
Methodology

Determining the Number
of Bariatric Beds Needed in a
U.S. Acute Care Hospital

Michael Magazine, PhD1, Matt Murphy, MS2,
Daniel P. Schauer, MD, MSc3, and Neal Wiggermann, PhD4

Abstract
Aim: This project used historical hospital data to forecast demand for specialized bariatric beds.
Models were evaluated that determined the relationship between the number of bariatric beds owned
and service level for patients of size requiring these beds. A calculator was developed for minimizing
the equipment costs of meeting demand. Background: Failing to provide enough bariatric beds may
negatively affect outcomes for patients of size and healthcare workers, whereas owning more bariatric
beds than required to meet demand means unnecessary cost. With rising rates of obesity increasing
care costs, minimizing equipment costs is increasingly important. Method: One year of hospital
admissions data were used to determine arrival rates and lengths of stay for patients of size. Two
subsequent years verified the consistency of these rates. Simulations modeled the flow of patients of
size through the hospital and the service level associated with the number of beds owned.
A minimization function determined the optimal number of bariatric beds to be provided. A simplified,
generalizable model was compared to the simulation. Results: The simplified model produced similar
results to more complex simulation. The optimization was robust, or insensitive to small changes in
inputs, and identified substantial opportunity for savings if demand for beds was substantially over- or
underestimated. Conclusions: The simplified model and cost optimization could be used in many
situations to prevent costly errors in equipment planning. However, hospitals should consider
customized simulation to estimate demand for high-cost equipment or unique circumstances not
fitting the assumptions of these models.

Keywords
hospital resource planning, cost optimization, simulation modeling, bariatric bed

Background

The growing prevalence of obesity is well-

documented. Worldwide in 2016, 650 million

adults were obese (body mass index [BMI] at

least 30 kg/m2) with trends steadily increasing

(World Health Organization, 2020). In the United

States, 49% of the adult population is expected to

be obese by 2030, and nearly one in four will have

severe obesity with BMI� 35 kg/m2 (Ward et al.,
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2019). This growth in obesity is also reflected in

the U.S. hospital population. Hossain et al. (2018)

found almost one third of patients admitted were

obese. Furthermore, the increase in obesity is

most pronounced among the heaviest patients.

From 2006 to 2015, the mean patient weight

increased from 80.5 kg to 83.7 kg (177.5–184.5

lbs; Vangilder et al., 2017), but the proportion of

patients weighing more than 136 kg (300 lbs)

increased from 2.5% to 4.0% during the same

period (unpublished data from Vangilder et al.,

2017).

The Burden of Obesity for Healthcare
and Hospitals

Throughout the United States, obesity is associated

with a substantial and increasing percentage of

healthcare costs for each category of expenditure

and each type of payer (Biener et al., 2018). Obesity

also poses many clinical and logistical challenges

for hospitals. The term “patient of size” has been

used to describe patients weighing more than

136 kg (300 lbs), who tend to need dedicated equip-

ment, infrastructure, and staffing (Matz, 2019). The

physical size of such patients requires wider hospi-

tal beds, chairs, walkers, and commodes to improve

management and treatment. More space in the hos-

pital room is also needed to accommodate the

patient, equipment, and additional caregivers

required for care (Matz, 2019).

The hospital bed is an important medical

device upon which patients may remain for days

or weeks. Even during peak waking hours,

patients spend 83% of their time in bed (Brown

et al., 2009). The most advanced hospital beds,

“smart beds,” include powered air surfaces to

prevent pressure injuries (Ghersi et al., 2018),

surface features to help caregivers turn patients

(e.g., Wiggermann, 2016; Zhou & Wiggermann,

2021), integrated scales, exit detection alarms,

and powered drives to help safely transport a

heavy patient and bed through the hospital (Wig-

germann, 2017). Specialized, “bariatric” hospital

beds with wider frames and thicker surfaces are

designed to support patients of up to 454 kg

(1,000 lbs). Although most standard hospital beds

are built with the mechanical strength to support

patient weights of up to 227 kg (500 lbs), patients

weighing 136 kg (300 lbs) or even less may not be

accommodated by the standard 91-cm (36-in)

width (Wiggermann et al., 2017). A patient of

size placed on a bed of insufficient size or weight

capacity may experience negative outcomes

including increased risk of pressure injury,

decline in functional independence due to diffi-

culty repositioning, or sleep deprivation due to

discomfort. An inadequately sized bed may also

increase risk of injury to caregivers when

attempting to turn or reposition a patient with

insufficient space in bed. The availability of

appropriately sized beds may enable greater

throughput and turnover from the emergency

department, intensive care unit, and operating

room.

Unlike other equipment such as walkers,

mobile lifts, or chairs, the hospital bed is dedi-

cated to an individual patient. Furthermore, hos-

pital beds can be costly to purchase or rent,

especially bariatric beds. For hospitals, the high

cost of either purchasing unnecessary bariatric

beds or not having a bariatric bed when it is

needed poses a dilemma that commands an accu-

rate estimate of demand. Previous research has

used simulation for planning capacity (Fournier

& Zaric, 2013) and allocating beds across units

(Holm et al., 2013), but there is little available

research on determining demand for bariatric

beds, especially as a generalizable model that can

be applied across hospitals.

For hospitals, the high cost of either

purchasing unnecessary bariatric beds or

not having a bariatric bed when it is

needed poses a dilemma that commands

an accurate estimate of demand.

The objective of this project was to use histor-

ical hospital data to forecast the demand for bar-

iatric beds. Data were used to determine the

relationship between bed inventory and service

level and the optimal trade-off between purchas-

ing and renting beds. A sensitivity analysis tested

the influence of the model assumptions. Finally,

the results were used to develop a forecasting

tool that could be generalized to other hospitals

for which the model assumptions were also

applicable.
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Service Level and Resource Planning

It is impossible to guarantee the needed staffing

and facilities for every patient arrival as this

would be cost prohibitive. For example, a hospital

cannot afford to provide staff, beds, and rooms to

meet demand on the busiest day of the year, while

absorbing the cost of empty rooms and wasted

resources for the other 364 days. Instead, hospi-

tals must plan resources to meet the needs of a

certain percentage of patients at arrival. This per-

centage of patients accommodated is called

service level. High service levels suggest patient

needs are almost always accommodated. It is not

uncommon to have different service levels in

different departments due to demand for different

hospital services (Song et al., 2020).

When a patient is not accommodated, negative

outcomes may occur. Unaccommodated patients

may leave the hospital, may be dissatisfied with

their care, may have a delayed admission or

procedure until the appropriate services are avail-

able, or may be cared for in substandard facilities.

All these measures imply a cost. For instance,

patients who stay in inappropriate care areas may

have increased length of stay (LOS) due to hos-

pital acquired complications or greater chance of

readmission (Song et al., 2020). These patients

may also provide a lower rating on the Hospital

Consumer Assessment of Healthcare Providers

and Systems survey which can affect reimburse-

ment (Centers for Medicare and Medicaid Ser-

vices, 2017). Furthermore, unaccommodated

patients who leave without the service or proce-

dure may imply lost revenue not only for the

immediate admission but for all future services

or admissions as they may turn to competing

facilities. Finally, if equipment is needed on a

short-term basis equipment rental may be avail-

able at a premium cost. Hence, it is important to

identify the appropriate cost metrics and

trade-offs between these costs to make the best

choice for the patient and hospital.

This case study demonstrates how hospital

data are used with both service level and cost

metrics to determine the appropriate number of

bariatric beds for the hospital. In addition, simple

approximation techniques are developed for other

hospitals to use to determine the number of beds

needed. This may be especially important for new

hospitals as proper bed predictions may save

millions of dollars in underutilized equipment,

misused space, or suboptimal patient care. Accu-

rate demand estimates and resource plans are pre-

dicated on using metrics appropriate for

evaluating desired outcomes. Improperly defined

metrics for evaluating healthcare operations can

negatively impact decision-making and result in

erroneous conclusions (Torabi et al., 2020).

Method

In this case study, queueing models were used to

estimate demand for bariatric beds. Queueing the-

ory involves systems where customers, in this

case patients, wait in queues for resources to

provide service. Queues are a common experi-

ence and form when resources are limited.

Queues are often economically desirable, and

designers of queueing systems must find a bal-

ance between increasing resource utilization and

providing adequate service to customers. Evalu-

ating queueing systems requires probabilistic and

statistical analysis of arrival and service distribu-

tions. Two approaches were evaluated in this case

study: computer-based simulation and simpler

formula-based approximation models.

Data Source and Hospital Information

The University of Cincinnati Medical Center is a

515-bed hospital with an overall 81% utilization

rate (Definitive Healthcare, 2020) and is the

major research and trauma center hospital in the

Cincinnati region. The University of Cincinnati

Medical Center does not divert patients and often

accepts patients from other regional hospitals.

The goal of the institution is to provide appropri-

ate care for all patient groups, which includes

having the correct facilities and equipment,

including rooms and beds.

Data Collection

The University of Cincinnati Medical Center’s

health informatics center gathered patient-level

data for patient visits to the hospital from July

2015 to July 2018. The first 12 months of data

16 Health Environments Research & Design Journal 14(3)



were used in the primary analysis, and the

remaining 24 months were used to check for

trends and verify data included in the primary

analysis remained consistent over time. Data used

in this analysis included a unique patient identi-

fier, patient weight, admission time, admission

department, discharge time, and whether the

patient received a specialized bed. Because data

were deidentified before they were received by

the project team, institutional review board

approval was not required.

Data Selection

From an initial data set of 105,484 patients, 765

unique patients were included. Data were

removed for patients visiting only units where a

bariatric bed would not be used. For example,

patients arriving at the emergency room would

usually be placed on a stretcher and would not

typically require a bariatric bed. Therefore, these

patients were not included in the analysis unless

subsequently admitted to a unit where a bariatric

bed could be used. Data were removed for

patients with missing weight or for patients

weighing greater than 1,000 pounds as this was

deemed a clerical error. Data were removed for

patients with missing admission or departure

time. Finally, all patients weighing less than

300 pounds were removed based on the assump-

tion they would not need a bariatric bed. This

assumption is based on the weight designation

requiring special accommodation by the Facility

Guidelines Institute (Matz, 2019) and is consis-

tent with the findings of Wiggermann (2017).

This process and the number of patients removed

in each step are illustrated in Figure 1.

Rationale for Simulation

Forecasting demand is straightforward when var-

iation is low. If the number of admitted patients of

size never vary because arrival and discharge

rates are constant, it is easy to determine how

many beds are needed. However, the historical

hospital data showed the arrival of patients need-

ing bariatric beds and the length of time these

patients stay in the hospital varied considerably

over time. Variability poses a challenge when

forecasting because it causes peaks in demand

that are difficult to predict. Although many hos-

pitals may currently assess historical data of hos-

pital bed rentals, this does not allow an accurate

estimate of the true demand nor its variability.

When such variability exists, simulation is a use-

ful technique for describing the flow of patients in

the system. Furthermore, the application of simu-

lation allows for considering alternative states

such as shifting demographics that may be partic-

ularly important for planning fixed resources like

bariatric rooms.

Assumptions for Simulation

The modeling in this study relied on the following

assumptions: (1) Patients weighing 136 kg

(300 lbs) or more are assigned a bariatric bed.

(2) The bariatric beds were considered a floating

resource, which means bariatric beds are assigned

from a shared inventory across all units.

(3) Patients are not transferred from one bed type

to another once they have been admitted to the

hospital. Bariatric beds that become available are

assigned only new admissions and not admitted

Figure 1. Steps for data cleaning.
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patients who have been placed on standard beds.

(4) Bariatric beds not being used do not fulfill

demand of nonbariatric patients.

Simulation Approach

A series of simulations were performed using

Arena software (Rockwell Automation, Milwau-

kee, WI) to estimate demand for bariatric beds,

test the sensitivity of different factors, and

perform cost optimization to determine the beds

to purchase and rent.

Initial service-level simulation. The distribution of

arrival and discharge was estimated by fitting the

historical hospital data to empirical distributions,

and the number of beds needed to achieve a

certain service level was determined. Service

level was defined as the total number of patients

of size treated in a bariatric bed divided by the

total patients of size treated (in bariatric beds and

standard beds). A sensitivity analysis compared a

stationary arrival process (i.e., a service-level

simulation with a constant arrival rate represent-

ing the overall average) and a nonstationary

arrival process that considered variation in arrival

by day of the week.

Cost optimization simulation. Based on the distribu-

tion of arrivals and discharge determined in the

initial simulation, an optimization model was

developed that allowed trade-offs between the

acquisition of permanent beds or short-term

rental beds. This study assumed a service level

of 100% (i.e., all patients >300 lbs receive a

rented bariatric bed if a hospital-owned bed was

unavailable).

Simulation steps. Using the historical data on

variation in patient arrival and LOS, simulations

calculated many scenarios to determine variation

in demand and how many bariatric beds were

needed to achieve a certain service level. Because

a simulation is driven by a random process and

subject to variability, each simulation was run

100 times and each run modeled 5 full years of

hospital admissions and discharges of patients

requiring bariatric beds. During simulation, two

event types were processed through simulated

time using the historical arrival and LOS

distributions: (1) patient arrival and (2) patient

discharge. For an arrival, if a bariatric bed was

available, it was assigned to the patient, and this

counted favorably toward service level. If a bar-

iatric bed was unavailable, this was recorded and

counted negatively against service level. (In the

case of the optimization simulation, a bariatric

bed was rented to achieve a 100% service level).

For a discharge, if the patient was assigned a

bariatric bed, the bed is returned to the pool of

available resources.

The input into the initial service-level simula-

tion was the number of bariatric beds owned by

the facility, and the output was the service level.

For the cost optimization simulation, the input

was the pricing of the annualized cost of owning

and the daily cost of renting a bariatric bed. The

output of the optimization was the minimum cost

and the associated number of beds to purchase.

Approximation Model

As an alternative to the above sophisticated simu-

lations that relied on granular historical data, a

simplified formula-based approximation model

was evaluated that could be more easily used by

other hospitals. This approximation approach

used steady-state queueing models with constant

arrival rates and service times (Bhat, 2015) to

determine the service level associated with any

fixed number of beds. Differences between the

simulations and approximation model were

compared.

Results

Service-Level Simulation With
Constant Arrival Rate

The average LOS for all bariatric patients was

5.25 days (range ¼ 0–57 days), and there was

substantial variation across patients as shown in

Figure 2. By comparison, the average LOS for all

patients in U.S. acute care facilities is 4.6 days

(Definitive Healthcare, 2020). On average, there

were 7 hr and 52 min between each bariatric

patient arrival, and these interarrival times also

varied considerably.
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Figure 3 illustrates the trade-off between num-

ber of beds and service level from the average of

all runs of the simulation. For example, owning

12 bariatric beds would produce a service level of

66% which means only two third of arriving bar-

iatric patients would be placed in the appropriate

beds. Alternatively, the desired service level may

be referenced to determine the minimum beds

needed. If a 90% service level was desired,

19 bariatric beds would be needed.

Service-Level Simulation With Nonstationary
Arrival Rate

The results in Figure 3 assume a constant mean of

the arrival distribution, but the historical hospital
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Figure 2. Distribution of length of stay for patients of size (n ¼ 765).

Figure 3. Number of beds owned versus service level for service-level simulation with constant arrival rate.
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data indicated this were not the case. The distri-

bution was found to be nonstationary, with day of

the week influencing arrival rates. Figure 4 illus-

trates arrivals by day of the week, with fewer

arrivals on Saturday and Sunday compared to the

rest of the week.

To simulate the nonstationary arrival rates, a

unique arrival distribution was used for each day

of the week, based on the historical data. In line

with expectation, the historical data for LOS did

not show variation by day of the week, so daily

variation for LOS was not considered in the model.

Simulation with a nonstationary arrival rate

varying by day of the week caused higher num-

bers of patients in the system later in the week

after several consecutive days of high admissions

numbers. It also showed fewer patients in the

system following the days with the lowest

number of admissions as shown in Figure 5.

Figure 6 compares the service level for the two

simulations with the stationary and nonstationary

arrival rates. Each curve demonstrates how each

additional bed affects service level. The additional

variation in the simulation with nonstationary

Figure 4. Average number of patient arrivals for each day of the week.
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arrival distributions produces a lower service level

for incremental bed capacity. For example, to

achieve a 90% service level, 22 beds are needed

in the nonstationary model, compared to 19 beds in

the stationary model.

Cost Optimization

By understanding the relationship between the

number of bariatric beds and service level, it

was possible to perform a simulation to find

the lowest cost of meeting a certain service

level.

One optimization approach could weigh the

costs of providing equipment against the detri-

mental costs to the patient and facility of not

meeting demand at a given service level. These

costs could include the detrimental patient care

from not having proper equipment resulting in

potential extra LOS, risk of injury to caregivers,

and the potential loss of revenue for the hospital

as there could be more readmissions and the need

to divert patients.

The alternative approach used in the current

project was to assume a 100% service level or

that all admitted patients of size receive a baria-

tric bed. This is achieved by renting any needed

beds when the beds owned by the hospital are

unavailable. In this instance, the optimization

consists of an unconstrained trade-off between

the extra cost of needing to rent beds as opposed

to purchasing beds. Example output of the cost

optimization is shown in the Appendix.

In this instance, the optimization consists

of an unconstrained trade-off between the

extra cost of needing to rent beds as

opposed to purchasing beds.

Approximation Model

The Arena computer simulations performed in

the current study provided robust results, mean-

ing they varied little with small changes in the

inputs or assumptions. However, the software

and expertise required to perform such simula-

tion may not be available for most hospitals.

Therefore, a simplified formula-based approxi-

mation model was evaluated that considers con-

stant arrival and service rates, instead of the

variation considered previously. This model

uses Erlang’s Loss Formula (Bhat, 2015) direct

from queueing literature. The formula states

the probability of all bariatric beds being used

(i.e., no beds are available when a patient

arrives) is equal to one-service level and is

calculated as:

Figure 6. Number of beds owned versus service level for stationary and nonstationary service level simulations.
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Pm ¼
l
m

� �m.
m!

Xm

k¼0

l
m

� �k�
k!

;

where m is the number of bariatric beds, l is the

average arrival rate, m is 1/average LOS.

The great advantage of this formula is that

with only the average arrival rate and the average

LOS, it is possible to calculate a value for the

service level given m, the number of bariatric

beds available. It is also possible to fix the service

level and vary m to find the smallest number of

beds needed to achieve that service level. The

question is whether this simplified approach dif-

fers from the robust simulation-based modeling.

Figure 7 shows this comparison using the data

used in the simulation:

For each level of bed inventory, the service

levels for the formula-based approximation

model never vary by more than 2% from the

simulation with stationary arrival rate. Conse-

quently, the approximation model consistently

produces a higher service level than the nonsta-

tionary simulation which considers variation in

arrival rate by day of the week. However, in this

case, the number of beds needed to achieve any

service level never differs by more than three

beds between models. In the cost optimization

example (see Appendix), the approximation

model suggests purchasing three more beds than

the simulation and the total cost would be only

4.9% higher.

Implementation

One of the goals of this project was to develop a

model useful for most hospitals. Many research

hospitals can use sophisticated techniques to

develop the desired trade-offs and cost optimiza-

tion conducted in this article. Many others have

minimal analytic research capability but have

similar needs. The simplified formula-based

approximation model described here can be

accomplished through data collection and rela-

tively simple calculations. This approach allows

hospitals to use their own data to account for

regional differences or even adjust the inputs to

account for anticipated demographic trends.

To allow other hospitals to easily forecast

demand and minimize costs of providing bariatric

beds, a calculator was developed that uses the

approximation model with cost optimization. The

user inputs (1) the average patients of size arriv-

ing per day, (2) the average LOS of those patients,

and (3) the costs of renting or buying beds. The

calculator outputs the average and peak occu-

pancy for patients of size and uses the cost inputs

to estimate the mix of bed purchasing and rental

Figure 7. Number of beds owned versus service level for service-level simulations and approximation model.
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that minimizes costs. This calculator and a

numerical example are presented in Appendix.

The user inputs (1) the average patients of

size arriving per day, (2) the average LOS

of those patients, and (3) the costs of

renting or buying beds. The calculator

outputs the average and peak occupancy

for patients of size and uses the cost inputs

to estimate the mix of bed purchasing and

rental that minimizes costs.

Limitations and Future Work

The data set used to evaluate the models in this

article included 3 years of data from a single

urban trauma hospital. To verify the robustness

of the model, it should be tested on a larger

number of hospitals with several years of data.

Nevertheless, it is important patients are treated

in the best possible manner and resources are

not wasted. The formula-based approximation

model described here can likely be used as an

initial plan.

The application of this work may also be used

for any equipment or resources dedicated to spe-

cialized patients for which admission data are

available. If patients require service in a some-

what random distribution with modest seasonal

effects, the result will likely provide useful infor-

mation for decision makers. Future model devel-

opment and research on demand during

pandemics, disasters, and other discrete or seaso-

nal events is warranted.

Many assumptions were made in the develop-

ment of the models used in this article, and prac-

titioners should consider them carefully when

applying the approximation model. As Figure 7

shows, the approximation model underestimates

the number of beds needed compared to the non-

stationary model. However, even the nonstation-

ary model could underestimate the required beds

given its limitations. The current models consider

the overall daily average of arrival and discharge

times. Hourly surges in admission and discharge

may mean more beds are needed than calculated

by the model. For example, if there is a regular

influx of patients midday from surgery before a

cohort of patients are discharged in the afternoon,

the systematic overlap of patients would require

more beds than the model predicts. The model

also does not factor in the time that beds may

be out of service for inspection, repair, cleaning,

and transport. Future research could consider

such factors, including the circadian distributions

of discharge and arrival, or the increased demand

that occurs if a patient is moved from a standard

bed to a bariatric bed if one becomes available.

The approximation model provides a useful

calculation despite its limitations that may mod-

estly underestimate the resources required to

reach a given service level. This may be accep-

table for products like beds which are movable

resources that can be purchased incrementally or

rented. The numerical example in Appendix

shows underestimating demand by a few beds

may have a nominal effect on overall cost. How-

ever, when estimating demand for fixed resources

such as bariatric rooms, it may not be as simple to

add rooms after construction is complete. Addi-

tionally, the cost of construction is even more

costly than beds. For these circumstances, it may

be appropriate to plan conservatively to account

for these model limitations and also to plan for

uncertainty that could result in increased demand.

Such planning should provide inputs to the

approximation model based on anticipated

changes to patient demographics and potentially

include a safety margin beyond what is suggested

by the approximation model. To limit error when

planning for high-cost fixed resources, hospitals

may consider performing more detailed

simulation.

Practitioners should be aware cost optimiza-

tion is only as good as the true costs reflected in

the inputs. The value of rental can be underesti-

mated by not considering inventory management,

storage, and maintenance costs, whereas the

value of bed ownership can be underestimated

by not considering the likelihood of faster deliv-

ery to the patient.

This work demonstrates the potential for colla-

boration among industry, healthcare providers, and

university researchers to reduce healthcare costs

and improve patient care. As simulation and other

analytic techniques are better accepted in health-

care, hospitals can leverage their increasingly
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available data to consider many more operational

problems.

This work demonstrates the potential for

collaboration among industry, healthcare

providers, and university researchers to

reduce healthcare costs and improve

patient care.

Implications for Practice

� Historical hospital data can be used in simu-

lations that model patient flow and allow

practitioners to predict equipment needs for

bariatric beds.

� A minimization function can identify

the optimal number of bariatric beds to

own to reduce the costs of satisfying

demand.

� A simplified approximation model was

developed that produced similar results to

complex simulations. This model can be

easily employed by practitioners to estimate

resource requirements for bariatric beds.

� This approach may also be used to estimate

demand and minimize costs for other types

of equipment.

� This approximation model can reduce costs

by preventing large underestimates or over-

estimates of equipment requirements, but

hospitals should consider customized simula-

tion to estimate demand for high-cost equip-

ment or unique circumstances not fitting the

assumptions of this model.

Appendix

Calculation Tool Using the Approximation
Model

Using the equation described in this article, a

spreadsheet calculator was created that deter-

mines the expected variation in patients present

in the hospital, given the average arrival rate per

day and the average LOS input by the user. The

tool then finds the minimum cost, given the inputs

of purchase and rental costs. The tool assumes the

facility will achieve a 100% service level, mean-

ing all patients reflected in the arrival rate will

receive a facility-owned bed if one is available or

a rented bed if one is unavailable.

In this example as shown in Figure A1, the

average arrival of patients of size is 3.05 per day,

and the average LOS is 5.25 days. For this facil-

ity, the annual estimated cost of owning a baria-

tric bed was estimated as US$5,300, which was

the sum of the capital amortization (US$44,000

purchase cost divided by 10 years) and mainte-

nance costs (US$900). The daily rental cost of a

bariatric bed was assumed to be US$120.

The graphical output from the tool depicted in

Figure A2 shows the total annualized cost of bar-

iatric beds and the relative expenses of bed owner-

ship and bed rental based on how many beds the

facility has purchased. In this example, the optimal

beds to purchase, or the minimum of the total cost

curve, is 22 beds. This results in an annual rental

spend of US$10,375, an annualized ownership cost

of US$127,200, and a total cost of US$137,575.

For the numbers in this example, the total cost

is relatively robust to errors in the formula-based

approximation model. For instance, Table A1

shows that if the facility were to buy two or three

beds fewer, the costs would only be 1.6% or 4.9%
greater, respectively. However, if the facility pur-

chased nine beds fewer, costs would be 66.4%

Table A1. Total Cost by Number of Beds Purchased
for the Example Calculation.

Beds
Purchased Total Cost

Difference From
Optimum

10 US$362,240 163.3%
15 US$228,867 66.4%
20 US$151,352 10.0%
21 US$144,256 4.9%
22 US$139,794 1.6%
23 US$137,684 0.1%
24—Optimum US$137,575 —
25 US$139,083 1.1%
26 US$141,831 3.1%
30 US$159,400 15.9%
35 US$185,620 34.9%
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greater. This example highlights the potential

benefit of the tool by showing the approximation

may be capable of preventing gross errors in

demand estimates that could waste substantial

financial resources.
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