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Abstract
Many	 previous	 studies	 have	 attempted	 to	 assess	 ecological	 niche	modeling	 perfor-
mance	using	receiver	operating	characteristic	(ROC)	approaches,	even	though	diverse	
problems	with	this	metric	have	been	pointed	out	in	the	literature.	We	explored	different	
evaluation	metrics	based	on	independent	testing	data	using	the	Darwin’s	Fox	(Lycalopex 
fulvipes)	as	a	detailed	case	in	point.	Six	ecological	niche	models	(ENMs;	generalized	lin-
ear	models,	boosted	regression	trees,	Maxent,	GARP,	multivariable	kernel	density	esti-
mation,	and	NicheA)	were	explored	and	tested	using	six	evaluation	metrics	(partial	ROC,	
Akaike	information	criterion,	omission	rate,	cumulative	binomial	probability),	including	
two	novel	metrics	to	quantify	model	extrapolation	versus	interpolation	(E-	space	index	I)	
and	extent	of	extrapolation	versus	Jaccard	similarity	(E-	space	index	II).	Different	ENMs	
showed	 diverse	 and	mixed	 performance,	 depending	 on	 the	 evaluation	metric	 used.	
Because	 ENMs	 performed	 differently	 according	 to	 the	 evaluation	metric	 employed,	
model	selection	should	be	based	on	the	data	available,	assumptions	necessary,	and	the	
particular	research	question.	The	typical	ROC	AUC	evaluation	approach	should	be	dis-
continued	when	only	presence	data	are	available,	and	evaluations	in	environmental	di-
mensions	 should	be	adopted	as	part	of	 the	 toolkit	of	ENM	researchers.	Our	 results	
suggest	that	selecting	Maxent	ENM	based	solely	on	previous	reports	of	its	performance	
is	a	questionable	practice.	Instead,	model	comparisons,	including	diverse	algorithms	and	
parameterizations,	 should	be	 the	sine qua non	 for	every	study	using	ecological	niche	
modeling.	 ENM	 evaluations	 should	 be	 developed	 using	 metrics	 that	 assess	 desired	
model	characteristics	 instead	of	single	measurement	of	 fit	between	model	and	data.	
The	metrics	proposed	herein	that	assess	model	performance	in	environmental	space	
(i.e.,	E-	space	indices	I	and	II)	may	complement	current	methods	for	ENM	evaluation.

K E Y W O R D S

ecological	niche	modeling,	evaluation,	Lycalopex fulvipes,	Maxent,	ROC	AUC

1  | INTRODUC TION

Ecological	 niche	models	 (ENMs)	 have	 been	 employed	 as	 a	 predic-
tive	 tool	 in	 diverse	 research	 applications,	 including	 studies	 of	 dis-
tributional	ecology,	biological	conservation,	climate	change	effects,	

evolution,	and	spatial	epidemiology	(Peterson	et	al.,	2011).	ENM	ap-
proaches	 link	occurrence	data	with	environmental	variables	based	
on	 a	 correlative	 approach	 to	 build	 a	 representation	 of	 a	 species’	
ecological	 requirements.	Numerous	 algorithms	 have	 been	 used	 to	
create	ENMs,	which	provide	geographic	outputs	 that	approximate	
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distributional	 areas	of	 species	 (Franklin	&	Miller,	2009).	Ecological	
niches	are	manifested	in	environmental	spaces	that	comprise	sets	of	
abiotic	variables	that	shape	the	species’	potential	occurrence;	niches	
translate	into	geographic	distributions	according	to	the	combined	ef-
fects	of	the	distribution	of	the	abiotic	conditions,	biotic	interactions,	
and	 accessibility	 by	 dispersal	 (Soberón	 &	 Peterson,	 2005).	 Even	
though	records	of	distribution	of	a	species	may	be	abundant,	they	
may	be	biased,	 characterizing	 just	 a	 portion	of	 the	 species’	 niche,	
limited	 by	 biotic	 factors	 (e.g.,	 interspecific	 competition),	 dispersal	
constraints,	biased	in	sampling	effort,	or	simply	the	existence	of	sets	
of	conditions	on	relevant	landscapes	(Soberón	&	Peterson,	2005).

Such	 disjunctions	 between	 the	 fundamental	 niche	 and	what	 is	
observable	of	it	occur	when	distributional	limits	are	set	chiefly	or	en-
tirely	by	dispersal	considerations,	termed	the	“Wallace’s	Dream”	sce-
nario	(Qiao,	Soberón,	&	Peterson,	2015;	Saupe	et	al.,	2012).	This	idea	
refers	to	Alfred	Russel	Wallace,	who	realized	that	geographic	barriers	
often	limit	species	to	circumscribed	regions.	The	“Wallace’s	Dream”	
scenario	describes	situations	in	which	a	species’	distributional	poten-
tial	is	circumscribed	by	barriers	to	dispersal	rather	than	by	unsuitable	
conditions.	Take,	for	instance,	the	case	of	the	shrub,	Acacia mearnsii,	
which	was	originally	restricted	by	geographic	barriers	to	southeast-
ern	Australia	and	Tasmania.	However,	this	species	has	a	broad	poten-
tial	distribution,	and,	once	introduced	to	regions	beyond	the	barriers	
that	originally	confined	it,	spread	across	the	Americas,	Europe,	Asia,	
Africa,	New	Zealand,	and	Pacific	and	Indian	Ocean	islands,	making	it	
one	of	the	most	successful	invaders,	in	light	of	its	capacity	to	estab-
lish	populations	in	new	regions	worldwide.	In	Wallaces	Dream	situa-
tions	(i.e.,	species’	distributions	constrained	by	dispersal	rather	than	
by	 environmental	 conditions),	 ENMs	 aiming	 to	 estimate	 a	 species’	
fundamental	niche	and	 in	 turn	 its	potential	distribution	 lack	neces-
sary	contrasts	for	adequate	model	calibration	and,	as	a	consequence,	
make	erroneous	conclusions	of	 the	species	 true	potential	and	gen-
erally	lack	predictive	ability	(Owens	et	al.,	2013;	Saupe	et	al.,	2012).

Appropriate	 evaluation	 of	 ENM	 predictions	 requires	 consid-
erable	 preparation	 and	 care:	 that	 evaluation	 samples	 be	 indepen-
dent	and	that	each	be	representative	of	the	population	under	study	
(Hurlbert,	 1984).	 These	 assumptions	 are	 violated	when	 ENMs	 are	
evaluated	without	accounting	 for	 spatial	 autocorrelation	and	sam-
pling	bias	implicit	in	data	from	real	species	or	when	random	points	
are	 used	 to	 replace	 absence	 records,	 which	 is	 frequent	 (Guillera-	
Arroita	et	al.,	2015),	 although	often	not	appreciated.	Models	eval-
uated	 using	 incorrect	 metrics	 and	 nonindependent	 data	 generate	
incorrect	 or	 incomplete	 results	 (Lobo,	 Jiménez-	Valverde,	 &	 Real,	
2008).	Strikingly,	robust	model	assessments	are	quite	rare	in	ENM,	
and	users	too	often	trust	software	without	understanding	or	assess-
ing	predictive	performance	(Joppa	et	al.,	2013).	Even	the	important	
and	highly	cited	work	of	Elith	et	al.	(2006),	which	assessed	different	
ENMs	based	on	a	large-	scale	suite	of	species	and	regions,	and	found	
that	 some	methods	outperformed	others,	was	based	on	data	 sus-
ceptible	to	bias	(Kadmon,	Farber,	&	Danin,	2004),	used	biologically	
unrealistic	and	mathematically	weak	evaluation	metrics	(Lobo	et	al.,	
2008;	Peterson,	Papeş,	&	Soberón,	2008),	and	explored	only	a	single	
feature	of	model	performance	(i.e.,	omission	error;	see	below).

Even	today,	ENM	evaluation	methods	are	limited	and	restricted	
to	 geographic	 dimensions	 (Muscarella	 et	al.,	 2014),	 even	 in	 spite	
of	 the	 fact	 that	ecological	niches	are	manifested	 in	environmental	
space.	The	 limited	 availability	of	metrics	 for	 robust	model	 evalua-
tion	is	alarming	given	how	often	ENMs	are	used	to	map	organisms	of	
high	public	interest	such	as	agents	of	infectious	diseases,	agricultural	
pests,	and	endangered	species	(Peterson	et	al.,	2011).	Recent	studies	
suggest	that	different	ENM	methods	can	differ	in	their	performance	
under	diverse	circumstances	(Qiao	et	al.,	2015),	such	that	no	single	
“best”	ENM	likely	exists,	signaling	the	need	for	a	critical	examination	
of	 the	 unquestioning	 use	of	 particular	methods	by	modelers	 (e.g.,	
Bhatt	 et	al.,	 2013).	 Hence,	 it	 is	 critical	 to	 develop	 new	 evaluation	
metrics	 that	 can	assess	diverse	 characteristics	of	ENMs,	 including	
the	amount	of	interpolation	and	extrapolation,	that	is,	prediction	in-
side	or	outside	the	range	of	environmental	values	observed,	respec-
tively.	In	this	study,	we	explored	different	evaluation	metrics	using	a	
particular	Wallace’s	Dream	case	study,	the	Darwin’s	Fox	(Lycalopex 
fulvipes,	Martin	1837),	and	its	likely	geographic	distribution.	We	as-
sessed	diverse	ENM	(generalized	linear	models,	boosted	regression	
trees,	Maxent,	GARP,	multivariable	 kernel	 density	 estimation,	 and	
NicheA)	and	evaluation	metrics	(partial	ROC,	Akaike	information	cri-
terion,	omission	 rate,	cumulative	binomial	probability,	and	E-	space	
indices	I	and	II)	to	test	how	predictive	performance	may	vary	or	dif-
fer	in	behavior	based	on	the	evaluation	metric	employed.

2  | METHODS

2.1 | Case study

We	 used	 data	 from	 the	 Darwin’s	 Fox,	 the	 only	 endemic	 canid	 of	
Chile,	known	from	the	southern	temperate	forests	along	the	Pacific	
coast	(Yahnke,	1995).	The	species	was	reported	by	Charles	Darwin	
in	1834	on	Chiloé	 Island	and	was	 long	considered	as	an	 island	en-
demic.	 However,	 in	 1990,	 a	mainland	 population	was	 reported	 at	
Nahuelbuta	National	Park	to	the	north,	550	km	from	the	island	pop-
ulation	(Medel,	Jiménez,	Jaksić,	Yáñez,	&	Armesto,	1990).

The	 Darwin’s	 Fox	 faces	 important	 conservation	 challenges	 in	
terms	of	conflicts	with	human	settlements	and	dramatic	habitat	loss	
(Jiménez,	Lucherini,	&	Novaro,	2008;	Sillero-	Zubiri,	2004).	A	recent	
survey	on	Chiloé	Island,	home	to	the	largest	population	of	the	fox	
(~250	individuals),	revealed	that	>85%	of	local	citizens	had	negative	
attitudes	toward	the	fox	(Molina-	Espinosa,	2011).	The	Darwin’s	Fox	
is	threatened	by	illegal	hunting,	apparent	competition	with	other	fox	
species	and	domestic	dogs,	lack	of	ex	situ	management,	and	limited	
knowledge	of	the	basic	biology	of	the	species	(Baillie,	Hilton-	Taylor,	
&	Stuart,	2004;	Jaksić,	Jiménez,	Medel,	&	Marquet,	1990;	Jiménez	
&	Mcmahon,	2004;	Sillero-	Zubiri,	2004).	With	an	estimated	global	
population	of	~375	individuals	and	limited	knowledge	of	areas	for	
potential	reintroduction,	Darwin’s	Fox	is	considered	to	be	the	canid	
species	at	highest	risk	of	extinction	globally	(Escobar,	2013).

Hence,	 biological	 and	 ecological	 processes	 affecting	 the	 en-
dangered	 Darwin’s	 Fox	 remain	 poorly	 understood,	 complicating	
efforts	 to	 guide	 field	 research	 and	 policies	 for	 its	 conservation	
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(Sillero-	Zubiri,	2004).	The	geographic	separation	of	the	Chiloé	Island	
and	Nahuelbuta	populations,	due	to	past	 (e.g.,	Chacao	Channel	di-
viding	Chiloé	 Island	 and	 the	mainland)	 or	 recent	 (e.g.,	 extirpation)	
circumstances,	provides	an	ideal	situation	in	which	to	test	the	per-
formance	of	ecological	niche	modeling	approaches	under	a	situation	
approximating	a	“Wallace’s	Dream”	configuration.	Thus,	ENMs	based	
on	this	configuration	make	necessary	assessment	of	diverse	evalua-
tion	metrics,	which	can	help	to	identify	good	candidate	models	for	a	
Wallace’s	Dream	scenario:	In	our	particular	case	study,	we	prioritize	
ENMs	providing	high	 interpolation	 and	 low	extrapolation	 to	 avoid	
an	exaggerated	potential	range	and	focus	conservation	efforts	while	
accounting	for	the	species’	observed	environmental	tolerances.

2.2 | Occurrence data

Considering	 the	 limited	 knowledge	 on	 this	 species,	 we	 collected	
data	on	Darwin’s	Fox	occurrences	 from	diverse	 sources,	 including	
the	available	literature	in	English,	German,	and	Spanish;	natural	his-
tory	museum	collections	data	online;	and	camera-	trap	observations	
and	 field	 observations	 from	 our	 long-	term	 studies	 (see	 summary	
in	Appendix	 S1).	We	 separated	 occurrences	 into	 three	 population	
groups:	 Nahuelbuta	 (“northern”),	 Chiloé	 Island	 (“southern”),	 and	
new	 records	 of	 the	 species’	 occurrence	 (“central”;	 Figure	1a).	 The	
Nahuelbuta	 population	 (47	 occurrence	 sites)	 was	 termed	Dn,	 the	
Chiloé	Island	population	(108	occurrences)	Ds,	and	the	new	records	

F IGURE  1 Darwin’s	Fox	(Lycalopex fulvipes)	occurrences	in	G	and	E	spaces.	(a)	Occurrences	in	geographic	space	(G)	in	southern	Chile	
(see	inset),	including	a	population	in	Nahuelbuta	National	Park	(Dn)	in	the	northern	part	of	the	known	species’	range	(blue	points),	new	
records	in	the	central	part	of	the	species’	distribution	(Dc;	green	points),	and	the	southern	populations	on	Chiloé	Island	(Ds,	red	points).	The	
evaluation	area,	not	used	in	model	calibration,	is	denoted	by	the	dashed	line.	(b)	Occurrences	in	a	two-	dimensional	environmental	space	(E),	
with	the	same	color	scheme	as	in	panel	A;	axes	are	the	first	two	principal	components	of	the	19	bioclimatic	variables,	and	gray	points	are	the	
environmental	background	of	the	study	area.	Note	the	environmental	overlap	between	the	blue	and	green	ellipsoids	in	this	bidimensional	
environmental	space	(84.4%	of	the	variability	in	the	climatic	data).	(c)	Occurrences	in	a	three-	dimensional	environmental	space	(E)	with	
symbolism	as	in	geography.	Note	that	in	this	higher	dimensionality	space,	no	environmental	overlap	exists	between	blue	and	green	ellipsoids	
(94.2%	of	the	variability	in	the	climate	data)
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(7	occurrences)	Dc.	To	reduce	pseudoreplication,	occurrences	were	
resampled	 across	 a	 2.5	×	2.5′	 grid,	which	 reduced	 numbers	 of	 re-
cords	to	42	for	Dn	and	61	for	Ds.	Figure	1	shows	known	occurrences	
of	the	species	in	both	geographic	(G)	and	environmental	(E)	spaces.

To	assess	model	predictions,	we	merged	Dn	and	Ds	as	a	data	set	
for	model	 calibration,	 as	 these	populations	were	 recognized	much	
earlier	 than	 the	 intervening	 populations	Dc.	 In	 fact,	 the	Dc	 occur-
rences	included	in	this	study	are	here	published	for	the	first	time	in	
the	scientific	 literature	 (Appendix	S1).	Dc	was	used	for	model	vali-
dation	because	of	its	geographic	and	environmental	 independence	
from	the	Ds	and	Dn	populations	(i.e.,	Dc	populations	may	occur	in	dif-
ferent	areas	and	under	different	climatic	conditions;	Figure	1)	and	in	
light	of	the	interest	inherent	in	the	question	of	the	relative	continuity	
of	populations	in	between	the	northern	and	southern	populations.

2.3 | Study area and environmental variables

The	extent	of	the	model	calibration	area	has	key	 impacts	on	ENM	
results	 (Barve	 et	al.,	 2011).	We	designed	our	 study	 area	 based	on	
the	prior	knowledge	of	the	species’	current	distribution	across	the	
region	 70.5	 to	 74°W	 and	 38.5	 to	 41°S,	 resulting	 in	 18,526	 cells	
(Figure	1a).	Specifically,	we	delimited	the	study	area	in	the	south	to	
include	Chiloé	Island,	in	the	north	to	include	the	Nahuelbuta	reserve,	
to	the	west	by	the	Pacific	Ocean,	and	to	the	east	by	the	crest	of	the	
Andes	Mountains.

Environmental	 dimensions	used	 to	model	 the	 species’	 ecologi-
cal	niche	included	19	“bioclimatic”	variables	with	a	grid	resolution	of	
2.5	×	2.5′	(Hijmans,	Cameron,	Parra,	Jones,	&	Jarvis,	2005).	Because	
many	of	the	environmental	variables	were	highly	correlated,	we	de-
veloped	a	principal	component	analysis	(PCA)	and	retained	compo-
nents	sufficient	to	explain	≥90%	of	the	total	variation	in	the	climatic	
data:	 The	 first	 three	 principal	 components	 accumulated	 94.2%	 of	
information	and	were	used	in	analyses.

2.4 | Ecological niche models

We	explored	 predictive	 power	 of	 six	 ENMs	 that	 can	 be	 classified	
into	two	functional	groups.	The	first	group	employs	correlational	ap-
proaches	that	use	occurrences	and	background	data	to	characterize	
environmental	 landscapes.	 The	 second	 group	 of	 ENMs	uses	 pres-
ence	data	only	in	generating	model	outputs.

Models	 based	 on	 occurrences	 and	 environmental	 background	
data	 (background	 E)	 included	 the	 maximum	 entropy	 method	 in	
Maxent	v3.3.3k	(Phillips,	Anderson,	&	Schapire,	2006),	generalized	
linear	 models	 (GLM;	 MacCullagh	 &	 Nelder,	 1989)	 in	 BIOMOD2	
(Thuiller,	 Lafourcade,	 Engler,	 &	 Araújo,	 2009),	 boosted	 regression	
trees	 (BRT;	 Elith,	 Leathwick,	 &	 Hastie,	 2008)	 in	 dismo	 (Hijmans,	
Phillips,	Leathwick,	&	Elith,	2012),	and	the	genetic	algorithm	for	rule-	
set	production	(GARP;	Stockwell,	1999)	with	the	best	subsets	pro-
cedure	in	openModeller	1.5	(de	Souza	Muñoz	et	al.,	2011).	Models	
in	this	group	generate	outputs	with	continuous	values.	Models	using	
only	 presence	 data	 included	 niche-	centroid	 distance	 estimation	
via	 minimum-	volume	 ellipsoid	 approaches	 in	 NicheA	 v.3.0	 (Qiao,	

Peterson,	Soberón,	Campbell,	Ji,	&	Escobar,	2016)	with	continuous	
outputs	 and	 hypervolume	 multivariable	 kernel	 density	 estimation	
(KDE;	Blonder,	Lamanna,	Violle,	&	Enquist,	2014)	in	R	(R	Core	Team	
2016)	 using	 the	 package	 hypervolume	 (Blonder,	 2015)	 with	 a	 bi-
nary	output.	 In	all	cases	(i.e.,	 for	each	of	the	modeling	algorithms),	
all	models	were	 calibrated	using	default	 parameters	 to	 allow	easy	
replication,	 fair	 comparisons	with	other	 studies	 (Elith	et	al.,	2006),	
and	to	reproduce	customary	applications	by	the	broader	community	
of	 users—however,	 for	 illustrative	 purposes	 only,	 a	 more	 detailed	
calibration	of	Maxent	models	 is	described	briefly	 in	 the	Section	4.	
To	facilitate	some	of	the	evaluations,	all	models	were	set	to	gener-
ate	outputs	in	binary	format	(i.e.,	suitable/unsuitable)	based	on	two	
common	threshold	values	(see	below).

Models	were	calibrated	using	Dn	and	Ds	and	then	evaluated	using	
Dc.	 Evaluations	 were	 conducted	 in	 a	 two-	dimensional	 geographic	
space	(i.e.,	latitude	and	longitude;	G)	and	also	in	a	three-	dimensional	
environmental	space	(E)	defined	by	the	first	three	components	de-
rived	 from	the	climate	data.	During	evaluation,	we	assessed	 three	
features	of	the	models:	abilities	of	models	to	predict	correctly	the	in-
dependent	Dc	occurrences,	the	fit	of	the	model	with	the		calibration	
data,	and	levels	of	interpolation	and	extrapolation.

2.5 | Model evaluation in geography

2.5.1 | Evaluation of continuous models

Models	were	evaluated	based	on	 their	 spatial	 fit	with	 the	 calibra-
tion	data	and	on	correct	prediction	of	 independent	evaluation	oc-
currence	data	across	an	evaluation	area	(Dc;	Figure	1a,	green	points	
and	dashed	line,	respectively).	To	assess	continuous-	output	models,	
we	used	two	metrics:	the	Akaike	information	criterion	(AIC;	Johnson	
&	Omland,	2004;	Burnham,	Anderson,	&	Huyvaert,	2011;	Warren	
&	Seifert,	2011)	and	partial	area	under	the	receiver	operating	char-
acteristic	curve	(pROC;	Peterson	et	al.,	2008).	Details	of	our	imple-
mentation	of	the	two	evaluation	approaches	are	in	the	paragraphs	
that	follow.

AIC	 is	 a	 penalized	 likelihood	 criterion	 expressed	 as	
AIC	=	2*K	−	2*ln(L),	where	L	is	the	maximized	value	of	the	likelihood	
function	for	a	model	and	K	is	the	number	of	parameters	employed	in	
the	model	(Burnham	et	al.,	2011).	For	Maxent	models,	K	is	extracted	
from	 the	 “lambdas”	 file	 (Warren	&	Seifert,	 2011).	GLM	were	qua-
dratic	 and	without	 interaction	 terms	and,	based	on	 the	 first	 three	
principal	components,	we	set	K = 6.

Computing	 K	 for	 BRT	 and	 GARP	 is	 more	 complex.	 Generally,	
the K	of	a	classification	model	(regression	tree	model	or	genetic	al-
gorithm)	is	calculated	as	K=N× (p+ (1∕2p(p+1))+c),	where	N	 is	the	
number	of	nodes	on	the	regression	tree	(Sain	&	Carmack,	2002)	or	
the	 number	 of	 individuals	 per	 population	 for	 a	 genetic	 algorithm	
(Kosakovsky,	Mannino,	Gravenor,	Muse,	&	Frost,	2007;	Yoshimoto,	
Moriyama,	&	Harada,	1999),	p	is	the	dimensionality	of	the	variables,	
and	c	 is	the	penalty	for	each	data-	based	split.	Here,	we	generated	
400	 populations	 in	GARP	model	 and	 used	 1,000	 regression	 trees	
in	the	BRT	models;	we	set	N	 to	the	average	number	of	 individuals	
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among	the	400	populations	and	nodes	among	the	1,000	trees.	We	
used	p = 3	because	the	first	three	principal	components	were	used	
as	 the	E	 background.	 Because	 every	 individual	 in	 a	 population	 or	
every	node	on	a	tree	splits	the	records	into	three	groups	(i.e.,	true,	
false,	and	unknown),	we	set	c to 3.

Traditional	model	evaluation	approaches	(e.g.,	Elith	et	al.,	2006)	
involved	 receiver	 operating	 characteristic	 (ROC)	 analyses,	 which	
have	been	criticized	based	on	equal	weighting	of	omission	and	com-
mission	errors,	consideration	of	irrelevant	predictions,	and	other	is-
sues	 (Lobo	et	al.,	 2008;	Peterson	et	al.,	 2008);	 true	absences	with	
which	to	estimate	commission	error	are	generally	lacking	at	coarse	
geographic	 scales	 (see	 Peterson	 et	al.,	 2011).	Hence,	we	 used	 the	
alternative	pROC	metric	developed	for	ENM	evaluations	(Peterson	
et	al.,	2008).	This	metric	assesses	the	relationship	between	omission	
error	for	independent	points	and	the	proportion	of	area	predicted	as	
suitable	for	the	species,	but	only	under	conditions	of	low	omission	
error.	AUC	ratios	(the	partial	AUC	divided	by	random	expectations)	
range	 from	 0	 to	 2,	 with	 values	 of	 1	 representing	 random	 perfor-
mance	(Peterson,	2012;	Peterson	et	al.,	2008).	This	evaluation	was	
carried	out	 in	 pROC	 software	 (Barve,	 2008)	 using	 the	 continuous	
output	 in	 the	evaluation	area	and	evaluation	occurrences	Dc,	with	
100	replicate	analyses	and	α	=	0.05.	A	detailed	explanation	of	pROC	
procedures	can	be	found	in	Appendix	S2.A.

2.5.2 | Evaluation of binary models

To	 compare	 all	 six	ENMs,	 including	 those	with	binary	 results	 only	
(i.e.,	KDE),	we	used	omission	rate	(OR;	proportion	of	evaluation	oc-
currences	Dc	predicted	incorrectly	by	binary	models),	proportion	of	
area	predicted	suitable	in	the	evaluation	area,	and	cumulative	bino-
mial	probability	(CBP;	test	based	on	the	omission	rate	and	the	pro-
portion	of	area	predicted	as	suitable	in	the	evaluation	area;	Escobar	
et	al.,	 2015;	 Peterson,	 2012).	 Continuous	 outputs	 from	 Maxent,	
NicheA,	 GARP,	NicheA,	 GLM,	 and	 BRT	were	 converted	 to	 binary	
based	 on	 two	 thresholding	 values	 based	 on	 omission	 error	 toler-
ances	from	the	calibration	occurrences	(Peterson	et	al.,	2011).	First,	
we	used	a	 threshold	based	on	 the	minimum	predicted	value	of	all	
calibration	occurrences	(Ds	and	Dn)—aka	minimum	training	presence,	
which	represents	0%	omission	error	in	the	calibration	occurrences.	
Additionally,	we	evaluated	models	based	on	a	threshold	of	5%	omis-
sion	error;	that	is,	we	removed	the	5%	of	calibration	occurrences,	in	
Ds	and	Dn,	with	the	 lowest	predicted	values.	OR	and	CBP	allowed	
us	 to	measure	Type	 I	 error	 for	 every	model	 prediction.	To	 reduce	
potential	Type	II	error,	results	of	low	OR	associated	with	large	areas	
identified	as	suitable	were	identified.

2.6 | Model evaluation in environmental space

We	designed	two	new	evaluation	metrics	that	are	applied	in	environ-
mental	dimensions:	E-	space	indices	I	and	II.	E-	space	index	I	assesses	
the	amount	of	environmental	interpolation	and	extrapolation	in	pre-
dictions:	Environmental	 interpolation	 is	prediction	of	 environmen-
tal	values	that	are	within	the	range	of	environmental	values	of	the	

occurrences	used	for	model	calibration	(blue	points	 in	Figure	2).	 In	
contrast,	extrapolation	refers	to	prediction	of	environmental	values	
beyond	the	range	of	values	represented	among	the	occurrence	data	
(red	points	in	Figure	2).	We	used	all	available	occurrences	(Ds,	Dn,	Dc; 
black	points	 in	Figure	2)	to	estimate	a	best-	fit	 (minimal	volume)	el-
lipsoid	(MVE;	black	ellipsoid	in	Figure	2)	in	a	three-	dimensional	envi-
ronmental	space	(Van	Aelst	&	Rousseeuw,	2009;	details	in	Appendix	
S2.B)	composed	of	the	first	three	principal	components.	This	MVE	
was	then	used	as	the	observed	niche	with	which	interpolation	and	
extrapolation	were	evaluated.	Analyses	in	E-	space	were	carried	out	
based	 on	 unique	 environmental	 combinations;	 thus,	 we	 ignored	
duplicate	 points	with	 identical	 values	 in	 environmental	 space.	We	
estimated	frequency	of	extrapolation	as	the	number	of	unique	en-
vironmental	values	predicted	outside	of	the	ellipsoid.	Interpolation	
was	 the	 number	 of	 unique	 environmental	 combinations	 predicted	

F IGURE  2 New	performance	metrics	for	environmental	
space.	Available	occurrences	were	displayed	in	a	two-	dimensional	
environmental	space	(black	points)	to	estimate	a	minimum-	volume	
ellipsoid	resembling	the	observed	niche	(black	ellipsoid).	E-space 
index I:	Model	prediction	values	were	categorized	as	frequency	of	
interpolation	(i.e.,	number	of	points	predicted	inside	the	observed	
range;	blue	points)	and	frequency	of	extrapolation	(i.e.,	number	
of	points	predicted	outside	the	observed	range;	red	points).	
E-space index II:	This	metric	compares	model’s	fit	with	degree	of	
extrapolation.	Model	fit	was	measured	as	the	Jaccard	index	of	
similarity	between	the	volume	of	the	modeled	niche	(gray	ellipsoid)	
versus	the	volume	of	the	observed	niche	(gray	ellipsoid).	This	
metrics	also	included	the	degree	of	extrapolation	as	the	niche	
distance	between	the	centroid	of	the	observed	niche	and	the	
most	distance	prediction	of	the	modeled	niche:	Note	the	arrow	
indicating	maximum	extrapolation	distance	between	central	values	
of	observed	data	(black	points)	and	most	extrapolative	values	
predicted	by	the	model	(farthest	red	point)
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inside	 the	 ellipsoid	 (Appendix	 S2.B).	 This	 approach	 allowed	 us	 to	
discriminate	between	failed	models	(i.e.,	high	extrapolation,	low	in-
terpolation)	and	successful	models	 (i.e.,	 low	extrapolation,	high	 in-
terpolation),	 according	 to	our	 criteria	 of	 biological	 realism	 (Owens	
et	al.,	2013;	Peterson	et	al.,	2011).

E-	space	 index	 II	 is	 a	more	 complex	metric	 related	 to	 the	 level	
or	intensity	of	extrapolation	and	the	fit	of	the	model	with	the	data	
available.	For	example,	two	ENMs	might	have	similar	frequencies	or	
amounts	of	extrapolation	(e.g.,	both	models	with	10	values	predicted	
inside	of	the	observed	range	of	10–20°C,	and	10	predicted	outside;	
see	above	E-	space	index	I),	but	the	degree	of	extrapolation	between	
these	models	could	be	dramatically	different,	making	models	biolog-
ically	incompatible	(e.g.,	extrapolation	to	values	of	21°C	vs.	100°C;	
Figure	2).	Thus,	because	a	metric	measuring	this	degree	of	extrapo-
lation	in	terms	of	the	observed	values	(i.e.,	distance	of	points	from	
the	MVE)	would	be	useful,	we	measured	the	degree	of	extrapolation	
as	 the	 Euclidian	 distance	 between	 the	 centroid	 and	 the	most	 dis-
tant	 prediction	 away	 from	 the	MVE	 (Figure	2;	Appendix	 S2.B).	 To	
assess	overall	fit	of	the	model	to	the	data	in	environmental	space,	we	
also	measured	similarity	between	the	observed	niche	(i.e.,	MVE)	and	
niches	predicted	by	the	different	models	using	the	Jaccard	similarity	
index	(Jaccard,	1912;	Figure	2;	Appendix	S2.B).	Finally,	once	models	
were	evaluated	with	independent	data,	final	predictions	were	devel-
oped	using	all	the	occurrences	available	for	more	informed	models	
of	the	species	truly	potential.	Binary	models	of	suitability	were	gen-
erated	 using	 the	 threshold	 based	on	0%	omission	 error	 described	
above,	and	binary	maps	were	summed	to	generate	an	ensemble	sum-
marizing	areas	with	agreement	among	models.

3  | RESULTS

The	environmental	space	defined	by	the	first	three	principal	compo-
nents	explained	94.2%	of	overall	variance;	the	first	two	dimensions	
explained	84.4%.	Interestingly,	the	Dc	occurrences	overlapped	envi-
ronmentally	with	northern	populations	Dn	from	a	2D	environmen-
tal	perspective	 (Figure	1b),	but	environmental	overlap	between	Dc 
and	Dn	was	nil	in	the	3D	space	(Figure	1c).	Darwin’s	Fox	populations	
in	 the	northern	and	southern	areas	of	 the	 range	provided	distinct	
environmental	 information	 to	 the	 models	 (i.e.,	 no	 environmental	
overlap	manifested	between	Ds	and	Dn).	Dc	occurrences	filled	a	por-
tion	of	 the	environmental	gap	between	Ds + Dn,	 and	occupied	 the	
broadest	 environmental	 space	 (green	 ellipsoid	 in	 Figure	1b,c).	 Dc 
niche	volume	was	5.56,	compared	to	Dn	and	Ds	volumes	of	2.87	and	
0.54,	respectively.	We	found	heterogeneous	frequencies	of	occur-
rences	across	the	species’	temperature	range:	When	mean	tempera-
ture	was	extracted	using	all	available	occurrences,	Darwin’s	Foxes	
were	not	found	across	the	entire	temperature	range	available	in	the	
study	 area,	 but	 rather	 clustered	 in	 specific	 temperature	 intervals	
(Appendix	S3.A).

Our	 analyses	 focused	 on	 the	 predictive	 capabilities	 of	 mod-
els	calibrated	based	on	incomplete	data	(i.e.,	using	only	Dn	and	Ds; 
Figures	3–7).	According	to	AIC	values	from	models	with	incomplete	

data	(Table	1),	the	default	parameter	Maxent	model	had	the	best	fit,	
followed	by	GLM.	However,	when	all	 occurrences	were	employed	
(Ds,	Dn,	Dc)	 to	calibrate	final	models,	GLM	provided	the	best	fit	to	
the	data	based	on	AIC.

Using	independent	evaluation	data	(Dc),	the	models’	pROC	ratios	
provided	detailed	quantitative	information	on	model	outputs,	allow-
ing	us	to	detect	inconsistent	models	(i.e.,	high	variation;	e.g.,	GLM,	
BRT;	Figure	3).	However,	pROC	showed	low	discrimination	ranking	
high	models	with	very	broad	(e.g.,	GLM)	and	very	narrow	predictions	
(e.g.,	BRT;	Figures	3	and	4).	On	average,	based	on	pROC,	GLM,	BRT,	
and	Maxent	had	good	predictive	capabilities	compared	 to	 random	
models,	whereas	NicheA	and	GARP	had	low	performance	in	predict-
ing	independent	evaluation	data	(Figures	3	and	4).

Threshold	values	based	on	0%	and	5%	omission	error	changed	
considerably	for	GLM,	BRT,	and	GARP	(Appendix	S3.B).	OR	evalu-
ations	with	and	omission	error	threshold	of	0%	revealed	that	GLM	
and	 Maxent	 predictions	 anticipated	 all	 independent	 evaluation	
points	(i.e.,	zero	omission	error;	Table	2),	but	by	predicting	exten-
sive	 areas	 as	 suitable	 (Figure	4).	On	 the	other	 hand,	BRT	 identi-
fied	only	3%	and	KDE	21%	of	the	evaluation	area	as	suitable,	but	
were	 unable	 to	 anticipate	 any	 of	 the	 evaluation	 occurrences	Dc 
(Figure	4;	 Table	2).	 NicheA	 and	 GARP	 identified	 narrower	 areas	
as	 suitable	 (41.2%	 and	 28.3%,	 respectively),	 but	 failed	 to	 antic-
ipate	 four	 of	 seven	 occurrences,	 predictions	 that	 were	 not	 bet-
ter	 than	chance	according	 to	 the	CBP	test.	Hence,	based	on	 the	
CBP	metric	with	a	threshold	of	0%	omission	error,	only	GLM	and	
Maxent	provided	better-	than-	random	predictions	(Table	2).	When	
models	where	thresholded	based	on	5%	omission	error,	GLM	and	
Maxent	dramatically	reduced	the	area	predicted	suitable	(Table	2;	
Appendix	 S3.C),	 which	 could	 be	 associated	 with	 the	 positive	
skew	distribution	 of	 their	 predicted	 values	 (Appendix	 S3.B).	 For	
example,	most	Maxent	predictions	had	 low	values,	 so	 that	 small	

F IGURE  3 Ecological	niche	model	evaluation	in	central	
populations	(Dc)	using	partial	ROC	ratios	based	on	northern	and	
southern	(Ds + Dn)	populations.	Boxplots	denote	AUC	ratios	in	100	
replicates	using	50%	of	evaluation	occurrences	in	each	replicate	
and	5%	of	omission	error.	The	red	line	denotes	a	null	distribution	
of	AUC	ratios	under	which	predictions	are	not	better	than	by	
random	expectations.	GLM,	generalized	linear	model;	BRT,	boosted	
regression	trees;	Maxent,	maximum	entropy;	GARP,	genetic	
algorithm	for	rule-	set	production;	KDE,	hypervolume	multivariable	
kernel	density	estimation;	NicheA,	minimum-	volume	ellipsoid
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F IGURE  4 Continuous	and	binary	models	of	Darwin’s	Fox	in	the	evaluation	area	(threshold	=	0%).	Models	calibrated	using	northern	
and	southern	(Ds + Dn)	Darwin’s	Fox	occurrences,	projected	in	the	evaluation	area	(dashed	line).	Independent	occurrences	from	the	central	
population	(Dc;	black	squares)	are	used	to	evaluate	the	model	in	terms	of	predictions	in	continuous	(i.e.,	range	of	colors;	highly	suitable	=	red,	
unsuitable	=	blue)	and	binary	outputs	(i.e.,	suitable	=	red,	unsuitable	=	gray).	Binary	models	were	generated	based	on	0%	omission	error	from	
calibration	occurrences.	NicheA,	minimum-	volume	ellipsoid;	GARP,	genetic	algorithm	for	rule-	set	production;	BRT,	boosted	regression	trees;	
GLM,	generalized	linear	model;	Maxent,	maximum	entropy;	KDE,	hypervolume	multivariable	kernel	density	estimation
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increments	in	the	threshold	will	assign	broad	areas	as	unsuitable.	
Under	this	threshold,	only	GLM	provided	predicted	better	than	by	
chance	based	on	CBP	metric	(Table	2).

Metrics	 of	 ENM	 performance	 in	 environmental	 space	 showed	
that	 different	 models	 predicted	 different	 levels	 of	 interpolation	
and	extrapolation,	 information	not	captured	by	 traditional	metrics	
(e.g.,	AIC;	Figure	5	and	Appendix	S3.D).	Based	on	E-	space	 index	 I,	
ENMs	showed	different	 frequency	of	 interpolation	and	extrapola-
tion	 (Figure	6).	Based	on	a	threshold	of	0%	omission	error,	models	
with	highest	 frequency	of	environmental	extrapolation	were	GLM	
and	Maxent	 (Figure	6a);	BRT	had	 the	 lowest	amount	of	extrapola-
tion.	NicheA	showed	high	amounts	of	environmental	interpolation,	
similar	 to	 Maxent,	 but	 much	 lower	 environmental	 extrapolation,	
similar	to	BRT.	GARP,	followed	by	KDE,	had	intermediate	amounts	
of	 interpolation	 and	 low	 extrapolation	 in	 predictions,	 suggesting	
that	 these	models	balanced	 interpolation	and	extrapolation	better	

(Figure	6a).	However,	 even	 though	GARP	and	KDE	were	 similar	 in	
interpolation	and	extrapolation	frequencies,	they	predicted	suitabil-
ity	under	different	environmental	values	and	extents,	as	visualized	
in	environmental	space	(Figure	6a).	E-	space	index	I	also	showed	that	
some	ENMs	are	more	affected	than	others	by	the	threshold	value	
selected.	 For	 example,	 while	 BRT	 and	 GLM	 remained	 consistent,	
Maxent	was	the	most	affected	by	variations	in	threshold	values,	with	
a	 radical	change	from	very	high	 interpolation	and	extrapolation	to	
very	low	interpolation	and	extrapolation	(Figure	6a	vs.	b).

When	 E-	space	 index	 II	 was	 considered,	 we	 found	 that	 under	
a	 0%	 omission	 threshold,	 GLM	 and	 Maxent	 predicted	 suitability	
in	 environmental	 conditions	 considerably	 beyond	 observed	 val-
ues	 (Figure	7a).	 GLM	 and	Maxent	models	 also	 showed	 the	 lowest	
environmental	 overlap	 with	 observed	 occurrences,	 revealing	 high	
extrapolation	 and	 low	 fit	 to	 observations	when	 environmental	 di-
mensions	 are	 considered.	 NicheA	 provided	 the	 best	 fit	 between	

F IGURE  5 Model	evaluations	based	
on	interpolation	and	extrapolation	in	
environmental	space	(threshold	=	0%).	Top	
left:	Darwin’s	Fox	populations,	from	the	
northern	(blue	ellipsoid),	central	(green	
ellipsoid),	and	southern	(red	ellipsoid);	
populations	were	enclosed	to	generate	
observed	ecological	niche	hypotheses;	
the	environmental	background	is	
shown	in	this	panel	as	gray	points.	
Subsequent	panels:	Predictions	were	
categorized	according	to	environmental	
interpolation	(red	points)	as	predictions	
inside	the	ellipsoid	and	environmental	
extrapolation	(blue	points;	see	Section	2)	
as	predictions	outside	the	ellipsoid;	the	
environmental	background	is	not	shown	
in	these	panels	for	better	visualization	of	
models	output.	GLM,	generalized	linear	
model;	BRT,	boosted	regression	trees;	
Maxent,	maximum	entropy;	GARP,	genetic	
algorithm	for	rule-	set	production;	KDE,	
hypervolume	multivariable	kernel	density	
estimation;	NicheA,	minimum-	volume	
ellipsoid.	Note	that	predictions	by	some	
models	resemble	the	background	cloud	
(e.g.,	GLM	and	Maxent),	suggesting	that	
all	the	conditions	available	in	the	model	
calibration	area	were	predicted	suitable	
by	the	model	via	model	interpolation	(red	
points)	or	extrapolation	(blue	points)



     |  4765ESCOBAR Et Al.

F IGURE   6 Model	performance	evaluation	in	environmental	
dimensions	based	on	the	E-space index I.	Frequency	of	
environmental	interpolation	and	extrapolation.	Models	were	
plotted	in	terms	of	environmental	interpolation	(x-	axis)	and	
extrapolation	(y-axis)	to	compare	their	performance	under	both	
circumstances.	Units	are	number	of	environmental	points	from	
principal	component	variables	with	predicted	values	inside	
(i.e.,	interpolation)	or	outside	the	ellipsoid	of	the	observed	
niche	(i.e.,	model	extrapolation).	(a)	Binary	models	based	on	a	
threshold	of	0%	omission	error	in	the	calibration	occurrences.	
(b)	Binary	models	based	on	a	threshold	of	5%	omission	error	in	
the	calibration	occurrences.	GLM,	generalized	linear	model;	BRT,	
boosted	regression	trees;	Maxent,	maximum	entropy;	GARP,	
genetic	algorithm	for	rule-	set	production;	KDE,	hypervolume	
multivariable	kernel	density	estimation;	NicheA,	minimum-	
volume	ellipsoid

F IGURE  7 Model	performance	evaluation	in	environmental	
dimensions	based	on	the	E-space index II.	Model	fit	in	terms	of	
niche	overlap	measured	by	Jaccard	similarity	and	the	degree	of	
extrapolation	as	the	niche	distance	between	the	occurrences	and	
niche	center.	Models	were	plotted	in	terms	of	Jaccard	similarity	
(x-	axis)	and	degree	of	extrapolation	in	terms	niche	distance	(y-	
axis;	see	Figure	2).	(a)	Binary	models	based	on	a	threshold	of	0%	
omission	error	in	the	calibration	occurrences.	(b)	Binary	models	
based	on	a	threshold	of	5%	omission	error	in	the	calibration	
occurrences.	GLM,	generalized	linear	model;	BRT,	boosted	
regression	trees;	Maxent,	maximum	entropy;	GARP,	genetic	
algorithm	for	rule-	set	production;	KDE,	hypervolume	multivariable	
kernel	density	estimation;	NicheA,	minimum-	volume	ellipsoid



4766  |     ESCOBAR Et Al.

predictions	 and	 observations	 as	measured	with	 Jaccard	 similarity;	
NicheA	and	BRT	showed	the	 lowest	degree	of	extrapolation.	KDE	
and	GARP	showed	moderate	similarity	between	predictions	and	ob-
servations	 and	 low	degree	of	 extrapolation	 as	 expressed	 as	 niche	
distance	 (Figure	7b).	Using	a	5%	omission	error	 threshold	 reduced	
considerably	the	exaggerated	degree	of	extrapolation	for	GLM	and	
Maxent	as	expressed	by	distance	of	outlier	predictions	 in	environ-
mental	space	(Figure	7b;	Appendix	S3.D).

In	 geographic	 space	 and	 using	 0%	 omission	 error	 threshold,	
models	with	high	extrapolation	 (e.g.,	GLM,	Maxent)	were	visual-
ized	as	broad	areas	of	potential	distribution	for	Darwin’s	Fox.	GLM	
and	Maxent	were	considerably	impacted	geographically	by	incre-
ments	in	the	omission	error	threshold	to	5%,	shrinking	dramatically	
the	 area	 predicted	 suitable	 (Appendix	 S3.C).	 ENMs	with	 limited	
extrapolation	 and	 interpolation	 (e.g.,	 BRT,	 KDE,	 GARP)	 identi-
fied	 more	 specific	 areas	 as	 suitable	 even	 when	 calibrated	 with	
all	 available	occurrences	 (Figure	4	and	Appendix	S3.E).	Summing	
all	of	the	binary	models	calibrated	using	all	available	occurrences	
for	 the	 final	ENM	ensemble	approach	 showed	areas	of	high	and	
low	agreement	of	models,	mostly	clustered	in	areas	of	known	oc-
currence,	and	extending	across	the	Andean	mountain	valleys	and	
onto	the	plateau	(Appendix	S3.E).

4  | DISCUSSION

Many	previous	studies	have	attempted	to	assess	predictive	perfor-
mance	of	ecological	niche	modeling	methods	regarding	their	predic-
tive	ability,	overfitting,	and	accuracy	(Rangel	&	Loyola,	2012).	Others	
have	argued	that	a	model	ensemble	approach	is	a	parsimonious	way	
to	deal	with	ENM-	based	variation,	avoiding	the	decision	of	choos-
ing	one	ENM	over	another	(Araújo	&	New,	2007);	however,	using	a	
single	model	is	the	common	practice	(Qiao	et	al.,	2015).	For	instance,	
the	work	of	Elith	et	al.	(2006)	has	seen	over	5,200	citations,	but	its	
conclusions	 are	 rarely	 questioned,	 even	 given	 known	weaknesses	
in	the	evaluation	metrics	used	(Golicher,	Ford,	Cayuela,	&	Newton,	
2012;	Lobo	et	al.,	2008;	Peterson,	Papeş,	&	Eaton,	2007;	Peterson	
et	al.,	 2008).	 In	 this	 study,	 we	 have	 begun	 to	 address	 key	 issues	
that	 have	 been	 generally	 neglected	 in	 selecting	 ENMs	 for	 studies	
(but	 see	Diniz-	Filho	 et	al.,	 2009;	Buisson,	 Thuiller,	Casajus,	 Lek,	&	
Grenouillet,	2010;	Terrible	et	al.,	2012;	de	Oliveira,	Araújo,	Rangel,	
Alagador,	 &	 Diniz-	Filho,	 2012;	 de	 Oliveira,	 Rangel,	 Lima-	Ribeiro,	
Terribile,	 &	 Diniz-	Filho,	 2014;	 de	 Oliveira	 et	al.,	 2015;	 Collevatti	
et	al.,	2012,	2013).	Model	performance	varied	dramatically	among	
ENMs	 and	 depending	 on	 the	 evaluation	metric	 employed,	making	
multimetric	comparisons	and	careful	consideration	of	the	needs	of	
each	particular	study	a	critical	element	in	the	analytical	process	and	
final	model	selection.

Under	ideal	conditions,	species	will	occupy	a	continuous	portion	
of	 environmental	 space	 that	 reflects	 their	 fundamental	 ecological	
niches	 (Soberón	 &	 Nakamura,	 2009).	 For	 most	 species,	 however,	
such	conditions	rarely	exist,	and	Wallace’s	Dream	scenarios	may	ap-
pear,	in	which	the	true	dimensions	of	the	niche	that	are	observable	
are	limited	due	to	other	factors.	Here,	the	historical	distribution	of	
the	Darwin’s	Fox	is	an	ideal	example	of	a	Wallace’s	Dream	scenario,	
with	isolated	populations	occupying	different	environmental	spaces.	
Novel	environmental	values	representing	previously	unknown	sec-
tors	of	 the	species’	 fundamental	ecological	niche	were	 illuminated	
using	novel	reports	of	Darwin’s	Fox	populations	in	the	central	parts	
of	 the	 species’	 range	 (Dc).	 This	 new	 information	 effectively	 filled	
both	 environmental	 and	 geographic	 gaps	 between	 northern	 and	
southern	populations	(Figure	1).	We	also	found	that	some	ENMs	may	

Model calibrated using 
Dn + Ds

Omission rate
Area predicted 
suitable CBP (p value)

0% 5% 0% 5% 0% 5%

GLM 0.00 0.30 0.96 0.30 <.001 <.001

Maxent 0.00 1.00 0.92 0.03 <.001 >.05

BRT 1.00 1.00 0.03 0.01 >.05 >.05

KDE 1.00 NA 0.21 NA >.05 NA

NicheA 0.57 0.57 0.41 0.40 >.05 >.05

GARP 0.57 0.71 0.28 00.20 >.05 >.05

CBP,	 Cumulative	 binomial	 probability;	 GLM,	 generalized	 linear	 model;	 BRT,	 boosted	 regression	
trees;	Maxent,	maximum	entropy;	GARP,	genetic	algorithm	for	rule-	set	production;	KDE,	hypervol-
ume	multivariable	kernel	density	estimation;	NicheA,	minimum-	volume	ellipsoid.

TABLE  2 True	omission	error	
evaluations	based	on	validation	data	from	
the	novel	population	Dc	(n	=	7).	Binary	
maps	based	on	an	a	priori	percentage	of	
omission	error	tolerance	of	0%	and	5%	in	
the	calibration	data	Dn	and	Ds

TABLE  1 Akaike	information	criterion	(AIC)	values	for	models	
calibrated	using	northern	and	southern	populations	(i.e.,	Dn + Ds)	
and	all	occurrences	available	(Dn + Dc + Ds)

K Ln(likelihood) AIC

Calibration	models	Dn + Ds

Maxent 57 −1061.09 2236.17

GLM 6 −1206.42 2424.85

BRT 192 −1031.91 2447.82

GARP 96 −1132.65 2457.30

Final	models	Dn + Dc + Ds

GLM 6 −1187.17 2386.34

Maxent 55 −1173.17 2456.33

GARP 96 −1155.53 2503.06

BRT 192 −1133.39 2650.78
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fail	to	reconstruct	species’	niches	under	Wallace’s	Dream	scenarios,	
which	was	manifested	by	models’	inability	to	predict	Dc	populations.

GLM	 filled	 consistently	 and	 substantially	 the	 environmen-
tal	 gap	 in	 the	 observable	 parts	 of	 the	 species’	 ecological	 niche	
(Figures	4	and	5),	but	at	the	cost	of	dramatic	extrapolation	beyond	
the	environmental	conditions	occupied	by	 the	species	 (Figures	5	
and	 6).	 High	 model	 extrapolation	 may	 be	 undesirable,	 as	 it	 as-
sumes	 that	 the	 species	 can	 survive	 under	 conditions	 outside	 of	
the	range	of	conditions	under	which	it	has	been	observed	to	main-
tain	 populations,	 sometimes	 far	 outside	 known	 conditions.	 Such	
extrapolation	can	be	biologically	unrealistic;	for	example,	in	some	
cases,	models	anticipate	suitability	at	100°C,	which	is	implausible	
for	most	species	(Owens	et	al.,	2013).

On	the	other	hand,	model	overfitting,	expressed	in	our	environ-
mental	 space	metrics	 as	 low	 interpolation	 and	 extrapolation	 (e.g.,	
BRT),	 is	 also	 likely	 to	be	biologically	unrealistic.	For	example,	why	
would	 a	 species	 not	 be	 able	 to	 survive	 under	 intermediate	 condi-
tions	otherwise	contained	 inside	 its	environmental	 range	 (e.g.,	 see	
Appendix	S3.A)?	Basic	physiology	suggests	that	species	will	be	able	
to	survive	under	intermediate	conditions,	as	physiological	responses	
tend	to	be	bell-	shaped	in	terms	of	response	of	suitability	to	environ-
mental	conditions,	rather	than	bimodal,	intolerance	to	intermediate	
environmental	 conditions	 (Austin,	 Cunningham,	 &	 Fleming,	 1984;	
Birch,	1953;	Maguire,	1973;	Qiao,	Escobar,	et	al.,	2016).

Under	this	thinking	framework,	we	would	seek	an	ENM	method	
with	high	interpolation	but	low	extrapolation,	at	least	for	the	needs	
of	this	study.	Some	methods	performed	poorly	under	some	evalua-
tion	metrics	(e.g.,	AIC),	but	may	fulfill	the	requirements	of	this	study,	
such	 as	NicheA,	GARP,	 and	KDE.	We	 suggest	 that	 the	 evaluation	
metric	should	be	selected	based	on	the	model	feature	desired	and	
the	use	 intended	 (Soberón	&	Peterson,	 2005).	 For	 example,	 some	
research	 questions	 may	 require	 prioritizing	 model	 overfitting	 ex-
pressed	as	low	interpolation	and	low	extrapolation,	whereas	others	
may	require	predictions	that	are	not	overfitted	and	that	are	inclusive	
of	broad	suitable	conditions.	For	example,	an	overfit	model	would	
be	desirable	in	cases	attempting	to	identify	suitable	areas	for	rein-
troductions	 of	 rare	 species,	while	 broad	models	may	 be	 desirable	
for	searches	for	last	populations	of	possibly	extinct	species.	Hence,	
assessing	modeling	methods	 in	terms	of	diverse	metrics	should	be	
a	 common	 practice	 in	 view	 of	 the	 abilities	 of	 different	metrics	 to	
assess	different	model	features.	In	this	vein,	AIC	corrected	by	sam-
ple	 sizes	 (AICc)	 could	be	 included	 in	 the	 set	of	 evaluation	metrics	
for	ENMs	developed	from	small	number	of	occurrences	(Warren	&	
Seifert,	2011).	We	also	noted	that	our	small	number	of	occurrences	
affected	dramatically	the	thresholding.	For	example,	removing	5%	of	
calibration	occurrences	with	the	lowest	predicted	values,	instead	of	
0%,	resulted	in	Maxent	models	that	were	markedly	different.

Detailed	 parameterizations	 instead	 of	 default	 configura-
tions	 may	 impact	 fit	 of	 models	 to	 the	 data	 in	 interesting	 ways	
(de	Oliveira	et	al.,	2017).	In	particular,	selection	of	Maxent	models	
based	on	information	criteria	such	as	AIC	is	emerging	as	a	popu-
lar	new	paradigm	in	ecological	niche	modeling	(Warren	&	Seifert,	
2011).	 This	 practice,	 however,	 is	 still	 under	 intense	 exploration	

and	experimentation	 (Muscarella	 et	al.,	 2014),	 and	 the	biological	
significance	of	such	“best”	models	remains	understudied.	We	re-
call	the	words	of	Samuel	Karlin,	an	American	mathematician	who	
stated,	“The	purpose	of	models	is	not	to	fit	the	data	but	to	sharpen	
the	 questions.”	 As	 regards	 the	 present	 study,	 our	 focus	was	 on	
developing	 useful	 evaluation	 metrics,	 rather	 than	 on	 detailed	
parameterization	of	models,	which	have	been	 treated	elsewhere	
(Muscarella	et	al.,	2014;	Peterson	et	al.,	2011).

Still,	 as	 many	 readers	 will	 be	 curious	 about	 the	 effects	 of	
detailed	 parameterization	 on	 the	 sort	 of	 results	 that	 we	 have	
presented	 in	 this	 contribution,	we	 explored	 a	more	 detailed	 pa-
rameterization	 of	 Maxent	 (Appendix	 S4).	 We	 assessed	 1,220	
candidate	 models	 and	 found	 that	 the	 optimal	 AICc	 metrics	 do	
not	coincide	with	default	parameters.	That	is,	detailed	model	pa-
rameterization	helped	to	generate	models	with	better	fit	with	the	
data	and	less	complexity	(57	parameters	for	the	default	model	vs.	
23	for	the	optimized	model).	 In	terms	of	other	metrics,	however,	
default	and	optimized	models	did	not	differ	markedly	(e.g.,	omis-
sion	rate,	area	predicted	suitable,	cumulative	binomial	probability),	
such	that	the	resulting	distribution	maps	did	not	differ	noticeably	
(Appendix	S4).

Based	on	diverse	model	 evaluation	 criteria	 (amount	of	 extrap-
olation,	amount	of	interpolation,	degree	of	extrapolation,	model	fit	
with	the	data,	pROC,	cumulative	binomial	test,	and	omission	rate),	
we	found	that	no	single	ENM	achieved	the	highest	scores	in	all	met-
rics.	For	 the	particular	application	examined	 in	 this	study,	we	pre-
ferred	models	presenting	low	extrapolation	and	high	interpolation,	
criteria	that	were	chosen	a	priori.	Under	this	condition,	NicheA	was	
a	good	candidate	model	in	terms	of	low	extrapolation,	high	interpo-
lation,	moderate	omission	rate,	high	similarity	to	the	observed	niche,	
and	low	degree	of	extrapolation,	but	at	the	cost	of	a	non-	significant	
p-	value	 as	 estimated	 based	 on	 a	 one-	tailed	 binomial	 test.	 For	 an	
expanded	discussion	of	the	results	on	the	distributional	ecology	of	
Darwin’s	Fox,	see	Appendix	S3.E.

Ecological	niche	models	are	usually	designed	and	assessed	from	
a	 geographic	 perspective	 (e.g.,	 Radosavljevic	 &	 Anderson,	 2014).	
However,	 our	 results	 suggest	 that	 such	 interpretations	 hold	 rela-
tively	limited	information	and	should	be	taken	with	caution;	models	
should	 rather	 be	 analyzed	 in	 both	 environmental	 and	 geographic	
spaces.	What	is	more,	complications	arising	from	spatial	autocorrela-
tion	 and	 nonindependence	of	 points	 in	 geographic	 spaces	 further	
complicate	 geographic	 only	 evaluations.	 More	 highly	 dimensional	
environmental	spaces	may	be	still	more	 informative	 in	such	explo-
rations	(Figure	1).

We	encourage	 a	 future	 reanalysis	of	 the	original	work	of	Elith	
et	al.	 (2006),	based	on	the	same	data	sets	and	model	outputs,	but	
under	 different	 and	 diverse	 evaluation	 metrics.	 Such	 a	 reanalysis	
would	 determine	 whether	 that	 study’s	 conclusions	 are	 consistent	
under	the	same	assumptions	and	parameters,	but	in	the	context	of	
different	evaluation	metrics.	Such	a	re-	evaluation	exercise	would	in-
crease	the	transparency	and	good	practices	behind	one	of	the	foun-
dational	 studies	 in	ecological	niche	modeling.	We	note	 that	ENMs	
in	this	study	used	default	parameters	to	allow	replicability	and	fair	
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comparisons,	but	more	detailed	parameterizations	may	generate	dif-
ferent	 outputs.	 To	 facilitate	 the	 replication	 of	 our	 study,	we	 have	
incorporated	the	scripts	of	the	metrics	as	Appendix	S2.B.	However,	
development	of	a	formal	software	package	 including	ENM	evalua-
tions	in	environmental	space	is	warranted.

5  | CONCLUSIONS

AUC	and	AIC	have	dominated	protocols	for	ENM	model	evaluation	
for	at	least	a	decade;	however,	such	metrics	are	limited	in	informa-
tion	and	may	fail	to	evaluate	some	properties	of	the	desired	model	
(Qiao	et	al.,	2015).	Researchers	should	establish	clear	and	delimited	
a	 priori	 assumptions	 and	 desired	model	 characteristics	 (Peterson,	
2006);	based	on	these	decisions,	researchers	can	select	ENM	meth-
ods	 and	 evaluation	 metrics	 that	 address	 their	 requirements.	 We	
found	 that	 model	 evaluations	 in	 environmental	 dimensions	 were	
highly	informative	to	guide	model	selection	and	interpretation.	Our	
proposed	E-	space	metrics	of	extrapolation	and	interpolation	in	the	
environmental	space	offer	a	useful	enrichment	to	more	customary	
characterization	 of	 model	 predictions.	 Future	 research	 on	 these	
metrics	should	include	development	of	standardized	indices	to	make	
studies	comparable.
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