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Abstract
Many previous studies have attempted to assess ecological niche modeling perfor-
mance using receiver operating characteristic (ROC) approaches, even though diverse 
problems with this metric have been pointed out in the literature. We explored different 
evaluation metrics based on independent testing data using the Darwin’s Fox (Lycalopex 
fulvipes) as a detailed case in point. Six ecological niche models (ENMs; generalized lin-
ear models, boosted regression trees, Maxent, GARP, multivariable kernel density esti-
mation, and NicheA) were explored and tested using six evaluation metrics (partial ROC, 
Akaike information criterion, omission rate, cumulative binomial probability), including 
two novel metrics to quantify model extrapolation versus interpolation (E-space index I) 
and extent of extrapolation versus Jaccard similarity (E-space index II). Different ENMs 
showed diverse and mixed performance, depending on the evaluation metric used. 
Because ENMs performed differently according to the evaluation metric employed, 
model selection should be based on the data available, assumptions necessary, and the 
particular research question. The typical ROC AUC evaluation approach should be dis-
continued when only presence data are available, and evaluations in environmental di-
mensions should be adopted as part of the toolkit of ENM researchers. Our results 
suggest that selecting Maxent ENM based solely on previous reports of its performance 
is a questionable practice. Instead, model comparisons, including diverse algorithms and 
parameterizations, should be the sine qua non for every study using ecological niche 
modeling. ENM evaluations should be developed using metrics that assess desired 
model characteristics instead of single measurement of fit between model and data. 
The metrics proposed herein that assess model performance in environmental space 
(i.e., E-space indices I and II) may complement current methods for ENM evaluation.

K E Y W O R D S
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1  | INTRODUC TION

Ecological niche models (ENMs) have been employed as a predic-
tive tool in diverse research applications, including studies of dis-
tributional ecology, biological conservation, climate change effects, 

evolution, and spatial epidemiology (Peterson et al., 2011). ENM ap-
proaches link occurrence data with environmental variables based 
on a correlative approach to build a representation of a species’ 
ecological requirements. Numerous algorithms have been used to 
create ENMs, which provide geographic outputs that approximate 
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distributional areas of species (Franklin & Miller, 2009). Ecological 
niches are manifested in environmental spaces that comprise sets of 
abiotic variables that shape the species’ potential occurrence; niches 
translate into geographic distributions according to the combined ef-
fects of the distribution of the abiotic conditions, biotic interactions, 
and accessibility by dispersal (Soberón & Peterson, 2005). Even 
though records of distribution of a species may be abundant, they 
may be biased, characterizing just a portion of the species’ niche, 
limited by biotic factors (e.g., interspecific competition), dispersal 
constraints, biased in sampling effort, or simply the existence of sets 
of conditions on relevant landscapes (Soberón & Peterson, 2005).

Such disjunctions between the fundamental niche and what is 
observable of it occur when distributional limits are set chiefly or en-
tirely by dispersal considerations, termed the “Wallace’s Dream” sce-
nario (Qiao, Soberón, & Peterson, 2015; Saupe et al., 2012). This idea 
refers to Alfred Russel Wallace, who realized that geographic barriers 
often limit species to circumscribed regions. The “Wallace’s Dream” 
scenario describes situations in which a species’ distributional poten-
tial is circumscribed by barriers to dispersal rather than by unsuitable 
conditions. Take, for instance, the case of the shrub, Acacia mearnsii, 
which was originally restricted by geographic barriers to southeast-
ern Australia and Tasmania. However, this species has a broad poten-
tial distribution, and, once introduced to regions beyond the barriers 
that originally confined it, spread across the Americas, Europe, Asia, 
Africa, New Zealand, and Pacific and Indian Ocean islands, making it 
one of the most successful invaders, in light of its capacity to estab-
lish populations in new regions worldwide. In Wallaces Dream situa-
tions (i.e., species’ distributions constrained by dispersal rather than 
by environmental conditions), ENMs aiming to estimate a species’ 
fundamental niche and in turn its potential distribution lack neces-
sary contrasts for adequate model calibration and, as a consequence, 
make erroneous conclusions of the species true potential and gen-
erally lack predictive ability (Owens et al., 2013; Saupe et al., 2012).

Appropriate evaluation of ENM predictions requires consid-
erable preparation and care: that evaluation samples be indepen-
dent and that each be representative of the population under study 
(Hurlbert, 1984). These assumptions are violated when ENMs are 
evaluated without accounting for spatial autocorrelation and sam-
pling bias implicit in data from real species or when random points 
are used to replace absence records, which is frequent (Guillera-
Arroita et al., 2015), although often not appreciated. Models eval-
uated using incorrect metrics and nonindependent data generate 
incorrect or incomplete results (Lobo, Jiménez-Valverde, & Real, 
2008). Strikingly, robust model assessments are quite rare in ENM, 
and users too often trust software without understanding or assess-
ing predictive performance (Joppa et al., 2013). Even the important 
and highly cited work of Elith et al. (2006), which assessed different 
ENMs based on a large-scale suite of species and regions, and found 
that some methods outperformed others, was based on data sus-
ceptible to bias (Kadmon, Farber, & Danin, 2004), used biologically 
unrealistic and mathematically weak evaluation metrics (Lobo et al., 
2008; Peterson, Papeş, & Soberón, 2008), and explored only a single 
feature of model performance (i.e., omission error; see below).

Even today, ENM evaluation methods are limited and restricted 
to geographic dimensions (Muscarella et al., 2014), even in spite 
of the fact that ecological niches are manifested in environmental 
space. The limited availability of metrics for robust model evalua-
tion is alarming given how often ENMs are used to map organisms of 
high public interest such as agents of infectious diseases, agricultural 
pests, and endangered species (Peterson et al., 2011). Recent studies 
suggest that different ENM methods can differ in their performance 
under diverse circumstances (Qiao et al., 2015), such that no single 
“best” ENM likely exists, signaling the need for a critical examination 
of the unquestioning use of particular methods by modelers (e.g., 
Bhatt et al., 2013). Hence, it is critical to develop new evaluation 
metrics that can assess diverse characteristics of ENMs, including 
the amount of interpolation and extrapolation, that is, prediction in-
side or outside the range of environmental values observed, respec-
tively. In this study, we explored different evaluation metrics using a 
particular Wallace’s Dream case study, the Darwin’s Fox (Lycalopex 
fulvipes, Martin 1837), and its likely geographic distribution. We as-
sessed diverse ENM (generalized linear models, boosted regression 
trees, Maxent, GARP, multivariable kernel density estimation, and 
NicheA) and evaluation metrics (partial ROC, Akaike information cri-
terion, omission rate, cumulative binomial probability, and E-space 
indices I and II) to test how predictive performance may vary or dif-
fer in behavior based on the evaluation metric employed.

2  | METHODS

2.1 | Case study

We used data from the Darwin’s Fox, the only endemic canid of 
Chile, known from the southern temperate forests along the Pacific 
coast (Yahnke, 1995). The species was reported by Charles Darwin 
in 1834 on Chiloé Island and was long considered as an island en-
demic. However, in 1990, a mainland population was reported at 
Nahuelbuta National Park to the north, 550 km from the island pop-
ulation (Medel, Jiménez, Jaksić, Yáñez, & Armesto, 1990).

The Darwin’s Fox faces important conservation challenges in 
terms of conflicts with human settlements and dramatic habitat loss 
(Jiménez, Lucherini, & Novaro, 2008; Sillero-Zubiri, 2004). A recent 
survey on Chiloé Island, home to the largest population of the fox 
(~250 individuals), revealed that >85% of local citizens had negative 
attitudes toward the fox (Molina-Espinosa, 2011). The Darwin’s Fox 
is threatened by illegal hunting, apparent competition with other fox 
species and domestic dogs, lack of ex situ management, and limited 
knowledge of the basic biology of the species (Baillie, Hilton-Taylor, 
& Stuart, 2004; Jaksić, Jiménez, Medel, & Marquet, 1990; Jiménez 
& Mcmahon, 2004; Sillero-Zubiri, 2004). With an estimated global 
population of ~375 individuals and limited knowledge of areas for 
potential reintroduction, Darwin’s Fox is considered to be the canid 
species at highest risk of extinction globally (Escobar, 2013).

Hence, biological and ecological processes affecting the en-
dangered Darwin’s Fox remain poorly understood, complicating 
efforts to guide field research and policies for its conservation 
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(Sillero-Zubiri, 2004). The geographic separation of the Chiloé Island 
and Nahuelbuta populations, due to past (e.g., Chacao Channel di-
viding Chiloé Island and the mainland) or recent (e.g., extirpation) 
circumstances, provides an ideal situation in which to test the per-
formance of ecological niche modeling approaches under a situation 
approximating a “Wallace’s Dream” configuration. Thus, ENMs based 
on this configuration make necessary assessment of diverse evalua-
tion metrics, which can help to identify good candidate models for a 
Wallace’s Dream scenario: In our particular case study, we prioritize 
ENMs providing high interpolation and low extrapolation to avoid 
an exaggerated potential range and focus conservation efforts while 
accounting for the species’ observed environmental tolerances.

2.2 | Occurrence data

Considering the limited knowledge on this species, we collected 
data on Darwin’s Fox occurrences from diverse sources, including 
the available literature in English, German, and Spanish; natural his-
tory museum collections data online; and camera-trap observations 
and field observations from our long-term studies (see summary 
in Appendix S1). We separated occurrences into three population 
groups: Nahuelbuta (“northern”), Chiloé Island (“southern”), and 
new records of the species’ occurrence (“central”; Figure 1a). The 
Nahuelbuta population (47 occurrence sites) was termed Dn, the 
Chiloé Island population (108 occurrences) Ds, and the new records 

F IGURE  1 Darwin’s Fox (Lycalopex fulvipes) occurrences in G and E spaces. (a) Occurrences in geographic space (G) in southern Chile 
(see inset), including a population in Nahuelbuta National Park (Dn) in the northern part of the known species’ range (blue points), new 
records in the central part of the species’ distribution (Dc; green points), and the southern populations on Chiloé Island (Ds, red points). The 
evaluation area, not used in model calibration, is denoted by the dashed line. (b) Occurrences in a two-dimensional environmental space (E), 
with the same color scheme as in panel A; axes are the first two principal components of the 19 bioclimatic variables, and gray points are the 
environmental background of the study area. Note the environmental overlap between the blue and green ellipsoids in this bidimensional 
environmental space (84.4% of the variability in the climatic data). (c) Occurrences in a three-dimensional environmental space (E) with 
symbolism as in geography. Note that in this higher dimensionality space, no environmental overlap exists between blue and green ellipsoids 
(94.2% of the variability in the climate data)
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(7 occurrences) Dc. To reduce pseudoreplication, occurrences were 
resampled across a 2.5 × 2.5′ grid, which reduced numbers of re-
cords to 42 for Dn and 61 for Ds. Figure 1 shows known occurrences 
of the species in both geographic (G) and environmental (E) spaces.

To assess model predictions, we merged Dn and Ds as a data set 
for model calibration, as these populations were recognized much 
earlier than the intervening populations Dc. In fact, the Dc occur-
rences included in this study are here published for the first time in 
the scientific literature (Appendix S1). Dc was used for model vali-
dation because of its geographic and environmental independence 
from the Ds and Dn populations (i.e., Dc populations may occur in dif-
ferent areas and under different climatic conditions; Figure 1) and in 
light of the interest inherent in the question of the relative continuity 
of populations in between the northern and southern populations.

2.3 | Study area and environmental variables

The extent of the model calibration area has key impacts on ENM 
results (Barve et al., 2011). We designed our study area based on 
the prior knowledge of the species’ current distribution across the 
region 70.5 to 74°W and 38.5 to 41°S, resulting in 18,526 cells 
(Figure 1a). Specifically, we delimited the study area in the south to 
include Chiloé Island, in the north to include the Nahuelbuta reserve, 
to the west by the Pacific Ocean, and to the east by the crest of the 
Andes Mountains.

Environmental dimensions used to model the species’ ecologi-
cal niche included 19 “bioclimatic” variables with a grid resolution of 
2.5 × 2.5′ (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005). Because 
many of the environmental variables were highly correlated, we de-
veloped a principal component analysis (PCA) and retained compo-
nents sufficient to explain ≥90% of the total variation in the climatic 
data: The first three principal components accumulated 94.2% of 
information and were used in analyses.

2.4 | Ecological niche models

We explored predictive power of six ENMs that can be classified 
into two functional groups. The first group employs correlational ap-
proaches that use occurrences and background data to characterize 
environmental landscapes. The second group of ENMs uses pres-
ence data only in generating model outputs.

Models based on occurrences and environmental background 
data (background E) included the maximum entropy method in 
Maxent v3.3.3k (Phillips, Anderson, & Schapire, 2006), generalized 
linear models (GLM; MacCullagh & Nelder, 1989) in BIOMOD2 
(Thuiller, Lafourcade, Engler, & Araújo, 2009), boosted regression 
trees (BRT; Elith, Leathwick, & Hastie, 2008) in dismo (Hijmans, 
Phillips, Leathwick, & Elith, 2012), and the genetic algorithm for rule-
set production (GARP; Stockwell, 1999) with the best subsets pro-
cedure in openModeller 1.5 (de Souza Muñoz et al., 2011). Models 
in this group generate outputs with continuous values. Models using 
only presence data included niche-centroid distance estimation 
via minimum-volume ellipsoid approaches in NicheA v.3.0 (Qiao, 

Peterson, Soberón, Campbell, Ji, & Escobar, 2016) with continuous 
outputs and hypervolume multivariable kernel density estimation 
(KDE; Blonder, Lamanna, Violle, & Enquist, 2014) in R (R Core Team 
2016) using the package hypervolume (Blonder, 2015) with a bi-
nary output. In all cases (i.e., for each of the modeling algorithms), 
all models were calibrated using default parameters to allow easy 
replication, fair comparisons with other studies (Elith et al., 2006), 
and to reproduce customary applications by the broader community 
of users—however, for illustrative purposes only, a more detailed 
calibration of Maxent models is described briefly in the Section 4. 
To facilitate some of the evaluations, all models were set to gener-
ate outputs in binary format (i.e., suitable/unsuitable) based on two 
common threshold values (see below).

Models were calibrated using Dn and Ds and then evaluated using 
Dc. Evaluations were conducted in a two-dimensional geographic 
space (i.e., latitude and longitude; G) and also in a three-dimensional 
environmental space (E) defined by the first three components de-
rived from the climate data. During evaluation, we assessed three 
features of the models: abilities of models to predict correctly the in-
dependent Dc occurrences, the fit of the model with the calibration 
data, and levels of interpolation and extrapolation.

2.5 | Model evaluation in geography

2.5.1 | Evaluation of continuous models

Models were evaluated based on their spatial fit with the calibra-
tion data and on correct prediction of independent evaluation oc-
currence data across an evaluation area (Dc; Figure 1a, green points 
and dashed line, respectively). To assess continuous-output models, 
we used two metrics: the Akaike information criterion (AIC; Johnson 
& Omland, 2004; Burnham, Anderson, & Huyvaert, 2011; Warren 
& Seifert, 2011) and partial area under the receiver operating char-
acteristic curve (pROC; Peterson et al., 2008). Details of our imple-
mentation of the two evaluation approaches are in the paragraphs 
that follow.

AIC is a penalized likelihood criterion expressed as 
AIC = 2*K − 2*ln(L), where L is the maximized value of the likelihood 
function for a model and K is the number of parameters employed in 
the model (Burnham et al., 2011). For Maxent models, K is extracted 
from the “lambdas” file (Warren & Seifert, 2011). GLM were qua-
dratic and without interaction terms and, based on the first three 
principal components, we set K = 6.

Computing K for BRT and GARP is more complex. Generally, 
the K of a classification model (regression tree model or genetic al-
gorithm) is calculated as K=N× (p+ (1∕2p(p+1))+c), where N is the 
number of nodes on the regression tree (Sain & Carmack, 2002) or 
the number of individuals per population for a genetic algorithm 
(Kosakovsky, Mannino, Gravenor, Muse, & Frost, 2007; Yoshimoto, 
Moriyama, & Harada, 1999), p is the dimensionality of the variables, 
and c is the penalty for each data-based split. Here, we generated 
400 populations in GARP model and used 1,000 regression trees 
in the BRT models; we set N to the average number of individuals 
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among the 400 populations and nodes among the 1,000 trees. We 
used p = 3 because the first three principal components were used 
as the E background. Because every individual in a population or 
every node on a tree splits the records into three groups (i.e., true, 
false, and unknown), we set c to 3.

Traditional model evaluation approaches (e.g., Elith et al., 2006) 
involved receiver operating characteristic (ROC) analyses, which 
have been criticized based on equal weighting of omission and com-
mission errors, consideration of irrelevant predictions, and other is-
sues (Lobo et al., 2008; Peterson et al., 2008); true absences with 
which to estimate commission error are generally lacking at coarse 
geographic scales (see Peterson et al., 2011). Hence, we used the 
alternative pROC metric developed for ENM evaluations (Peterson 
et al., 2008). This metric assesses the relationship between omission 
error for independent points and the proportion of area predicted as 
suitable for the species, but only under conditions of low omission 
error. AUC ratios (the partial AUC divided by random expectations) 
range from 0 to 2, with values of 1 representing random perfor-
mance (Peterson, 2012; Peterson et al., 2008). This evaluation was 
carried out in pROC software (Barve, 2008) using the continuous 
output in the evaluation area and evaluation occurrences Dc, with 
100 replicate analyses and α = 0.05. A detailed explanation of pROC 
procedures can be found in Appendix S2.A.

2.5.2 | Evaluation of binary models

To compare all six ENMs, including those with binary results only 
(i.e., KDE), we used omission rate (OR; proportion of evaluation oc-
currences Dc predicted incorrectly by binary models), proportion of 
area predicted suitable in the evaluation area, and cumulative bino-
mial probability (CBP; test based on the omission rate and the pro-
portion of area predicted as suitable in the evaluation area; Escobar 
et al., 2015; Peterson, 2012). Continuous outputs from Maxent, 
NicheA, GARP, NicheA, GLM, and BRT were converted to binary 
based on two thresholding values based on omission error toler-
ances from the calibration occurrences (Peterson et al., 2011). First, 
we used a threshold based on the minimum predicted value of all 
calibration occurrences (Ds and Dn)—aka minimum training presence, 
which represents 0% omission error in the calibration occurrences. 
Additionally, we evaluated models based on a threshold of 5% omis-
sion error; that is, we removed the 5% of calibration occurrences, in 
Ds and Dn, with the lowest predicted values. OR and CBP allowed 
us to measure Type I error for every model prediction. To reduce 
potential Type II error, results of low OR associated with large areas 
identified as suitable were identified.

2.6 | Model evaluation in environmental space

We designed two new evaluation metrics that are applied in environ-
mental dimensions: E-space indices I and II. E-space index I assesses 
the amount of environmental interpolation and extrapolation in pre-
dictions: Environmental interpolation is prediction of environmen-
tal values that are within the range of environmental values of the 

occurrences used for model calibration (blue points in Figure 2). In 
contrast, extrapolation refers to prediction of environmental values 
beyond the range of values represented among the occurrence data 
(red points in Figure 2). We used all available occurrences (Ds, Dn, Dc; 
black points in Figure 2) to estimate a best-fit (minimal volume) el-
lipsoid (MVE; black ellipsoid in Figure 2) in a three-dimensional envi-
ronmental space (Van Aelst & Rousseeuw, 2009; details in Appendix 
S2.B) composed of the first three principal components. This MVE 
was then used as the observed niche with which interpolation and 
extrapolation were evaluated. Analyses in E-space were carried out 
based on unique environmental combinations; thus, we ignored 
duplicate points with identical values in environmental space. We 
estimated frequency of extrapolation as the number of unique en-
vironmental values predicted outside of the ellipsoid. Interpolation 
was the number of unique environmental combinations predicted 

F IGURE  2 New performance metrics for environmental 
space. Available occurrences were displayed in a two-dimensional 
environmental space (black points) to estimate a minimum-volume 
ellipsoid resembling the observed niche (black ellipsoid). E-space 
index I: Model prediction values were categorized as frequency of 
interpolation (i.e., number of points predicted inside the observed 
range; blue points) and frequency of extrapolation (i.e., number 
of points predicted outside the observed range; red points). 
E-space index II: This metric compares model’s fit with degree of 
extrapolation. Model fit was measured as the Jaccard index of 
similarity between the volume of the modeled niche (gray ellipsoid) 
versus the volume of the observed niche (gray ellipsoid). This 
metrics also included the degree of extrapolation as the niche 
distance between the centroid of the observed niche and the 
most distance prediction of the modeled niche: Note the arrow 
indicating maximum extrapolation distance between central values 
of observed data (black points) and most extrapolative values 
predicted by the model (farthest red point)
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inside the ellipsoid (Appendix S2.B). This approach allowed us to 
discriminate between failed models (i.e., high extrapolation, low in-
terpolation) and successful models (i.e., low extrapolation, high in-
terpolation), according to our criteria of biological realism (Owens 
et al., 2013; Peterson et al., 2011).

E-space index II is a more complex metric related to the level 
or intensity of extrapolation and the fit of the model with the data 
available. For example, two ENMs might have similar frequencies or 
amounts of extrapolation (e.g., both models with 10 values predicted 
inside of the observed range of 10–20°C, and 10 predicted outside; 
see above E-space index I), but the degree of extrapolation between 
these models could be dramatically different, making models biolog-
ically incompatible (e.g., extrapolation to values of 21°C vs. 100°C; 
Figure 2). Thus, because a metric measuring this degree of extrapo-
lation in terms of the observed values (i.e., distance of points from 
the MVE) would be useful, we measured the degree of extrapolation 
as the Euclidian distance between the centroid and the most dis-
tant prediction away from the MVE (Figure 2; Appendix S2.B). To 
assess overall fit of the model to the data in environmental space, we 
also measured similarity between the observed niche (i.e., MVE) and 
niches predicted by the different models using the Jaccard similarity 
index (Jaccard, 1912; Figure 2; Appendix S2.B). Finally, once models 
were evaluated with independent data, final predictions were devel-
oped using all the occurrences available for more informed models 
of the species truly potential. Binary models of suitability were gen-
erated using the threshold based on 0% omission error described 
above, and binary maps were summed to generate an ensemble sum-
marizing areas with agreement among models.

3  | RESULTS

The environmental space defined by the first three principal compo-
nents explained 94.2% of overall variance; the first two dimensions 
explained 84.4%. Interestingly, the Dc occurrences overlapped envi-
ronmentally with northern populations Dn from a 2D environmen-
tal perspective (Figure 1b), but environmental overlap between Dc 
and Dn was nil in the 3D space (Figure 1c). Darwin’s Fox populations 
in the northern and southern areas of the range provided distinct 
environmental information to the models (i.e., no environmental 
overlap manifested between Ds and Dn). Dc occurrences filled a por-
tion of the environmental gap between Ds + Dn, and occupied the 
broadest environmental space (green ellipsoid in Figure 1b,c). Dc 
niche volume was 5.56, compared to Dn and Ds volumes of 2.87 and 
0.54, respectively. We found heterogeneous frequencies of occur-
rences across the species’ temperature range: When mean tempera-
ture was extracted using all available occurrences, Darwin’s Foxes 
were not found across the entire temperature range available in the 
study area, but rather clustered in specific temperature intervals 
(Appendix S3.A).

Our analyses focused on the predictive capabilities of mod-
els calibrated based on incomplete data (i.e., using only Dn and Ds; 
Figures 3–7). According to AIC values from models with incomplete 

data (Table 1), the default parameter Maxent model had the best fit, 
followed by GLM. However, when all occurrences were employed 
(Ds, Dn, Dc) to calibrate final models, GLM provided the best fit to 
the data based on AIC.

Using independent evaluation data (Dc), the models’ pROC ratios 
provided detailed quantitative information on model outputs, allow-
ing us to detect inconsistent models (i.e., high variation; e.g., GLM, 
BRT; Figure 3). However, pROC showed low discrimination ranking 
high models with very broad (e.g., GLM) and very narrow predictions 
(e.g., BRT; Figures 3 and 4). On average, based on pROC, GLM, BRT, 
and Maxent had good predictive capabilities compared to random 
models, whereas NicheA and GARP had low performance in predict-
ing independent evaluation data (Figures 3 and 4).

Threshold values based on 0% and 5% omission error changed 
considerably for GLM, BRT, and GARP (Appendix S3.B). OR evalu-
ations with and omission error threshold of 0% revealed that GLM 
and Maxent predictions anticipated all independent evaluation 
points (i.e., zero omission error; Table 2), but by predicting exten-
sive areas as suitable (Figure 4). On the other hand, BRT identi-
fied only 3% and KDE 21% of the evaluation area as suitable, but 
were unable to anticipate any of the evaluation occurrences Dc 
(Figure 4; Table 2). NicheA and GARP identified narrower areas 
as suitable (41.2% and 28.3%, respectively), but failed to antic-
ipate four of seven occurrences, predictions that were not bet-
ter than chance according to the CBP test. Hence, based on the 
CBP metric with a threshold of 0% omission error, only GLM and 
Maxent provided better-than-random predictions (Table 2). When 
models where thresholded based on 5% omission error, GLM and 
Maxent dramatically reduced the area predicted suitable (Table 2; 
Appendix S3.C), which could be associated with the positive 
skew distribution of their predicted values (Appendix S3.B). For 
example, most Maxent predictions had low values, so that small 

F IGURE  3 Ecological niche model evaluation in central 
populations (Dc) using partial ROC ratios based on northern and 
southern (Ds + Dn) populations. Boxplots denote AUC ratios in 100 
replicates using 50% of evaluation occurrences in each replicate 
and 5% of omission error. The red line denotes a null distribution 
of AUC ratios under which predictions are not better than by 
random expectations. GLM, generalized linear model; BRT, boosted 
regression trees; Maxent, maximum entropy; GARP, genetic 
algorithm for rule-set production; KDE, hypervolume multivariable 
kernel density estimation; NicheA, minimum-volume ellipsoid
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F IGURE  4 Continuous and binary models of Darwin’s Fox in the evaluation area (threshold = 0%). Models calibrated using northern 
and southern (Ds + Dn) Darwin’s Fox occurrences, projected in the evaluation area (dashed line). Independent occurrences from the central 
population (Dc; black squares) are used to evaluate the model in terms of predictions in continuous (i.e., range of colors; highly suitable = red, 
unsuitable = blue) and binary outputs (i.e., suitable = red, unsuitable = gray). Binary models were generated based on 0% omission error from 
calibration occurrences. NicheA, minimum-volume ellipsoid; GARP, genetic algorithm for rule-set production; BRT, boosted regression trees; 
GLM, generalized linear model; Maxent, maximum entropy; KDE, hypervolume multivariable kernel density estimation
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increments in the threshold will assign broad areas as unsuitable. 
Under this threshold, only GLM provided predicted better than by 
chance based on CBP metric (Table 2).

Metrics of ENM performance in environmental space showed 
that different models predicted different levels of interpolation 
and extrapolation, information not captured by traditional metrics 
(e.g., AIC; Figure 5 and Appendix S3.D). Based on E-space index I, 
ENMs showed different frequency of interpolation and extrapola-
tion (Figure 6). Based on a threshold of 0% omission error, models 
with highest frequency of environmental extrapolation were GLM 
and Maxent (Figure 6a); BRT had the lowest amount of extrapola-
tion. NicheA showed high amounts of environmental interpolation, 
similar to Maxent, but much lower environmental extrapolation, 
similar to BRT. GARP, followed by KDE, had intermediate amounts 
of interpolation and low extrapolation in predictions, suggesting 
that these models balanced interpolation and extrapolation better 

(Figure 6a). However, even though GARP and KDE were similar in 
interpolation and extrapolation frequencies, they predicted suitabil-
ity under different environmental values and extents, as visualized 
in environmental space (Figure 6a). E-space index I also showed that 
some ENMs are more affected than others by the threshold value 
selected. For example, while BRT and GLM remained consistent, 
Maxent was the most affected by variations in threshold values, with 
a radical change from very high interpolation and extrapolation to 
very low interpolation and extrapolation (Figure 6a vs. b).

When E-space index II was considered, we found that under 
a 0% omission threshold, GLM and Maxent predicted suitability 
in environmental conditions considerably beyond observed val-
ues (Figure 7a). GLM and Maxent models also showed the lowest 
environmental overlap with observed occurrences, revealing high 
extrapolation and low fit to observations when environmental di-
mensions are considered. NicheA provided the best fit between 

F IGURE  5 Model evaluations based 
on interpolation and extrapolation in 
environmental space (threshold = 0%). Top 
left: Darwin’s Fox populations, from the 
northern (blue ellipsoid), central (green 
ellipsoid), and southern (red ellipsoid); 
populations were enclosed to generate 
observed ecological niche hypotheses; 
the environmental background is 
shown in this panel as gray points. 
Subsequent panels: Predictions were 
categorized according to environmental 
interpolation (red points) as predictions 
inside the ellipsoid and environmental 
extrapolation (blue points; see Section 2) 
as predictions outside the ellipsoid; the 
environmental background is not shown 
in these panels for better visualization of 
models output. GLM, generalized linear 
model; BRT, boosted regression trees; 
Maxent, maximum entropy; GARP, genetic 
algorithm for rule-set production; KDE, 
hypervolume multivariable kernel density 
estimation; NicheA, minimum-volume 
ellipsoid. Note that predictions by some 
models resemble the background cloud 
(e.g., GLM and Maxent), suggesting that 
all the conditions available in the model 
calibration area were predicted suitable 
by the model via model interpolation (red 
points) or extrapolation (blue points)
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F IGURE   6 Model performance evaluation in environmental 
dimensions based on the E-space index I. Frequency of 
environmental interpolation and extrapolation. Models were 
plotted in terms of environmental interpolation (x-axis) and 
extrapolation (y-axis) to compare their performance under both 
circumstances. Units are number of environmental points from 
principal component variables with predicted values inside 
(i.e., interpolation) or outside the ellipsoid of the observed 
niche (i.e., model extrapolation). (a) Binary models based on a 
threshold of 0% omission error in the calibration occurrences. 
(b) Binary models based on a threshold of 5% omission error in 
the calibration occurrences. GLM, generalized linear model; BRT, 
boosted regression trees; Maxent, maximum entropy; GARP, 
genetic algorithm for rule-set production; KDE, hypervolume 
multivariable kernel density estimation; NicheA, minimum-
volume ellipsoid

F IGURE  7 Model performance evaluation in environmental 
dimensions based on the E-space index II. Model fit in terms of 
niche overlap measured by Jaccard similarity and the degree of 
extrapolation as the niche distance between the occurrences and 
niche center. Models were plotted in terms of Jaccard similarity 
(x-axis) and degree of extrapolation in terms niche distance (y-
axis; see Figure 2). (a) Binary models based on a threshold of 0% 
omission error in the calibration occurrences. (b) Binary models 
based on a threshold of 5% omission error in the calibration 
occurrences. GLM, generalized linear model; BRT, boosted 
regression trees; Maxent, maximum entropy; GARP, genetic 
algorithm for rule-set production; KDE, hypervolume multivariable 
kernel density estimation; NicheA, minimum-volume ellipsoid
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predictions and observations as measured with Jaccard similarity; 
NicheA and BRT showed the lowest degree of extrapolation. KDE 
and GARP showed moderate similarity between predictions and ob-
servations and low degree of extrapolation as expressed as niche 
distance (Figure 7b). Using a 5% omission error threshold reduced 
considerably the exaggerated degree of extrapolation for GLM and 
Maxent as expressed by distance of outlier predictions in environ-
mental space (Figure 7b; Appendix S3.D).

In geographic space and using 0% omission error threshold, 
models with high extrapolation (e.g., GLM, Maxent) were visual-
ized as broad areas of potential distribution for Darwin’s Fox. GLM 
and Maxent were considerably impacted geographically by incre-
ments in the omission error threshold to 5%, shrinking dramatically 
the area predicted suitable (Appendix S3.C). ENMs with limited 
extrapolation and interpolation (e.g., BRT, KDE, GARP) identi-
fied more specific areas as suitable even when calibrated with 
all available occurrences (Figure 4 and Appendix S3.E). Summing 
all of the binary models calibrated using all available occurrences 
for the final ENM ensemble approach showed areas of high and 
low agreement of models, mostly clustered in areas of known oc-
currence, and extending across the Andean mountain valleys and 
onto the plateau (Appendix S3.E).

4  | DISCUSSION

Many previous studies have attempted to assess predictive perfor-
mance of ecological niche modeling methods regarding their predic-
tive ability, overfitting, and accuracy (Rangel & Loyola, 2012). Others 
have argued that a model ensemble approach is a parsimonious way 
to deal with ENM-based variation, avoiding the decision of choos-
ing one ENM over another (Araújo & New, 2007); however, using a 
single model is the common practice (Qiao et al., 2015). For instance, 
the work of Elith et al. (2006) has seen over 5,200 citations, but its 
conclusions are rarely questioned, even given known weaknesses 
in the evaluation metrics used (Golicher, Ford, Cayuela, & Newton, 
2012; Lobo et al., 2008; Peterson, Papeş, & Eaton, 2007; Peterson 
et al., 2008). In this study, we have begun to address key issues 
that have been generally neglected in selecting ENMs for studies 
(but see Diniz-Filho et al., 2009; Buisson, Thuiller, Casajus, Lek, & 
Grenouillet, 2010; Terrible et al., 2012; de Oliveira, Araújo, Rangel, 
Alagador, & Diniz-Filho, 2012; de Oliveira, Rangel, Lima-Ribeiro, 
Terribile, & Diniz-Filho, 2014; de Oliveira et al., 2015; Collevatti 
et al., 2012, 2013). Model performance varied dramatically among 
ENMs and depending on the evaluation metric employed, making 
multimetric comparisons and careful consideration of the needs of 
each particular study a critical element in the analytical process and 
final model selection.

Under ideal conditions, species will occupy a continuous portion 
of environmental space that reflects their fundamental ecological 
niches (Soberón & Nakamura, 2009). For most species, however, 
such conditions rarely exist, and Wallace’s Dream scenarios may ap-
pear, in which the true dimensions of the niche that are observable 
are limited due to other factors. Here, the historical distribution of 
the Darwin’s Fox is an ideal example of a Wallace’s Dream scenario, 
with isolated populations occupying different environmental spaces. 
Novel environmental values representing previously unknown sec-
tors of the species’ fundamental ecological niche were illuminated 
using novel reports of Darwin’s Fox populations in the central parts 
of the species’ range (Dc). This new information effectively filled 
both environmental and geographic gaps between northern and 
southern populations (Figure 1). We also found that some ENMs may 

Model calibrated using 
Dn + Ds

Omission rate
Area predicted 
suitable CBP (p value)

0% 5% 0% 5% 0% 5%

GLM 0.00 0.30 0.96 0.30 <.001 <.001

Maxent 0.00 1.00 0.92 0.03 <.001 >.05

BRT 1.00 1.00 0.03 0.01 >.05 >.05

KDE 1.00 NA 0.21 NA >.05 NA

NicheA 0.57 0.57 0.41 0.40 >.05 >.05

GARP 0.57 0.71 0.28 00.20 >.05 >.05

CBP, Cumulative binomial probability; GLM, generalized linear model; BRT, boosted regression 
trees; Maxent, maximum entropy; GARP, genetic algorithm for rule-set production; KDE, hypervol-
ume multivariable kernel density estimation; NicheA, minimum-volume ellipsoid.

TABLE  2 True omission error 
evaluations based on validation data from 
the novel population Dc (n = 7). Binary 
maps based on an a priori percentage of 
omission error tolerance of 0% and 5% in 
the calibration data Dn and Ds

TABLE  1 Akaike information criterion (AIC) values for models 
calibrated using northern and southern populations (i.e., Dn + Ds) 
and all occurrences available (Dn + Dc + Ds)

K Ln(likelihood) AIC

Calibration models Dn + Ds

Maxent 57 −1061.09 2236.17

GLM 6 −1206.42 2424.85

BRT 192 −1031.91 2447.82

GARP 96 −1132.65 2457.30

Final models Dn + Dc + Ds

GLM 6 −1187.17 2386.34

Maxent 55 −1173.17 2456.33

GARP 96 −1155.53 2503.06

BRT 192 −1133.39 2650.78
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fail to reconstruct species’ niches under Wallace’s Dream scenarios, 
which was manifested by models’ inability to predict Dc populations.

GLM filled consistently and substantially the environmen-
tal gap in the observable parts of the species’ ecological niche 
(Figures 4 and 5), but at the cost of dramatic extrapolation beyond 
the environmental conditions occupied by the species (Figures 5 
and 6). High model extrapolation may be undesirable, as it as-
sumes that the species can survive under conditions outside of 
the range of conditions under which it has been observed to main-
tain populations, sometimes far outside known conditions. Such 
extrapolation can be biologically unrealistic; for example, in some 
cases, models anticipate suitability at 100°C, which is implausible 
for most species (Owens et al., 2013).

On the other hand, model overfitting, expressed in our environ-
mental space metrics as low interpolation and extrapolation (e.g., 
BRT), is also likely to be biologically unrealistic. For example, why 
would a species not be able to survive under intermediate condi-
tions otherwise contained inside its environmental range (e.g., see 
Appendix S3.A)? Basic physiology suggests that species will be able 
to survive under intermediate conditions, as physiological responses 
tend to be bell-shaped in terms of response of suitability to environ-
mental conditions, rather than bimodal, intolerance to intermediate 
environmental conditions (Austin, Cunningham, & Fleming, 1984; 
Birch, 1953; Maguire, 1973; Qiao, Escobar, et al., 2016).

Under this thinking framework, we would seek an ENM method 
with high interpolation but low extrapolation, at least for the needs 
of this study. Some methods performed poorly under some evalua-
tion metrics (e.g., AIC), but may fulfill the requirements of this study, 
such as NicheA, GARP, and KDE. We suggest that the evaluation 
metric should be selected based on the model feature desired and 
the use intended (Soberón & Peterson, 2005). For example, some 
research questions may require prioritizing model overfitting ex-
pressed as low interpolation and low extrapolation, whereas others 
may require predictions that are not overfitted and that are inclusive 
of broad suitable conditions. For example, an overfit model would 
be desirable in cases attempting to identify suitable areas for rein-
troductions of rare species, while broad models may be desirable 
for searches for last populations of possibly extinct species. Hence, 
assessing modeling methods in terms of diverse metrics should be 
a common practice in view of the abilities of different metrics to 
assess different model features. In this vein, AIC corrected by sam-
ple sizes (AICc) could be included in the set of evaluation metrics 
for ENMs developed from small number of occurrences (Warren & 
Seifert, 2011). We also noted that our small number of occurrences 
affected dramatically the thresholding. For example, removing 5% of 
calibration occurrences with the lowest predicted values, instead of 
0%, resulted in Maxent models that were markedly different.

Detailed parameterizations instead of default configura-
tions may impact fit of models to the data in interesting ways 
(de Oliveira et al., 2017). In particular, selection of Maxent models 
based on information criteria such as AIC is emerging as a popu-
lar new paradigm in ecological niche modeling (Warren & Seifert, 
2011). This practice, however, is still under intense exploration 

and experimentation (Muscarella et al., 2014), and the biological 
significance of such “best” models remains understudied. We re-
call the words of Samuel Karlin, an American mathematician who 
stated, “The purpose of models is not to fit the data but to sharpen 
the questions.” As regards the present study, our focus was on 
developing useful evaluation metrics, rather than on detailed 
parameterization of models, which have been treated elsewhere 
(Muscarella et al., 2014; Peterson et al., 2011).

Still, as many readers will be curious about the effects of 
detailed parameterization on the sort of results that we have 
presented in this contribution, we explored a more detailed pa-
rameterization of Maxent (Appendix S4). We assessed 1,220 
candidate models and found that the optimal AICc metrics do 
not coincide with default parameters. That is, detailed model pa-
rameterization helped to generate models with better fit with the 
data and less complexity (57 parameters for the default model vs. 
23 for the optimized model). In terms of other metrics, however, 
default and optimized models did not differ markedly (e.g., omis-
sion rate, area predicted suitable, cumulative binomial probability), 
such that the resulting distribution maps did not differ noticeably 
(Appendix S4).

Based on diverse model evaluation criteria (amount of extrap-
olation, amount of interpolation, degree of extrapolation, model fit 
with the data, pROC, cumulative binomial test, and omission rate), 
we found that no single ENM achieved the highest scores in all met-
rics. For the particular application examined in this study, we pre-
ferred models presenting low extrapolation and high interpolation, 
criteria that were chosen a priori. Under this condition, NicheA was 
a good candidate model in terms of low extrapolation, high interpo-
lation, moderate omission rate, high similarity to the observed niche, 
and low degree of extrapolation, but at the cost of a non-significant 
p-value as estimated based on a one-tailed binomial test. For an 
expanded discussion of the results on the distributional ecology of 
Darwin’s Fox, see Appendix S3.E.

Ecological niche models are usually designed and assessed from 
a geographic perspective (e.g., Radosavljevic & Anderson, 2014). 
However, our results suggest that such interpretations hold rela-
tively limited information and should be taken with caution; models 
should rather be analyzed in both environmental and geographic 
spaces. What is more, complications arising from spatial autocorrela-
tion and nonindependence of points in geographic spaces further 
complicate geographic only evaluations. More highly dimensional 
environmental spaces may be still more informative in such explo-
rations (Figure 1).

We encourage a future reanalysis of the original work of Elith 
et al. (2006), based on the same data sets and model outputs, but 
under different and diverse evaluation metrics. Such a reanalysis 
would determine whether that study’s conclusions are consistent 
under the same assumptions and parameters, but in the context of 
different evaluation metrics. Such a re-evaluation exercise would in-
crease the transparency and good practices behind one of the foun-
dational studies in ecological niche modeling. We note that ENMs 
in this study used default parameters to allow replicability and fair 
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comparisons, but more detailed parameterizations may generate dif-
ferent outputs. To facilitate the replication of our study, we have 
incorporated the scripts of the metrics as Appendix S2.B. However, 
development of a formal software package including ENM evalua-
tions in environmental space is warranted.

5  | CONCLUSIONS

AUC and AIC have dominated protocols for ENM model evaluation 
for at least a decade; however, such metrics are limited in informa-
tion and may fail to evaluate some properties of the desired model 
(Qiao et al., 2015). Researchers should establish clear and delimited 
a priori assumptions and desired model characteristics (Peterson, 
2006); based on these decisions, researchers can select ENM meth-
ods and evaluation metrics that address their requirements. We 
found that model evaluations in environmental dimensions were 
highly informative to guide model selection and interpretation. Our 
proposed E-space metrics of extrapolation and interpolation in the 
environmental space offer a useful enrichment to more customary 
characterization of model predictions. Future research on these 
metrics should include development of standardized indices to make 
studies comparable.
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