that SARS-CoV-2 rein-
forces chemokine-associated inflammation and fibrosis through IFN, with ACE2-induced
Ras/Raf/mitogen-activated protein kinase kinase (MEK)/ERK/ activating protein 1 (AP1)
and casein kinase (CK)2- p21-activated kinase 1 (PAK1) signaling pathways [81]. It has
been reported that the aforementioned pathway offers the potential for pulmonary vascular
remodeling and exaggerated hypoxia [82]. Aberrant activation of PAK1 hinders immune
systems and participates in the promotion of viral infection [83]. Therefore, the suppression
of PAK1 or it is upstream potentially repressed SARS-CoV-2 infection. In cases of SARS-
CoV-2 infection, ACE2 has attracted substantial attention in COVID-19 pathogenicity [69].
Inappropriate regulation of ACE2/Ag (1–7)/Mas receptor and ACE1/Ag II type 1 receptor
pathways could enhance ACE2, and thereby increase the chances of viral entry [69,84]. On
the other hand, downregulation of ACE2 by SARS-CoV-2 infection inhibits the degradation
of Ag II into Ag (1–7), exacerbates inflammation, and leads to vascular permeability and
cardiovascular complications [69].

4.2. TMPRSS2

It has been well-established that the proteolytic cleavage of the viral envelope glyco-
protein by either intracellular or extracellular proteases, such as trypsin, furin, cathepsin,
or transmembrane protease serine 2 (TMPRSS2), plays an important role in SARS-CoV en-
try [85]. Among them, TMPRSS2 has been shown to activate the spike-protein of COVID-19
for viral fusion and infectivity [86]. An accumulation of findings highlighted that the host
protease TMPRSS2, employed for the entry of SARS-CoV-2 into lung epithelium, is an
attractive target for pharmacologic intervention. It has been shown that pharmacologic
inhibition of TMPRSS2 blocks SARS-CoV-2 entry into human lung cells. Additionally,
inhibition of TMPRSS2 prevented SARS-CoV-1 infection in animal models. The TMPRSS2
gene expresses a protein of 492 amino acids which anchors to the plasma membrane. It
can be divided into the catalytic chain and noncatalytic chain parts through autocatalytic
cleavage between Arg255 and Ile256. After cleavage, the majority of mature proteases
are membrane-bound, but their substantial portions can be released into the extracellular
space [87]. It has been revealed that TMPRSS2 gene promoter possesses 15-bp androgen
response element, and TMPRSS2 transcription is upregulated in the presence of andro-
gens [88]. The activation of SARS-CoV by TMPRSS2 suppresses the blockage of SARS-CoV
by IFN-induced transmembrane proteins, a class of IFN-stimulated host cell proteins that
participate in inhibiting the entry of various enveloped viruses [89].

TMPRSS2 is known as a key gene in prostate cancer [90]. The hepatocyte growth
factor (HGF)/c-Met cell is activated by TMPRSS2, provoking the survival pathway of
HGF/c-Met receptor tyrosine kinase signaling and stimulating a pro-invasive role in
prostate cancer cells. TMPRSS2 also induces inflammation by proteolytically activating
the protease-activated receptor-2 (PAR-2) in the prostate. Additionally, the upregulation of
PAR-2 promotes matrix metalloproteinase-2 (MMP-2) and MMP-9, both of which play a
key role in the metastasis of tumor cells [89,91].
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4.3. Glucose-Regulated Protein 78 (GRP78)

Glucose-regulated protein 78 (GRP78), which belongs to the heat shock protein 70 fam-
ily, is the master chaperone protein present in the lumen of the ER [92,93]. Under cell stress,
overexpressed GRP78 can escape ER retention and translocate to the cell membrane [94].
Once localized in the plasma membrane, GRP78 is susceptible to virus recognition, thereby
facilitating the viral entry to the host cells. It has been reported that GRP78 is a target
receptor of the MERS-CoV spike protein and bat coronavirus HKU9 (bCoV-HKU9) [95]. Re-
cently, the existence of a SARS-CoV-2 spike protein-GRP78 binding site has been predicted
using the computational method [96], thus paving the route to design suitable inhibitors to
prevent binding and infection.

4.4. The Cluster of Differentiation 147 (CD147)

The cluster of differentiation 147 (CD147), also known as extracellular matrix metallo-
proteinase inducer, has recently emerged as an important receptor for SARS-CoV-2 [97].
CD147 possesses the ability to interact with various extracellular and intracellular partners
which play a key role in the infection process of the human immunodeficiency virus (HIV),
measles, and SARS-CoV [98,99]. It has been reported that CD147 can bind with multiple lig-
ands, including cyclophilins, monocarboxylate transporters, caveolin-1, and integrins [100].
As extracellular interactive partners, cyclophilins A and B can bind to CD147 and activate
it, thereby increasing the chance of infection of CD147-expressing cells [101]. It has been
reported that cyclophilins A and B can interact with nsp1 of SARS-CoV [98]; however, it
is yet not understood whether cyclophilins can bind to SARS-CoV-2. In an in vitro study,
Wang et al. [102] revealed that meplazumab, an anti-CD147 antibody, significantly hindered
the invasion of host cells by SARS-CoV-2. Surprisingly, this report has been supported
by a clinical trial in which the anti-CD147 antibody inhibited SARS-CoV-2 spike protein
binding and subsequently facilitated a viral clearance [103]. CD147 also participated in the
regulation of nuclear factor-kappa B (NF-κB). Moreover, upregulation of CD147 leads to the
activation of NF-κB which, in turn, involves inflammation and proliferative responses [104].
Additionally, cyclophilin–CD147 interaction can recruit the immune cells to the sites of
inflammation via chemokine-like activity [105]. Cyclophilin 60 is identified as an important
contributor protein in the expression and translocation of CD147 to the cell surface [106].
Several other proteins which bind to CD147 may affect its localization. For instance, the
interaction of CD147 with the proton-coupled transporters of monocarboxylate, including
MCT1 and MCT4 in the cell membrane, is highly dependent on glutamic acid residue
218 in the CD147 transmembrane domain. However, the mutation of this glutamic acid
prevents the access of both CD147 and MCT to the cell membrane [107]. It has been also
reported that caveolin-1 binds to CD147 on a cell surface, through which it plays a key
role in the regulation of clustering and activity of CD147 [108]. As an interacting partner
of CD147, integrin β1 interacts with CD147 to regulate integrin-dependent signaling and
focal adhesion kinase (FAK) activation, leading to ignition of the downstream signaling
Rac/Ras/Raf/ERK and phosphoinositide 3-kinases (PI3K)/Akt pathways and an increase
in the metastatic potential of hepatocellular carcinoma [109]. It has been demonstrated that
CD147 increases MMPs expression through several signaling pathways, including Janus
kinase (JAK)/signal transducer and activator of transcription (STAT), Ras-MEK1-MAPK,
and PI3K/Akt signaling pathway [110].

4.5. Dipeptidyl Peptidase (DPP4)

Dipeptidyl peptidase (DPP4), also known as CD26, was considered as the main entry
receptor for MERS-CoV [111]. The S protein of MERS-CoV specifically interacts with DPP4
receptors, thereby inducing proteolytic activation of viral entrance and viral membrane
fusion with the cell membrane [112]. There is about an 80% genome sequence similarity
between MERS-CoV and SARS-CoV with SARS-CoV-2. Recent evidence has shown that
DPP4/CD26 can also bind to the S1 domain of the SARS-CoV-2 spike glycoprotein, indi-
cating the potential role of DPP4/CD26 in SARS-CoV-2 adhesion/virulence [113]. The
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potential interaction between SARS-CoV-2 spike glycoproteins and DPP4 has been demon-
strated by docking studies and needs in-depth clarification in experimental models [114].
Intriguingly, there is also evidence suggesting that DPP4 is implicated in the induction
of cytokine storm, oxidative stress, the immune system, and apoptosis [115]. DPP4 has
been widely studied because of its proteolytic activity on various cytokines and peptides
that participate in different medical conditions [116]. In the case of proteolytic activity,
DPP4 reduces incretins such as glucagon-like peptide 1 (GLP-1) and glucose-dependent
insulinotropic polypeptide (GIP), subsequently leading to a declined insulin secretion and
abnormal glucose level [116]. Additionally, DPP4 proteolysis leads to partial or total alter-
ation in signaling and functionality of its substrates, including peptide tyrosine-tyrosine
(PYY), neuropeptide Y (NPY), and stromal-derived factor 1 (e.g., SDF-1 and CXCL12) [117].
Intriguingly, there is also evidence suggesting that DPP4 is implicated in the induction of
cytokine storm, activation of NF-κB pathway, oxidative stress, the immune system, and
apoptosis [115]. It has been revealed that CD26/DPP4 possesses the ability to directly
trigger T cell activation through CARMA1-mediated NF-κB activation in T cells which, in
turn, leads to T cell proliferation and pro-inflammatory interleukin (IL)-2 cytokine produc-
tion [118]. People with diabetes are at higher risk of developing the serious clinical events
caused by COVID-19 because chronic hyperglycemia and inflammation contribute to an
ineffective immune response [119]. In this line, DPP4 inhibitors and/or GLP-1 receptor
analogs are widely used for the control of hyperglycemia in type 2 diabetes [120]. The
potential role of DPP4 inhibitors in COVID-19- infected patients with type 2 diabetes is not
completely clarified. However, DPP4 may illustrate a potential target for decreasing the
progression of the complications of type 2 diabetes in those infected with COVID-19 [119].
Therefore, DPP4 inhibition may hinder the infection and/or development of the COVID-19.

5. COVID-19: Pathogenesis, Dysregulated Pathways and Beyond

Patients infected with SARS-CoV-2 exhibited various clinical manifestations such as
fever, dyspnea, myalgia, and viral pneumonia [121]. In complicated patients, ARDS, acute
kidney injury, cardiovascular complications, neurological side effects, and multiple organ
failure have also been shown to be associated with increased mortality [49,122,123]. While
the pathobiology of SARS-CoV-2 and molecular mechanisms behind the aforementioned
clinical manifestations are not yet entirely known, the roles of inflammation, oxidative
stress, apoptosis, and autophagy are undeniable.

5.1. Role of Inflammation in COVID-19

As previously mentioned, inflammatory pathways play important roles in the highly
inflammatory conditions of pathogenesis in COVID-19 [124]. As such, in severe cases of
COVID-19, patients showed higher serum levels of inflammatory cytokines, including
TNF-α, IL-2, IL-6, IL-7, IL-10, IFN-γ, IL-1β, IL-12, IL-18, IL-33, tumor growth factor-β (TGF-
β), macrophage inflammatory protein-1α (MIP-1α), monocyte chemoattractant protein-1
(MCP-1), granulocyte-colony stimulating factor (G-CSF), interferon-inducible protein-10
(IP-10), chemokines (e.g., CXCL8, CXCL9, CXCL10, CCL2, CCL3, CCL5) [13,125–128],
and c-reactive protein (CRP) [129–131] in the early phase as major causes of ARDS [132].
Extensive immunological responses, high levels of circulating inflammatory cytokines,
substantial lymphopenia, and immune-cell infiltration are closely correlated to immune-
pathological changes of targeted organs [133].

In COVID-19 patients, increased neutrophils/CRP and decreased lymphocytes were
revealed; this was in direct correlation with disease severity [13]. Releasing the afore-
mentioned inflammatory factors is also called a cytokine storm, which, in turn, leads
to various pathogenic complications in COVID-19 [134–136]. The innate immune sys-
tem also employs IFN type I, IFN-α and IFN-β, and IFN-stimulated response element
(ISRE) as downstream mediators in exerting a critical response against viral infection,
while a reduced IFN leads to rapid viral replication [137,138]. Consequently, IFN-α/β
suppresses viral dissemination/replication in the early stage of viral infection. COVID-19
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employs multiple ways toward interfering with the aforementioned pathways of type I
IFN production [127,139], including JAK-STAT/ISRE pathway phosphorylation [140]. Fol-
lowing the production of type I IFN, COVID-19 is equipped to suppress the inflammatory
pathways [65,140,141], time-dependently [127]. Additionally, any dysregulation in the
pathway leads to neutrophil/monocyte/macrophage activation and lethal pneumonia
or acute respiratory distress syndrome [127]. A disturbance in the regulation of IFNs
generation of pro-inflammatory cytokines produced by macrophages contributes to the
apoptosis of T cells, which further hampers viral elimination [142]. During viral infection
and activation of the adaptive immune response, the engagement of the T cell receptor
provokes intracellular calcium overload which, in turn, induces calmodulin binding to cal-
cineurin. Calcineurin activation participates in the nuclear factor of activated T-cell (NFAT)
dephosphorylation [143]. The calcium-calcineurin-NFAT pathway boosts the generation of
pro-inflammatory cytokines, thereby maintaining chronic inflammation conditions [144].

As other involved receptors, TLR-7 and TLR-3 activate the downstream signaling
cascade, including NF-κB and IFN regulatory factor 3 (IRF3) [140]. Enhanced levels of
pro-inflammatory cytokines and the migration of inflammatory cells into the lung tissues
are the postulated mechanisms for acute lung injury. Cytokine storm disrupts tissue in-
tegrity and subsequently leads to pneumonitis [145]. Activation of various inflammatory
cytokines involved in the cytokine storm is controlled by the intracellular signaling path-
way JAK/STAT [146]. For instance, IL-6 which has been proven as a pivotal inflammatory
cytokine, employs the JAK/STAT pathway to perform its biological functions such as im-
mune response, inflammation, and oxidative stress. The inhibition of the IL-6/JAK/STAT
pathway appears a promising therapeutic option for the alleviation of COVID-19 [147].

5.2. Role of Oxidative Stress in COVID-19

Oxidative stress is considered a key contributor to the severity and pathogenesis of
SARS-CoV-2. Over-generation of reactive oxygen species (ROS) and antioxidant depletion
drive a pivotal role in viral replication and viral-related complications [148,149]. Some pop-
ulations of innate immune cells, such as macrophages and neutrophils, would generate ROS
to clear the pathogens [150,151]. Despite the necessity of ROS production by macrophages
and monocytes for modulating immune responses and eliminating viral infection, related
over-production contributes to the oxidation of cellular proteins/lipids and corrupts both
infected and normal cells, thereby leading to multiple organ dysfunctions [152]. More-
over, compelling studies have shown that viral infections such a SARS-CoV are linked
to the inhibition of Nrf2 and augmentation of NF-κB signaling, leading to antioxidant
deprivation and inflammation [153]. Nrf2, and its downstream target antioxidant en-
zyme heme oxygenase-1 (HO-1), serves as a crucial signaling pathway for cytoprotection
against inflammation through inhibiting critical inflammatory regulatory pathways such
as NF-κB [148]. Interestingly, Nrf2-keap1/HO-1 activation accompanied by an increase in
enzymatic/non- enzymatic antioxidant activities, including superoxide dismutase (SOD),
catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH), thiobarbituric acid re-
ductase (TBARS), NAD(P)H:quinone oxidoreductase 1 (NQO-1), which, in turn, suppress
oxidative mediators and lipid peroxidation, thereby alleviating the hallmarks of viral
infection [154,155]. Therefore, the Nrf2 pathway is an auspicious therapeutic target for
combating SARS-CoV pathogenesis.

5.3. Role of Apoptosis in COVID-19

Apoptosis is a determiner pathway involved in COVID-19 complications. As a
pathogenic pathway, apoptosis induction in infected cells can directly lead to viral patho-
genesis [156]. In SARS-CoV-infected patients, lymphopenia may occur due to T cell diminu-
tion through the activation of apoptosis [157]. Apoptosis activation mediated by human
COVID-19 infection contributes to the spread of the virus [158]. Apoptosis activation is
associated with numerous abnormalities in virally infected organs. In this line, SARS-CoV-2
infection stimulated apoptosis in lung epithelial/endothelial cells, which causes vascular
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leakage and alveolar edema, as well as acute lung injury [29]. Several mechanisms are
involved in apoptosis activation by human COVID-19. It has been reported that human
COVID-19 stimulates apoptosis via ER, caspase-mediated, p38MAPK, and c-Jun N-terminal
kinase (JNK) dependent pathways, which are needed for viral replication [159,160]. From
another point of view, SARS-CoV triggers apoptosis through decreasing anti-apoptotic
B-cell lymphoma 2 (Bcl)-2 members (e.g., Bcl-2 and Bcl-xL) and key survival signaling
pathways such as Akt. The upregulation of Akt inactivated several pro-apoptotic molecules
such as glycogen synthase kinase-3β (GSK-3β), caspase-9, Bad, and forkhead transcription
factor Foxo1 (FKHR), thereby hampering apoptotic pathways [161]. Virus infection can
trigger poly (ADP ribose) polymerase (PARP) and ultimately result in apoptosis. PARP
drives an important role in programmed cell death and cytokine release [162,163]. There-
fore, PARP inhibitors can be served as supportive treatments for alleviating the hallmarks
of COVID-19. Besides, viral infections disrupt mitochondrial membrane potential and
provoke pro-apoptotic factors such as cytochrome C, caspase-9, and caspase-3 [164,165].
Therefore, targeting particular mediators and enzymes of the apoptotic pathway is an
attractive strategy for fighting a viral infection.

5.4. Role of Autophagy in COVID-19

As another critical pathway for COVID-19, autophagy is an intracellular regulated
process that plays a pivotal role in the maintenance of cellular homeostasis [166]. Con-
sidering mechanistic changes in COVID-19, autophagy is a fundamental cell process
in the pathogenicity of disease. This process is characterized by the formation of the
double-membrane autophagosomes that subsequently fuse with acidic lysosomes to form
autolysosomes through a pH-dependent mechanism. The engulfed components are then
degraded with lysosomal enzymes [167]. There is increasing evidence that dysregulated
autophagy seems to play an essential role in the pathogenesis of SARS-CoV, as well as its
arising complications. Altered autophagy caused by viral infection is strongly associated
with severe tissue damage. On the other hand, autophagy could be considered a double-
edged sword in the pathogenesis of SARS-CoV. The pro-viral or antiviral role of autophagy
remains unclear [149]. The virus that enters the host cell can either be eliminated via
autophagy or escape autophagic degradation and replicate in the host cell [168]. A central
aspect of the pro-viral role of autophagy is to boost viral replication by the formation
of double-membrane vesicles in the host cells. In fact, virus replication in the host cell
begins at the ER-Golgi intermediate compartment, which is connected to autophagosome
biogenesis, where the viral genome possesses a critical interaction with the proteins that
are necessary to assemble a complete virus [169,170]. It has been identified that viral nsp6
protein was found to co-localize with the endogenous autophagy marker, LC3, suggesting
a possible collaboration between autophagy and COVID-19 replication [168]. Therapeutics
such as chloroquine and hydroxychloroquine elicit antiviral effects by inhibiting the fusion
of autophagosomes and lysosomes, and blocks the later stages of autophagic flux [171].
On the other hand, the induction of autophagy may combat viral infection by the degra-
dation of viral components and the augmentation of innate and adaptive immunity [172].
Induction of autophagy and inflammatory responses induced by viral infection contribute
to lung injury [173]. It has been reported that the inhibition of S-phase kinase-associated
protein 2 (SKP2), which is responsible for proteasomal degradation of Beclin 1, enhanced
autophagy, and subsequently attenuated the replication of MERS-CoV [174]. A novel
analysis has also highlighted the relation between autophagy mechanisms and antivi-
ral/inflammatory responses in COVID-19. In this sense, PI3K/Akt/ mammalian target
of rapamycin (mTOR) is a key control signaling pathway for autophagy that regulates
various autophagy mediators, such as Beclin, microtuble-associated protein light chain 3
(LC3), and autophagy-related (Atg). Human COVID-19-infected hepatocytes could induce
autophagy through ERK/MAPK and inhibition of the PI3K/Akt/mTOR pathway [175].
Additionally, JNK, AMP-activated protein kinase (AMPK), p38MAPK control the balance
of the autophagy response to viral infection [176–178]. Considering the role of the afore-
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mentioned mediators in autophagy, modulating autophagic pathways could pave the road
for combating SARS-CoV-2 infection [170].

Overall, the inhibition of autophagy during the first phase of COVID-19 could prevent
the replication of SARS-CoV-2 and negatively regulate the IFN response. On the other
hand, autophagic pathways are in a near link to inflammation and immune responses in
COVID-19. Accordingly, dysregulation in autophagic pathways could lead to cytokine
storm and immune dysfunction. Consequently, autophagy modulation restores homeosta-
sis in the immune response of COVID-19 to represent an important challenge, indicating
the ability to improve antiviral response, restrict inflammation, and prevent other compli-
cations [179]. Therefore, a mechanistic targeting of autophagy should be considered a new
strategy in combating SARS-CoV-2.

6. Therapeutic Interventions for COVID-19

Shortly after the identification of COVID-19 in China, many studies demonstrated the
effectiveness and advantages of different classes of drugs when hoping to find a suitable
agent with promising effects in the prevention, control, recovery, and improvement of
related pathological conditions. It has been well-established that inflammation, apoptosis,
oxidative stress, autophagy, and host factors, as well as destructive signaling pathways, play
a crucial role in the pathogenesis of SARS-CoV-2. Therefore, modulation of the dysregulated
therapeutic targets and pathways is an attractive therapeutic avenue for COVID-19.

6.1. Targeting Autophagy and Apoptosis

Prevailing evidence has highlighted the cross-talk and the balanced interplay between
autophagy and apoptosis [180]. The over-accumulation of autophagosome promotes the
apoptotic pathway that eventually causes apoptotic death of the virally infected cells and
represses the virus replication cycle [181]. Therefore, providing alternative therapies that
potentially interfere with SARS-CoV-2 and lead to autophagy regulation is of great impor-
tance. To date, there are no proven effective therapies to prevent or cure COVID-19. An
accumulation of findings suggests that several drugs under clinical trials for SARS-COV-2
are autophagy/apoptosis modulators. For instance, chloroquine/hydroxychloroquine,
emtricitabine/tenofovir, IFN-α-2b, lopinavir/ritonavir, and ruxolitinib contribute to au-
tophagosome accumulation through inhibiting autolysosome formation and thereby dis-
rupt the replication of SARS-CoV-2 [182]. Additionally, corticosteroids suppress autophagy
by inhibiting LC3 recruitment [183]. Besides, ruxolitinib, as a JAK inhibitor can induce
autophagy through blocking mTORC [184].

Altogether, modulating apoptosis and autophagy seems to be a hopeful strategy in
combating COVID-19.

6.2. Targeting Oxidative Stress

Viral infections provoke cytokine storm, which in turn leads to oxidative damage.
Therefore, alleviation and management of oxidative damages can be achieved by a large
dose of antioxidants [185]. Vitamin C possesses well-characterized antioxidant properties,
being able to scavenge free radicals and thereby prevent cells and tissues from oxidative
damage [186]. Apart from its antioxidant property, evidence is accumulating that vitamin
C exhibits antiviral activity by augmenting IFN-α production, decreasing inflammation,
ameliorating endothelial dysfunction, and also direct virucidal activity [187]. A randomized
placebo-controlled trial revealed that the high dose of intravenous vitamin C can improve
pulmonary function and decrease the risk of ARDS in 308 patients diagnosed with COVID-
19 and transferred into the intensive care unit [188]. Vitamin E is a key lipophilic antioxidant
that mitigates lipid peroxidation [189]. This vitamin also regulates immune response
and stabilizes membrane cells. The important effects of vitamin E make it a potential
candidate for the alleviation of oxidative damage and inflammation induced by SARS-
COV-2 [190]. More importantly, astaxanthin, a lipid-soluble carotenoid that possesses a
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higher antioxidant effect than vitamin E and vitamin C, can be considered as a potential
option in counteracting COVID-19 complications [191].

6.3. Targeting SARS-CoV-2 Invasion

Targeting the lifecycle steps of SARS-CoV-2, including virus attachment and endocy-
tosis, viral replication, and transcription, as well as virus assembly and release, provides a
promising therapeutic approach. The auspicious drug targets encompass host factors (e.g.,
ACE2, TMPRSS2, and CD147), and NSPs (e.g., RNA-dependent RNA polymerase, and
3-chymotrypsin-like protease), along with structural proteins. Interestingly, serine protease
inhibitors, such as camostat, were identified as suppressing TMPRSS2 and effectively
decreasing mortality following SARS-CoV infection [11]. More importantly, Hoffmann et al.
revealed that this drug possesses the ability to abrogate SARS-CoV-2 entry into lung cells
by suppressing ACE2 and TMPRSS2 [192]. Based on preclinical investigations, a double-
blind randomized controlled clinical study was performed with 114 COVID-19 infected
patients to find whether camostat mesylate at a dose of 200 mg/3 times a day can diminish
a SARS-COV-2 viral load in early COVID-19 disease (NCT04353284). In an open-label
phase 2 clinical trial, meplazumab, an anti-CD147 antibody, inhibited SARS-CoV-2 spike
protein binding and could block the infection of SARS-CoV-2 in 20 COVID-19 patients with
pneumonia [103].

It has been reported that arbidol possesses an attractive mechanism of action that
affects the S protein/ACE2 interaction, halting viral membrane fusion [193]. A non-
randomized study revealed that treatment with arbidol for nine days decreased mortality
rates and enhanced discharge rates in 67 patients infected with COVID-19 [194]. As antivi-
ral chances, combined lopinavir/ritonavir combination as 3-chymotrypsin-like protease
inhibitors of anti-retroviral drugs was suggested as an effective drug against MERS-CoV
and SARS-CoV [195,196]. For this reason, several clinical trials have been performed to
investigate its effects on COVID-19. The results of those studies were not sufficient and
did not recommend combination therapy as a suitable medication [1,197]. The advan-
tages of new studies emphasized that arbidol monotherapy was more impressive than
lopinavir/ritonavir in the treatment of patients with COVID-19. About 14 days after the
treatment, viral load was not identified in the arbidol group, and the duration of the
positive RNA test was shorter in this group [198].

Favipiravir is a broad-spectrum RNA polymerase inhibitor, an antiviral compound
that showed a suitable activity versus the Crimean-Congo hemorrhagic fever, rabies,
oseltamivir-resistant, and wild-type influenza B virus in mice [199–201]. For this reason,
an open-label control study was performed to investigate the advantages of favipiravir
on COVID-19, and results showed improvement in the chest imaging in comparison
with the control group and might be a useful agent in the treatment of COVID-19 [202].
Moreover, remdesivir is a new nucleotide analog and RNA-dependent polymerase inhibitor
that showed considerable in vitro activity versus SARS-CoV-2 [203]. An emergency use
authorization for remdesivir was issued to adults and children hospitalized with COVID-19.
Wang et al. designed a double-blind, randomized trial to investigate the effect of remdesivir
in 237 patients with severe COVID-19. Compared with placebo, remdesivir could not
significantly reduce the duration of hospitalized time in patients with COVID-19 [204].
Besides, another RNA-dependent polymerase inhibitor, ribavirin, which is routinely used
in combination with IFN for hepatitis C virus infection, could not find enough evidence to
treat COVID-19 [205]. Darunavir is a protease inhibitor that has shown beneficial effects in
treating HIV-1 infection. In February 2020, a clinical trial was registered in China to peruse
the advantages of this drug in combination with cobicistat, a human cytochrome P-450 3A
enzyme inhibitor; thus far, no data support the efficacy and safety of this agent in humans
diagnosed with COVID-19 (NCT04252274).

There is inadequate and insufficient information thus far to know whether chloroquine
or hydroxychloroquine has a remarkable role in the treatment of COVID-19. Both hydroxy-
chloroquine and chloroquine have been documented to inhibit SARS-CoV-2 in vitro; how-
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ever, it seems that the antiviral potential of hydroxychloroquine is more than chloroquine.
The antiviral mechanisms of hydroxychloroquine and chloroquine are not fully realized,
but inhibiting viral fusion, changing the pH at the cell membrane surface, inhibiting and
suppressing the replication of nucleic acid, preventing viral assembly and release, and
decreasing the glycosylation of viral proteins are amongst their important possible antiviral
mechanism [203,206]. Even so, the obtained clinical data on either of the two compounds
are limited and have serious methodological problems. In an open-label study performed
in March 2020, the administration of 200 mg hydroxychloroquine three times per day for
ten days increased the rate of undetectable SARS-CoV-2 RNA in samples obtained from
nasopharyngeal in comparison with the placebo group [207]. Significant methodologic
problems reduced the value of those studies and made the results unreliable [208]. Another
randomized trial with a statistical population of 30 adults with COVID-19 was performed
in Shanghai. The results of those studies did not show a significant difference between the
group receiving hydroxychloroquine and the group receiving standard care [209]. Further-
more, adverse effects due to high doses of chloroquine and increased mortality prevented
patients from continuing the studies [210].

6.4. Targeting Inflammation

From an inflammatory point of view, the critical role of inflammatory responses and
enhanced inflammatory cytokines in COVID-19 are the most critical factors. In this regard,
the level of IL-6 showed a considerable correlation with the severity of COVID-19, and
the measure of this cytokine can be used as an important factor in predicting disease
severity [211]. Tocilizumab is a selective antagonist of the IL-6 receptor, which prevented
cytokine release syndrome and led to improving the conditions of a patient with severe
COVID-19 [212]. Several clinical studies have been conducted in various countries, includ-
ing the United States, Spain, Nepal, Malaysia, and Belgium, to investigate the effects of
this drug, but the full results of these studies have not yet been published (NCT04332094,
NCT04377659, NCT04331795, NCT04330638, NCT04317092, NCT04345445). Siltuximab
and sarilumab are other receptor antagonists of IL-6 that are in the early stages of clinical
research (NCT04329650, NCT04322188, NCT04341870, NCT04357808). Consistently, it
seems that the IFN-β Subtype may be a suitable option for COVID-19 treatment. IFN-β
properly decreased the MERS-CoV in vitro and has had pleasant outcomes in an ani-
mal model of MERS-CoV infection, but no data evaluated the advantages of IFN-β on
SARS-CoV-2 [195,213,214].

As the importance of JAK/STAT in the pathogenesis of COVID-19 was shown previ-
ously, baricitinib is a JAK inhibitor that leads to the inactivation of STATs and a decrease
in the serum levels of IgG, IgA, IgM, and CRP. The limited data demonstrated that the
administration of baricitinib may modify cytokine-release syndrome due to COVID-19.
The results suggested this agent as a useful drug for damascening to the COVID-19 therapy
regimen [215]; for this reason, several clinical trials are in progress to sift the effect of
baricitinib in COVID-19 (NCT04340232, NCT04321993, NCT04362943).

Glucocorticoids are of the main classes of drugs possessing immunosuppressive, anti-
inflammatory, and antiproliferative activities through blocking IL-1α and β, NF-κB, TNF-α,
AP-1, and increasing the synthesis of, IκB-α. The administration of glucocorticoids in
patients with influenza led to a delay in viral clearance and enhanced risk for mortality;
this was similar in patients with a MERS-CoV infection [216,217]. Furthermore, the admin-
istration of glucocorticoid drugs on patients with COVID-19 did not provide adequate and
acceptable results [218]. Nonsteroidal anti-inflammatory drugs (NSAIDs) have for a long
time been considered effective therapies against inflammatory diseases [219]. To determine
the efficacy of ibuprofen, a commonly prescribed NSAID, in COVID-19, a randomized
phase 4 clinical study was applied in 230 severe COVID-19 patients to treat them with
ibuprofen at a daily dose of 200 mg (NCT04334629). Additionally, a randomized phase 3
clinical trial was registered to assess the effectiveness of naproxen (250 mg twice a day) in
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patients (n = 584) infected with SARS-CoV2 (NCT04325633) [220]. Pre-clinical evidence has
previously been presented on the use of NSAIDs during COVID-19 [221].

6.5. Miscellaneous Agents

In addition to the aforementioned agents, antibiotics are used for possible effective-
ness in combating COVID-19. Azithromycin is a macrolide antibiotic with conflicting
information about its concomitant use with hydroxychloroquine for COVID-19 treatment.
However, a study conducted in May 2020 in France showed that the use of azithromycin in
combination with hydroxychloroquine before the beginning of COVID-19 complications
may be safe and led to a very low fatality rate in patients [222]. The significant potential
of both drugs for corrected QT interval prolongation, as well as the possibility for the
exacerbation of this complication in their simultaneous use, prevents their concomitant
administration, and it is not recommended [223,224]. As another antibiotic, teicoplanin was
shown to be effective against former coronaviruses and demonstrated an in vitro activity
against the novel coronavirus, but enough information and convincing evidence are not
available from clinical trials [225].

As another class of drugs, an anti-parasitic drug, ivermectin, showed a suitable in vitro
effect on SARS-CoV-2 [226]. For this reason, the authors advised investigating the possible
benefits of ivermectin in humans with COVID-19, and several clinical trials began in the
hope of achieving convincing results (NCT04360356, NCT04343092, and NCT04374279).
From another point of view, oseltamivir, a neuraminidase inhibitor, indicated for pro-
phylaxis and treatment of influenza, did not show any significant effect for treatment or
prophylaxis of COVID-19 [205]. From other drugs used against COVID-19, the Bacillus
Calmette–Guérin (BCG) vaccine could be mentioned for its use in the immunization against
tuberculosis and the prevention of leprosy. The BCG vaccine showed in vitro and in vivo
non-specific protective activities versus other respiratory tract infections. Statistical analysis
was conducted to investigate the effects of vaccine BCG in countries with and without
national vaccination programs in preventing and reducing COVID-19’s mortality. The
results showed that, in countries with vaccination programs, the prevalence and mortality
rate was estimated at 38.4 and 4.28 people per million, respectively. The death rate was
40/million in countries without BCG programs [227]. Therefore, it is hypothesized that the
vaccine may reduce the incidence and severity of COVID-19 in healthcare workers. In this
regard, several clinical trials are being conducted to investigate these effects (NCT04348370,
NCT04373291, NCT04327206, NCT04350931, NCT04328441). Increasing evidence has
shown that vitamin D deficiency is correlated with COVID-19-associated coagulopathy,
inflammation, immune response dysfunction, and mortality [228]. From a mechanistic
angle, vitamin D displays antiviral activity through immunomodulation and induction
of autophagy [229]. It has been reported that vitamin D supplementation mitigates liver
disease progression and augments responses to therapy in hepatitis C virus patients [230].

Other miscellaneous compounds, antioxidation, immune-modulatory, and
anti-inflammatory activity of melatonin, as a neurohormone, made this compound one
of the drugs with the potential to be added to the therapeutic regimen of patients with
COVID-19 [231]. There is some other information on the protective effects of melatonin in
viral diseases, which may display these advantages in patients with COVID-19 [231].

7. Importance of Phytochemicals in Combating COVID-19

Phytochemicals are a consequential source of active chemicals constructed by plants,
with potential effects against pathogens. They have been introduced as influential resources
for drug discovery, possessing various human health benefits. Besides, a substantial spec-
trum of biological activities is reported for phytochemicals, such as anticancer, antibacterial,
neuroprotective, cardioprotective, immune-modulatory, anti-inflammatory, and antioxi-
dant effects [232,233]. Several steps in viral replication and infection can be also suppressed
by natural products [50]. Although many of these compounds have been shown to have
broad-spectrum antiviral effects, the mechanisms behind these effects have not yet been
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fully elucidated. Besides their potent antioxidant activities, inhibiting the synthesis of DNA
and RNA, suitable scavenging capacities, prevention of the virus entry, or reproduction of
the virus are some of the critical reported antiviral mechanisms of these compounds [234].
The immune-modulatory effect of natural products and the significant potential for sup-
pressing the inflammatory reaction, as one of the major reasons for mortality and morbidity
of SARS-CoV-2 infection, are other promising mechanisms of phytochemicals in the treat-
ment of SARS-CoV-2 [235]. We have previously reported the modulatory roles of natural
products on inflammatory, apoptotic, and oxidative stress pathways involved in the patho-
genesis of COVID-19-associated lung injury [35,236]. We have also shown that the neuronal
manifestations of COVID-19 could be potentially targeted by phytochemicals [35]. There-
fore, in the present study, we have focused on the inflammatory, apoptotic, oxidative
stress and autophagic pathways, and virus life cycle, as well as the phytochemical effects.
Flavonoids, polyphenolics, alkaloids, terpenoids, coumarins, and carotenoids are some of
the important groups of phytochemicals with antiviral, antioxidant, and anti-inflammatory
activities towards developing a suitable therapeutic option for COVID-19 [35].

As a group of multi-targeted agents, flavonoids and polyphenols are already rec-
ognized as potential therapeutic agents for the treatment of viral infections. Numerous
studies have shown that curcumin (a phenolic compound) possesses anti-inflammatory
and antioxidant roles, and interrupts the viral infection process via several mechanisms,
including hindering virus entry, replication, and budding, directly interfering with viral
proteins and repressing the gene expression of the virus [237–240]. From another point of
view, curcumin reduced the pro-inflammatory cytokines and virus-induced cytokine storm,
as well as alleviating lung injury, thereby indicating potential effects in the treatment of
COVID-19 [237,241]. According to computational methods, curcumin offers the ability
to inhibit the spike protein of SARS-CoV-2 and disrupts viral entry [242]. Another in
silico approach also revealed that curcumin and catechin were used as potential antiviral
polyphenols through the dual inhibition of host cell receptors to the virus (mediated by
ACE2) and viral protein entry (S-protein). It should be mentioned that the binding affinity
of catechin was more than that of curcumin [243].

It has been previously documented that the bioactive flavonoid baicalein blocks
influenza A virus H3N2 through suppressing autophagy markers, Atg-5, Atg-12, and
LC3-II [244]. Baicalein could effectively abrogate the replication of SARS-CoV-2 in Vero
cells through diminishing 3C-like proteases (3CLpro) SARS-CoV-2 [245]. In another study,
baicalein mitigated Vero E6 cell damage induced by SARS-CoV-2. Additionally, this
nutraceutical agent alleviated the lesions of lung tissue and suppressed replication of SARS-
CoV-2 in mice. Furthermore, this compound improved respiratory function and reduced
inflammation, corroborated by decreasing the level of IL-1β and TNF-α in lipopolysac-
charide (LPS)-induced acute lung injury of mice [246]. Docking evidence revealed that
flavonoids biochanin A and silymarin strongly interact with the active site of SARS-CoV-2
spike glycoprotein and ACE2, respectively [247].

Further in vitro studies should be carried out on these flavonoids against SARS-CoV-2.
As a best-docked bioflavonoid, naringin exhibited a high-affinity binding at the binding
site of main protease (Mpro) and spike glycoprotein of SARS-CoV-2 [248,249]. It has been
recently reported that two-pore channel 2 (TPC2) is a key requirement for SARS-CoV-2
entry [250]. Surprisingly, naringenin exhibited the capacity of potent antiviral activity
against SARS-CoV-2 and could successfully abrogate TPC2 in vitro [251]. Further in vivo
studies are needed to confirm the beneficial effect of naringenin.

It has been previously documented that phytoactive flavonoid taxifolin ameliorated
sepsis-induced pulmonary damage and edema by inhibiting the NF-κB pathway [252]. Ac-
cording to the molecular docking approach, taxifolin was found a potential inhibitor against
Mpro SARS-CoV-2 [253]. As an effective candidate against SARS-CoV-2, the flavonoid silib-
inin declined immune response and inflammation by inhibiting STAT3, thereby facilitating
effects on the early stage SARS-CoV-2 infection [254]. A computational study proposed
that silibinin hinders the replication of SARS-CoV-2 via abrogating RNA-dependent RNA
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polymerase (RdRp) [255]. Silibinin offers excellent opportunities for further investigations
in preclinical and clinical trials as an anti-SARS-CoV-2 agent. It has been reported that
the flavonoid luteolin can disrupt the viral fusion and entry process and can also mitigate
SARS-CoV infection with EC50 values of 10.6 µM in a dose-dependent manner [256].

Resveratrol is a phenolic compound that appreciably inhibited MERS-CoV infection
and could enhance cellular survival behind virus infection. It could notably decrease an
essential protein expression for MERS-CoV replication (nucleocapsid N), and downreg-
ulated the in vitro apoptosis induced through MERS-CoV [257]. It has been also shown
that resveratrol potentially suppressed SARS-CoV-2 infection in vitro [258]. Emodin is
another chemical compound that belongs to the anthraquinone category. It was shown
to block and suppress the S protein and ACE2 interaction, leading to beneficial effects in
the treatment of SARS-CoV [259]. Hirsutenone, as a bioactive diarylheptanoid polyphenol
isolated from Alnus japonica (Thunb.) Steud. (Betulaceae), exerted strong antiviral activity
through diminishing papain-like protease (PLpro) of SARS-CoV. It has been reported that
catechol and α, β-unsaturated carbonyl moiety play critical roles in protease blocking
activity [260].

Alkaloids are an important class of natural products with antiviral activities, which have
been extensively studied [261,262]. Molecular docking evidence proved the promising poten-
tial of such alkaloids in targeting SARS-CoV-2 RdRp, including 10′–hydroxyusambarensine,
cryptospirolepine, and strychnopentamine [263]. The bioactive alkaloid emetine, as a viral
entry inhibitor, has previously been shown to block MERS-CoV-mediated infection [264].
Interestingly, emetine inhibits SARS-CoV-2 replication in vitro, and a synergistic effect be-
tween the combination of remdesivir and emetine was observed [265]. As another alkaloid
compound, lycorine was strongly able to diminish the spread and replication of human
coronavirus OC43 (HCoV-OC43) in a mouse central nervous system [264]. It has also been
shown that two alkaloids lycorine and oxysophoridine possess the ability to suppress the repli-
cation of SARS-CoV-2 in vitro [266]. Consequently, tylophorine, a natural alkaloid, has shown
promising beneficial effects against coronavirus porcine transmissible gastroenteritis virus
(TGEV) through suppressing JAK2 mediated NF-κB activation related to the inflammatory
response. It also inhibited viral replication by interfering with the viral RNA complex [267].
As broad-spectrum antiviral agents, tylophorine based derivatives also blocked SARS-CoV-2,
with EC50 values of 2.5–14 nM [268]. Such results indicated the potential of tylophorine as a
novel therapeutic intervention for COVID-19 infection.

In addition to phenolic compounds and alkaloids, terpenoids could also contain aus-
picious natural plant-derived secondary metabolites for combating COVID-19 [269]. As
a triterpenoid compound, glycyrrhizin has been successfully applied to mitigate virus-
induced inflammatory cascades and viral replication [270,271]. It has been well-established
that high-mobility group B1 (HMGB1) protein plays a key role in viral infection and repli-
cation [272,273]. Interestingly, an in silico study performed by Bailly et al. revealed that
glycyrrhizin is a potential binder of HMG box protein, and could thereby be a promising
candidate to be evaluated against COVID-19 [274]. Cumulative evidence has demon-
strated that natural coumarin compounds possess antioxidant, antiapoptosis, and anti-
inflammatory activities toward antiviral effects. Additionally, these agents effectively
disrupt various stages in the virus replication cycle, and could thereby be beneficial agents
for tackling SARS-CoV-2 [275]. Regarding coumarins, a recent in silico study revealed that
some naturally occurring coumarins, including corymbocoumarin, methylgalbanate, and
heraclenol, displayed potential antiviral activity through inhibiting Mpro [276]. Molecular
docking approaches indicated that natural coumarin compound toddacoumaquinone pos-
sesses a significant suppressing ability against Mpro of SARS-CoV-2, which is necessary for
viral replication [277]. Another in silico study also illustrated that the bioactive coumarin
inophyllum A remarkably targets Mpro [278].

Consequently, of other natural products, carotenoids seem to be of potential interest
in targeting various steps of the viral life cycle and host proteins [279]. As one of the most
potent/efficient carotenoids, astaxanthin has been a promising source of antioxidation and
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anti-inflammatory agents, with promising potential to combat viral infections and related
complications through targeting several destructive signaling mediators [191].

Altogether, several findings revealed that phytochemicals possess the ability to sup-
press SARS-CoV-2 infection. Unfortunately, almost all of the current evidence focused on
the efficacy of phytoactive compounds in silico and in vitro models of COVID-19, and the
main antiviral mechanisms remain elusive. Therefore, the beneficial effects of phytochemi-
cal against COVID-19 and main mechanisms require in-depth research to be verified by
preclinical and clinical studies. Toxicological aspects, pharmacokinetics and pharmaco-
dynamics properties and possible side effects, and structure–activity relationship (SAR)
analyses need appropriate assessment.

In silico studies indicated limonin [280], berberine [281], and fisetin [282] inhibited
ACE2 and spike protein [280], bound to ACE2, and increased Nrf2, HO-1, and TGF-β [281];
also led to the reduction of TNF-α, IL-6, IL-1β [282]. Other compounds such as tetrandrine,
lycorine, kazinol A [283], and sinigrin [284] inhibited the early stage in HCoV-OC43-
infection, and also inhibited the effects against different species of CoV [283], as well as
inhibited SARS-CoV 3CLpro and PLpro [283,284]. The results of in silico studies also demon-
strated that methyl rosmarinate, calceolarioside B, myricetin 3-O-beta-D-glucopyranoside,
betulinic acid, cryptotanshinone, dihomo-γ-linolenic acid, kaempferol, quercetin, sugiol,
licoleafol, and amaranthine may have striking potential against COVID-19 [285,286]. Based
on in silico evidence, different flavonoids, likely tomentin A-E [287], chrysin [288], nar-
cissin [289], cyaniding [290], and hesperetin [291], interacted with ACE2 and declined its
neurological manifestation in COVID-19 [288–291], and also inhibited papain-like protease
in COVID-19 [287]. Docking evidence indicated that baicalin binds to TMPRSS2 and leads
to the inhibition of COVID-19 [204]. An in vitro study also indicated that geraniol has
inhibitory effects against viral spike protein and is a useful agent for therapy against
COVID-19 [292]. Additionally, other natural compounds have important roles in modulat-
ing those signaling pathways, such as malvidin, which leads to the reduction of Bax/Bcl-2,
caspase-3, IL-β, and TNF-α [50]. Additionally, osthole alleviated lung injury and inflam-
mation through preventing the downregulation of ACE2 and Ang1–7 expression, thereby
possessing anti-inflammatory effects [293]. Moreover, daidzein reduced TLR4, MyD88,
NF-κB, MPO, IL-6, and TNF-α [294], thymol reduced the level of NF-κB, IL-6, TNF-α,
and IL-1β [295], hyperin reduced TNF-α, IL-6, IL-1β, and NF-κB [296], and cannabidiol
declined the levels of MPO, TNF-α, and IL-6 [297]. These natural products declined the
level of important mediators in signaling pathways of COVID-19, and have a vital function
in reducing the symptoms of COVID-19. Several phytochemicals with promising antiviral
effects are presented in Table 1. Figure 1 shows the proposed targets and related therapeutic
candidates for SARS-CoV-2.

Table 1. Candidate phytochemicals with promising antiviral effects.

Phytochemical Compound Study Type Mechanism of Antiviral Activity References

Alkaloid

10′-hydrox-
yusambarensine In silico ↓RdRp [263]

Berberine In vitro, In silico
Antiviral effect, ↓ACE2, spike

protein and increased Nrf2, HO-1
↓TGF-β1, ROS

[281]

Cryptospirolepine In silico ↓RdRp [263]

Emetin In vitro
↓Viral entry

↓MERS-CoV S-mediated infection,
↓SARS-CoV-2 replication

[264,265]
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Table 1. Cont.

Phytochemical Compound Study Type Mechanism of Antiviral Activity References

Lycorine
In vivo
In vitro

↓Spread and replication of
HCoV-OC43,

↓SARS-CoV-2 replication
[264,266]

In vitro ↓Different species of CoV [283]

Oxysophoridine In vitro ↓SARS-CoV-2 replication [266,298]

Strychnopentamine In silico ↓RdRp [263]

Tetrandrine In vitro ↓HCoV-OC43-infected [283]

Tylophorine In vitro ↓JAK2, ↓NF-κB, ↓inflammation,
↓replication [267,268]

Anthocyanin Malvidin In vitro ↓Bax/Bcl-2, Caspase-3,
IL-1β, TNF-α [50]

Cannabinoid Cannabidiol In vitro ↓MPO, TNF-α, IL-6 [297]

Coumarin

Inophyllum A In silico ↓Mpro, ↓replication [278]

Methylgalbanate In silico ↓Mpro, ↓replication [276]

Osthole In vitro ↓IL-6, TNF-α,
↑ACE2 and Ang1–7 [293]

Toddacoumaquinone In silico ↓Mpro, ↓replication [277]

Diarylheptanoid Hirsutenone In vitro ↓PLpro, ↓replication [260]

Flavonoid

Baicalein In vitro
In vivo

↓3CLpro ↓Vero E6 cells damage,
↓lesions of lung tissue, ↓replication,
↓IL-1β, ↓TNF-α, ↓inflammation

[245,246]

Biochanin A In silico ↓spike glycoprotein [247]

Kaempferol In vitro
In silico ↓3CLpro, ↓replication [299]

Luteolin In vitro
In silico

↓Viral entry ↓SARS-CoV infection
↓TNF-α, IL-1β, IL-6, IL-18, NF-κB [256,300]

Naringenin In vitro
In silico

↓TPC2, ↓viral infection
↓TNF-α, IL-1β, IL-6, IL-18, NF-κB [251,300]

Naringin In silico ↓Mpro, ↓replication [249]

In silico ↓Spike glycoprotein [248]

Silibinin In silico ↓RdRp [255]

Silymarin In silico
↓ACE2

↓IL-6, IL-1β, TNF-α, p46-p54, p42,
p38, p44, NF-κB, and JNK.

[247]

Taxifolin In silico ↓Mpro [253]

Flavonoid

Cyanidin In silico ↓ACE2 and RdRp [290]

Kazinol A In vitro ↓SARS-CoV 3CLpro and PLpro [283]

Narcissin In silico Bind to ACE2 [289]

Tomentin A-E In silico ↓PLpro in COVID-19 [287]

Flavone
Baicalin In silico ↓TMPRSS2 and lead to inhibition of

COVID-19 [204]

Chrysin In silico ↓ACE2 and decline neurological
manifestation in COVID-19 [288]
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Table 1. Cont.

Phytochemical Compound Study Type Mechanism of Antiviral Activity References

Flavonol

Fisetin In vitro, In silico
↓ACE2,

↓TNF-α, IL-6, IL-1β,
↑Nrf2, GPx, SOD

[282]

Hesperetin In vitro ↓ACE2 and reduce neurological sign
in COVID-19 [291]

Hesperetin In vitro ↓ACE2 and reduce neurological sign
in COVID-19 [291]

Hyperin In vitro ↓TNF-α, IL-6, IL-1β, NF-κB [296]

Isoflavone Daidzein In vitro ↓TLR4, MyD88, NF-κB, MPO,
IL-6, TNF-α [294]

Polyphenol

Catechin In silico ↓Spike protein, ↓viral entry, ↓ACE2 [243]

Curcumin In silico
↓spike protein, ↓viral entry, ↓ACE2
↓TNF-α, IL-1β, IL-6, IL-18,

NF-κB, COX-2
[242,243,301]

Ellagic acid In vitro ↓Mpro, ↓replication [302]

Resveratrol In vitro ↓SARS-CoV-2 infection. [258,301]

Sinigrin In vitro ↓SARS-CoV 3CLpro [284]

Terpenoid

Carvacrol In silico ↓Spike protein [292]

Geraniol In vitro ↓Spike protein,
↓TNF-α, IL-1β, IL-6, iNOS, COX-2 [292]

Limonin In silico ↓ACE2, 3CLpro, PLpro, RdRp and
spike protein [280]

Thymol In vitro ↓NF-κB, IL-6, TNF-α, IL-1β,
↑SOD [295]

ACE2: angiotensin-converting enzyme 2; Bcl-2: B-cell lymphoma 2; COX-2: cyclooxy-
genase; ERK: extracellular-regulated kinase; GPx: glutathione peroxidase; HCoV: human
coronavirus; HO-1: heme oxygenase-1; IL: interleukin; iNOS: inducible nitric oxide syn-
thase; JAK: Janus kinase; JNK: c-Jun N-terminal kinase; Mpro: main protease; MERS-CoV:
Middle East respiratory syndrome coronavirus; MIP: macrophage inflammatory protein;
MPO: myeloperoxidase; NF-κB: nuclear factor-kappa B; PLpro: papain-like protease; RdRp:
RNA-dependent RNA polymerase; Nrf2: nuclear factor erythroid 2-related factor 2; ROS:
reactive oxygen species; SARS-CoV-2: severe acute respiratory syndrome coronavirus
2; SOD: superoxide dismutase; TGF-β: tumor grows factor-β; TLRs: toll-like receptors;
TNF-α: tumor necrosis factor-α; TPC2: two-pore channel 2.
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Figure 1. Multiple dysregulated pathways in COVID-19. ACE2: angiotensin-converting enzyme 2; Atg: autophagy related;
Bcl-2: B-cell lymphoma 2; CAT: catalase; COX: cyclooxygenase; GST: glutathione S-transferases; HO: heme oxygenase; IFN:
interferon; IKKβ: IκB kinase β; IL: interleukin; JAK: Janus kinase; LC3: light chain 3; NF-κB: nuclear factor kappa B; RdRP:
RNA-dependent RNA polymerase; RTK: receptor tyrosine kinase; STAT: signal transducer and activator of transcription;
TMPRSS2: transmembrane protease serine 2; TNF-α: tumor necrosis factor-α.

8. Discussion

Due to the complex pathological mechanisms behind COVID-19, revealing its precise
signaling pathways may open new roads for providing efficient therapies. COVID-19
employs various signaling pathways/mediators, including inflammation, oxidative stress,
apoptotic, and autophagy, to overcome the immune system. It has also been shown to alter
the expression of some host factors, including enzymes/mediators and co-receptors such
as ACE2, as well as ILs, TNF-α, IFN-γ, Nrf2, Bax/caspases, and Beclin/LC3 to facilitate
cellular infection and subsequent complications (Figure 2). Despite advances, medicinal
therapy against COVID-19 remains challenging. Besides, considering the multiple media-
tors involved in the pathogenesis of COVID-19, and providing multi-target agents, could
be a more serious step toward controlling an infection. We previously reported the conven-
tional therapeutic agents which potentially target the inflammatory signaling pathways in
COVID-19 [124]. The current review introduces candidate therapeutic targets/treatment
in COVID-19, as well as the evidence of using candidate phytochemicals. In this regard,
phenolic compounds, alkaloids, terpenoids, coumarins, and carotenoids showed potential
anti-SARS-CoV-2 effects by targeting viral life cycle, virus entry/replication, spike proteins,
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ACE2, RdRP, PLpro, and Mpro. It is worth mentioning that, despite preclinical mechanistic
studies on the effects of phytochemicals on SARS-CoV-2, more clinical investigations are
needed to confirm the results. More studies/methods are also needed to design a novel
drug delivery system that counteracts the pharmacokinetic limitations of phytochemicals
in COVID-19.
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