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Abstract
Mammary tumors and malignant breast cancer cell lines over-express the coagulation fac-

tor, tissue factor (TF). High expression of TF is associated with a poor prognosis in breast

cancer. Tissue factor pathway inhibitor (TFPI), the endogenous inhibitor of TF, is constitu-

tively expressed on the endothelium. We hypothesized that TF-expressing tumor cells can

bind to immobilized recombinant TFPI, leading to arrest of the tumor cells under shear in
vitro. We evaluated the adhesion of breast cancer cells to immobilized TFPI under static

and shear conditions (0.35 – 1.3 dyn/cm2). We found that high-TF-expressing breast cancer

cells, MDA-MB-231 (with a TF density of 460,000/cell), but not low TF-expressing MCF-7

(with a TF density of 1,400/cell), adhered to recombinant TFPI, under static and shear con-

ditions. Adhesion of MDA-MB-231 cells to TFPI required activated factor VII (FVIIa), but not

FX, and was inhibited by a factor VIIa-blocking anti-TF antibody. Under shear, adhesion to

TFPI was dependent on the TFPI-coating concentration, FVIIa concentration and shear

stress, with no observed adhesion at shear stresses greater than 1.0 dyn/cm2. This is the

first study showing that TF-expressing tumor cells can be captured by immobilized TFPI,

a ligand constitutively expressed on the endothelium, under low shear in vitro. Based on

our results, we hypothesize that TFPI could be a novel ligand mediating the arrest of TF-

expressing tumor cells in high TFPI-expressing vessels under conditions of low shear

during metastasis.

Introduction
Tissue factor (TF), a 47kDa transmembrane protein, is constitutively expressed on the surface
of fibroblasts and smooth muscle cells surrounding blood vessels [1]. The primary function of
TF is to initiate coagulation upon vascular injury through binding to and acting as a cofactor
for its enzymatic partner, factor VII. Previous studies have shown that TF is up-regulated and
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over-expressed in various types of cancer cells [2,3]. Over-expression of TF by tumor cells has
been associated with paraneoplastic thrombosis [4–6]. Tissue factor has also been shown to
have non-coagulant roles in cancer biology by promoting tumor proliferation, angiogenesis,
and metastasis [1–3,5].

Cancer metastasis is a complex and poorly understood process involving multiple steps in-
cluding invasion of tumor cells from the primary tumor, intravasation into the vasculature sys-
tem, arrest and extravasation into surrounding tissue, and formation of a secondary tumor at
established pre-metastatic niches [7–10]. Of these steps, TF has been shown to increase tumor
cell invasion in extracellular matrices in vitro [11–13]. A recent study has also shown that TF is
involved in the formation of the pre-metastatic niche [14]. Little is known on the role of TF in
the later steps of the metastatic cascade or specifically if TF is involved in arrest of circulating
tumor cells in blood vessels at sites of metastasis. Most studies on tumor cell adhesion to the
endothelium have focused on classic adhesion receptor-ligand interactions (e.g. selectins and
integrins), mimicking the recruitment of leukocytes during inflammation [15–17]. These stud-
ies have shown that selectins and integrins can mediate cancer cell adhesion to endothelium
pre-activated by inflammatory cytokines. In vivo studies have suggested that non-classic inter-
actions are involved in the adhesion of cancer cells to endothelial cells as rolling of cancer cell
is not always observed prior to adhesion [18,19]. Instead, tumor cells simply arrest on unacti-
vated endothelium in vessels of dimensions greater than that of the tumor cell, demonstrating
that physical constriction was not the only cause of arrest.

Tissue factor pathway inhibitor (TFPI), the endogenous inhibitor of the TF-FVIIa complex,
is constitutively expressed on the endothelium [20,21]. It inhibits the enzymatic activity of TF/
FVIIa complex by binding to FVIIa and FXa through two Kunitz domains [22]. Since TFPI is
constitutively expressed on the endothelium, and tumor cells over-express TF, we hypothesized
that TF on tumor cells may bind to immobilized TFPI, thus providing in vitro support for a po-
tential novel mechanism by which TF-expressing tumor cells could arrest on the endothelium
under shear in vivo. Fischer et al. have shown that TF-expressing J82 bladder cancer cell lines
adhered to recombinant TFPI under static conditions [23], but the interaction between TF-
expressing tumor cells and TFPI under shear has not been investigated.

We found that, similar to J82 bladder tumor cells [23], high TF-expressing (MDA-MB-231),
but not low TF-expressing (MCF-7), breast cancer cells bound to immobilized recombinant
TFPI under static conditions in a FVIIa-dependent manner. Using a microfluidic device, we
showed for the first time that high TF-expressing tumor cells also bound under low physiologi-
cal shear to channels coated with immobilized recombinant TFPI. This binding and arrest of
TF-expressing tumor cells to TFPI is dependent on the shear stress, coating concentration of
TFPI, and FVIIa concentration. Based on our results, we hypothesize that endothelial cells with
high constitutive TFPI expression could potentially arrest high TF-expressing tumor cells
through adhesive interactions under low shear in vivo.

Materials and Methods

Reagents and antibodies
All reagents, unless noted, were from Sigma Aldrich (St Louis, MO). Human recombinant
FVIIa and FX were purchased from Haematologic Technologies (Essex Junction, VT). Recom-
binant His-tagged human TFPI was purchased from R&D Systems (Minneapolis, MN). Protein
G was purchased from EMDMillipore (Billerica, MA). Mouse anti-His, mouse IgG, and
Alexa-488-conjugated secondary goat anti-mouse antibodies were purchased from Invitrogen
(Carlsbad, CA). A mouse anti-TFPI antibody was purchased from Fitzgerald Industries
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International. Mouse monoclonal anti-TF antibodies (TF9-5B7 and TF9-10H10) were a gener-
ous gift from Dr. James Morrissey at University of Illinois.

Cell lines and cell culture
We used MDA-MB-231 (a gift from Dr. Teresa Porri in NBTC, Cornell University; ATCC
NCI-PBCF-HTB26, Mannasas, VA) as a model system for tumor cells expressing TF because
the cell line expresses high amount of TF [24]. The MCF-7 (ATCC HTB-22, Mannasas, VA)
breast cancer cell line with low expression of TF was used as a control. Both cell lines were cul-
tured in DMEM (Life Technologies, Carlsbad, CA for MDA-MB-231, and Corning Cellgro,
Mannasas, VA for MCF-7) completed with 10% (v/v) fetal bovine serum (Atlanta Biologicals,
Norcross, GA) and 100U/ml penicillin-streptomyocin (Invitrogen, Carlsbad, CA). Human um-
bilical vein endothelial cells (HUVEC, Lonza, Basel, Switzerland) were cultured using EGM-2
media (Lonza, Basel, Switzerland). All cells were maintained in an incubator at 37°C and
5% CO2.

Cell preparation for adhesion experiments
Cells were serum-starved overnight to remove residual FVII or FX that may be present in
serum-containing media. The cells were detached using an enzyme-free dissociation solution
(Millipore, Billerica, MA), and then resuspended in serum-free media (with 2mM calcium and
5U/ml heparin to prevent non-specific binding of TFPI) at 1x106 cells/ml. Cells were rested at
room temperature for 30 minutes, during which time they were treated with antibodies (TF9-
5B7, TF9-10H10 or an isotype control at 50μg/mL), if required. Cells that were to be incubated
with TFPI were also pre-treated with FVIIa (10nM unless otherwise stated) with or without FX
(10nM) for 10 minutes. For microfluidic experiments, cells were similarly prepared, but the re-
suspension medium also included 3% bovine serum albumin (BSA) to block non-specific teth-
ering of cells to the surface.

Ligand surface expression and ligand density
We used flow cytometry to verify surface expression of TF on the tumor cell lines, and TFPI on
HUVEC. Cells were detached using an enzyme-free dissociation solution. Then, 5x105 cells
were resuspended in phosphate-buffered saline (PBS, Corning Cellgro, Mannasas, VA) with
1% BSA (PBSA) and cells were incubated with primary antibodies (80μg/mL for anti-TF anti-
body and 40μg/mL for anti-TFPI antibody or isotype IgG at similar concentrations) for 30
minutes on ice, and then washed with PBSA. An Alexa-488-conjugated secondary antibody
(10μg/mL) was added to the cells for 30 minutes on ice, and then the cells were washed with
PBSA. Cells were resuspended in PBS for flow cytometry (BD FACSCalibur). A total of 10,000
events were acquired and analyzed by frequency distribution curves of log fluorescent units.

To further determine the ligand density of TF on tumor cells and TFPI on HUVEC, we used
a commercial kit (DAKO QIFIKIT, Carpinteria, CA) with flow cytometry as per manufactur-
er’s instructions. The results were analysed using FlowJo software v10 (Ashland, OR).

Microfabrication of wells and microfluidic channels
All microfabrication steps were performed at the Cornell NanoScale Science & Technology Fa-
cility. Poly-dimethylsiloxane (PDMS) was used to fabricate wells (0.8 x 0.8cm) for static adhe-
sion and channels with four branches (120 x 120μm, Fig 1) for adhesion under shear. Mask
designs were created using L-edit v16 (Tanner EDA, Monrovia, CA). To create the SU-8 mas-
ters for the wells and the channels, silicon wafers were spin-coated with SU-8 photoresist

High TF-Expressing Tumor Cells Can Bind to TFPI under Shear In Vitro

PLOSONE | DOI:10.1371/journal.pone.0123717 April 7, 2015 3 / 17



(MicroChem, Newton, MA) to create a film thickness of 200μm and 120μm respectively, fol-
lowing manufacturer’s instructions. The PDMS wells and channels were fabricated by pouring
Sylgard 184 silicone elastomer kit (Dow Corning, Midland, MI; ratio of 10 base to 1 curing
agent, w/w) over the SU-8 masters and curing in an oven at 60°C for 1.5 hours. Channels were
plasma-cleaned and then sealed with glass slides.

Characterization of surface density of immobilized TFPI
We used quartz crystal microbalance (QCM) to approximate the number of immobilized TFPI
proteins in our in vitro system. This technique relates the frequency changes in the quartz crys-
tal to the surface density of adsorbed or attached proteins (number/cm2) [25]. Quartz crystal
sensors were coated with a thin layer of PDMS by spin-coating 1 drop of PDMS (1 curing
agent: 10 base, diluted with 80% hexanes, w/w) at 6000RPM for 150 seconds [26]. The PDMS
was cured at room temperature overnight. The measurements were performed and recorded
using QCM200 (Stanford Research Systems, Sunnyvale, CA). The sensor was coated similarly
to the microfluidic channels using 50μg/mL of Protein G, anti-His antibody, and TFPI in 3 sep-
arate incubation steps of 1 hour each, with a PBS wash between each incubation. The surface
density was calculated based on the molecular weight of the proteins.

Static adhesion
The PDMS wells were sterilized with 70% ethanol and then washed with PBS. Wells were then
coated with proteins (10μg/mL fibronectin, 50μg/mL anti-TF IgG, isotype IgG or TFPI), incubat-
ed at 37°C for 1 hour, and then blocked with PBSA for 30 minutes at 37°C. Between steps, wells
were washed with PBS. The wells were used immediately or stored at 4°C for use within 2 days of
protein coating. Cells (5x104) were added to the wells and incubated at 37°C for 1 hour. Non-
adherent cells were removed by PBS washes. Half of the well (0.4 x 0.8cm) was imaged using
bright field microscopy at low power (10x objective, Nikon Eclipse TE2000-U, Photometrics
CoolSNAP HQ2 camera, Tucson, AZ). Adherent cells were counted at six pre-determined loca-
tions, and the count was normalized by the area of the field of view.

Adhesion under shear
Channels were sterilized with 70% ethanol, then washed with deionized water and PBS. Each
protein coating was performed at room temperature for 1 hour, and with PBS washes between
steps. To properly orient the proteins, channels were first incubated with Protein G (100μg/mL),
followed by antibodies (anti-TF IgG, isotype IgG or anti-His tag for TFPI coating at 100μg/mL,

Fig 1. Schematic of microfluidic channel. The microfluidic channel consisted of four branches
(120x120μm), which allowed for four simultaneous experiments under different coating conditions or cell
treatments. The indicated region of interest (along the length of the 4 branches) is where adherent cells are
quantified. Cell suspensions were introduced at the inlet and the outlet was connected to a syringe pump.

doi:10.1371/journal.pone.0123717.g001
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unless otherwise stated). Anti-His tag-coated channels were subsequently incubated with recom-
binant His-tagged TFPI (100μg/mL unless otherwise stated). All channels were blocked with 5%
BSA for 30 minutes after protein coating.

Channels were then connected to a syringe pump (World Precision Instruments SP230IW,
Sarasota, FL) and PBS was perfused through the channel at the experimental flow rate for 30
minutes to establish a stable flow profile. Cells (pre-treated with 10nM FVIIa and 10nM FX for
TFPI-coated channels, unless otherwise indicated) were then introduced into the channels and
monitored throughout the experiments in real-time using a motorized stage to observe behav-
ior. Pictures were taken at pre-determined locations on the channel every 10 minutes for a total
of 30 minutes to observe the change in cell adhesion over time. At the conclusion of the experi-
ment, PBS was introduced for 10 minutes to remove non-adherent cells. Pictures were taken
along the channel and the number of adherent cells was counted. The flow rate was then in-
creased to a corresponding shear stress of 2.0dyn/cm2 for 10 minutes to remove loosely adher-
ent cells. Repeat pictures were taken along the channel, and the number of adherent cells was
quantified again and normalized by the area of the channel. Since there was a minimal differ-
ence in adherent cells before and after perfusion of PBS at the higher shear (indicating that few
cells were loosely adherent), we only reported the final quantification.

Calculation of shear
Shear stress along branched channels was calculated using hydraulic circuit analysis, in which
branched channels can be modeled as hydraulic resistors in parallel to derive an equivalent cir-
cuit [27].

The average wall shear stress (�t) for a rectangular channel was calculated using an approxi-
mation given by Bahrami et al. (Eq 1), in which A is the area of the cross-section, μ is the dy-
namic viscosity, ε is the ratio of the channel height and width (ε<1), and �u is the average
velocity of the fluid, which can be derived from the pre-determined flow rate [28].

�t ¼ 6m�u

1� 192
p5 "tanh

p
2"

� �� �ð1þ "Þ ffiffiffiffi
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p ffiffiffi
"

p ð1Þ

Data analysis
Data was parametric and represented as mean ± standard deviation. Means of different cell
lines were compared with an unpaired T-test. Means of the same cell line with different treat-
ments were compared with ANOVA and Fisher post-test. All analyses were done using statisti-
cal software (Minitab 16, State College, PA) with significance set to p<0.05 (two tailed).

Results

TF is highly expressed on MDA-MB-231, but not on MCF-7, breast
cancer cells
We verified surface expression of TF on the two breast cancer cell lines using flow cytometry,
which showed a high surface expression of TF on MDA-MB-231, and a weak or no expression
of TF on MCF-7 (Fig 2), as previously reported [24]. The TF ligand surface density was deter-
mined to be 461,000/cell for MDA-MB-231 and 1,400/cell for MCF-7.

Quantification of amount of immobilized TFPI
Using QCM, we analyzed the surface density of immobilized recombinant TFPI molecules
given by the coating protocol for the microfluidic channel. The QCMmeasurements

High TF-Expressing Tumor Cells Can Bind to TFPI under Shear In Vitro

PLOSONE | DOI:10.1371/journal.pone.0123717 April 7, 2015 5 / 17



qualitatively confirmed protein attachment onto the sensor surface, as the addition of each pro-
tein (Protein G, anti-His antibody and recombinant human TFPI) yielded a decrease in fre-
quency, signifying an increase in mass and adhesion of the added proteins. Protein adsorption
occurred rapidly as denoted by the immediate change in signal after protein addition, and the
signal started to plateau within 30 minutes. Based on the mass of TFPI, the number of surface
immobilized TFPI was calculated to be 3.4x1012 molecules/cm2. To determine how this
amount of bound purified TFPI relates to constitutive expression on endothelial cells, we used
HUVEC as our model endothelial cells, and measured their TFPI expression. Flow cytometry
verified expression of TFPI by HUVEC, with ligand density quantified as 14,700/cell (S1 Fig).
Assuming a diameter of 8μm for a cell, the expression of TFPI by HUVECs is approximately
3x1010 molecules/cm2, which is lower than that within the channel.

MDA-MB-231 exhibits TF-specific adhesion to immobilized TFPI under
static conditions
After characterizing the tumor cells as a model system for TF-expressing cells, we proceeded to
evaluate their adhesion to TFPI under static conditions. MDA-MB-231 cells bound to anti-TF
antibody- and TFPI-coated wells, while MCF-7 only bound minimally to these TF-dependent
substrates (Fig 3A and 3B). Both cell lines also bound to fibronectin via integrins as expected
[29,30].

To confirm that the adhesion of MDA-MB-231 to TFPI was TF-dependent, we treated the
cells with two different monoclonal anti-TF antibodies. TF9-5B7 is an antibody that binds to the
FVII-binding domain of TF, which prevents binding to TFPI. TF9-10H10 binds to a non-FVII
binding epitope and does not prevent binding of TF to TFPI [31]. Pre-treating MDA-MB-231
cells with TF9-5B7, but not TF9-10H10, significantly decreased adhesion to TFPI under static
conditions (Fig 3C). We further demonstrated that only FVIIa, but not FX, was sufficient for ad-
hesion of TF-expressing MDA-MB-231 to immobilized TFPI under static adhesions (Fig 3D).
These results are similar to those reported by Fischer et al., who found TF/FVIIa-dependent ad-
hesion of TF-expressing J82 bladder cancer cell lines to immobilized TFPI under static condi-
tions [23].

Fig 2. TF surface expression and density on breast cancer cells. Representative fluorescence histograms of TF expression on MDA-MB-231 and MCF-7
cells. Cells (5x105) were incubated with a monoclonal antibody against TF (TF9-5B7, 80μg/mL), followed by an Alexa-488-conjugated secondary antibody
(10μg/mL). Fluorescence was detected (bold line) using flow cytometry with isotype IgG as a control (dotted line). Tissue factor was strongly expressed on
MDA-MB-231, but little expression was found on MCF-7 (n = 3). The surface ligand density is also shown for each cell line.

doi:10.1371/journal.pone.0123717.g002
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Fig 3. Static adhesion of tumor cells to protein-immobilized poly-dimethylsiloxane wells.MDA-MB-231 and MCF-7 (5x104 cells) were incubated for 1
hour at 37°C in PDMSwells immobilized with TFPI (50μg/ml), using anti-TF IgG (TF9-5B7, 50μg/ml) as a positive control for TF-specific adhesion, fibronectin
(10μg/ml) as a positive control for integrin adhesion, and uncoated or isotype IgG (50μg/ml) coated wells as negative controls. For TFPI-treated wells, cells
were pretreated with 10nM FVIIa and 10nM FX for 10 minutes prior to addition to the wells. A. Representative bright field images of adherent cells on the
different coatings. More MDA-MB-231 bound to TFPI- and anti-TF antibody-coated wells than MCF-7 cells. Both cell lines bound to fibronectin-coated wells.
B. Adherent cells were counted and normalized by the area of the counted region (mean ± standard deviation). Significantly more MDA-MB-231 cells bound
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MDA-MB-231 exhibits FVIIa-specific adhesion to immobilized TFPI
under low shear (0.35dyn/cm2)
Static adhesion does not fully recapitulate the interaction between circulating tumor cells and
the endothelium in vivo. In circulation, tumor cells are under constant shear, limiting their in-
teraction with expressed endothelial ligands. Using microfluidic devices, we are able to study
the interaction between TF-expressing tumor cells and immobilized TFPI to determine if arrest
of TF-expressing tumor cells to TFPI was possible under shear.

Previous studies have shown that tumor cell adhesion occur under low shear through clas-
sic integrin-based interactions [10,17]. Hence, we first tested adhesion of high and low TF-
expressing tumor cells to TFPI under low shear (0.35dyn/cm2). At this shear stress, we found
that MDA-MB-231 strongly adhered to both anti-TF antibody- and TFPI-coated channels,
while MCF-7 minimally bound (Fig 4A and 4B). Adhesion occurred quickly after the start of
the experiment, and the number of adherent cells increased over time. No rolling behavior
was observed with the tumor cells. Rather, the cancer cells would contact the immobilized
TFPI and adhere immediately. We did not observe cell spreading, indicating a lack of integrin
engagement and cell remodeling. We also observed that one adherent cell usually led to more
adherent cells in its vicinity, suggesting mechanisms of secondary tethering and adhesion be-
tween tumor cells.

When we pre-treated the MDA-MB-231 cells with a FVIIa-binding site blocking antibody
(TF9-5B7), adhesion was markedly decreased (Fig 4C). We also showed that FVIIa (10nM)
was the only requirement for TF-dependent adhesion of MDA-MB-231 to immobilized TFPI
under this low shear stress (Fig 5A). These results indicate that adhesion of high TF-expressing
MDA-MB-231 breast cancer cells to TFPI is mediated through FVIIa-bound TF, recapitulating
our finding under static conditions.

Due to the high number of TF ligands expressed on the surface of MDA-MB-231 cells, we
sought to determine if FVIIa concentration was a limiting factor for adhesion to TFPI under
shear. With flow cytometry, we found that binding of FVIIa to MDA-MB-231 was saturated at
100nM of FVIIa (data not shown). Increasing the concentration of FVIIa from 10nM to
100nM significantly increased adhesion to TFPI at 0.35dyn/cm2 (Fig 5B), showing that FVIIa
was indeed limiting the number of TF ligands on the tumor cells that are available to interact
with TFPI under shear.

Adhesion of MDA-MB-231 to immobilized TFPI is dependent on the
concentration of protein coating, shear stress and concentration of FVIIa
Previous studies have shown concentration- and shear-dependent effects on antibody-based
capture of tumor cells [32,33]. To determine if similar effects are involved in adhesion to immo-
bilized TFPI, we first varied the concentration of the anti-TF antibody coating from 20μg/mL to
100μg/mL at 0.35dyn/cm2. We found that the adhesion of MDA-MB-231 was dependent on the
concentration of immobilized anti-TF antibody, with a plateau in adhesion occurring at anti-TF
antibody concentrations above 50μg/mL. We then increased the shear from 0.35dyn/cm2 to

to TFPI- and anti-TF IgG-coated wells than MCF-7 (* p< 0.05, n = 6 for TFPI, n = 3 for anti-TF IgG). Significantly more MDA-MB-231 bound to TFPI- and anti-
TF IgG-coated wells than uncoated or isotype IgG-coated wells (** p<0.05). C. MDA-MB-231 cells were pretreated with 50μg/ml anti-TF IgG (TF9-5B7
which blocks FVIIa binding to TF, and TF9-10H10 which does not block FVIIa binding to TF). The positive control had no antibody pretreatment, and isotype
IgG pretreatment (50μg/ml) was used as a negative control. Blocking FVIIa binding to TF with the TF9-5B7 antibody significantly decreased adhesion to
TFPI-coated wells compared to controls (* p< 0.05, n = 3). D. MDA-MB-231 cells were treated with different combinations of FVIIa (10nM) and FX (10nM)
before incubation with TFPI-coated wells. Adhesion to TFPI was significantly decreased only when FVIIa was absent (* p< 0.05, n = 3).

doi:10.1371/journal.pone.0123717.g003
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Fig 4. Adhesion of tumor cells to protein-immobilizedmicrofluidic channels under low shear (0.35dyn/cm2).Microfluidic channels were incubated
with Protein G (100μg/ml), then anti-TF IgG (100μg/ml), or an anti-His antibody (100μg/ml) followed by TFPI (100μg/ml). Isotype IgG (100μg/ml) and anti-His
IgG (100μg/ml) antibodies were used as negative control for anti-TF IgG and TFPI respectively. Tumor cells (1x106cells/mL, pre-treated with 10nM FVIIa and
10nM FX for TFPI-coated channels) were introduced into the channels at 0.35dyn/cm2 for 30 minutes, and non-specifically adhered cells were removed at
2.0dyn/cm2. The entire channel was imaged to quantify the number of adherent cells.A. Representative bright field images of adherent tumor cells on
channels immobilized with Protein G (negative control), anti-TF IgG and TFPI showing that more MDA-MB-231 than MCF-7 cells were bound to both anti-TF
IgG- and TFPI-coated channels.B. The number of adherent cells was counted and normalized by the channel area. MDA-MB-231 showed significantly
higher adhesion to TFPI- and anti-TF IgG-coated channels than MCF-7 (* p< 0.05, n = 4 for anti-TF IgG, n = 3 for TFPI). Significantly more MDA-MB-231
bound to TFPI- and anti-TF IgG-coated channels than negative controls (** p<0.05). C.MDA-MB-231 cells were pretreated with 50μg/ml anti-TF IgG (TF9-
5B7 which blocks FVIIa binding to TF, or TF9-10H10 which does not block FVIIa binding to TF). The positive control had no antibody pretreatment, and
isotype IgG pretreatment (50μg/ml) was used as a negative control. Blocking FVIIa binding to TF with TF9-5B7 antibody significantly decreased adhesion to
TFPI-coated channels (* p< 0.05, n = 4). The observed decrease in MDA-MB-231 adhesion with the TF9-10H10 antibody, albeit not significant with this
stringent statistical test, could be due to steric hindrance of TFPI binding to the TF/FVIIa/FXa complex on the tumor cells.

doi:10.1371/journal.pone.0123717.g004
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0.60dyn/cm2 and found that adhesion of MDA-MB-231 was decreased at all concentrations of
the anti-TF antibody coating at the higher shear (Fig 6A).

Next, we varied the concentration of TFPI from 5μg/mL to 100μg/mL. The observed adhe-
sion of MDA-MB-231 in the channels was dependent on TFPI concentration, with minimal ad-
hesion observed at concentrations of TFPI below 10μg/ml. Similar to our findings with the anti-
TF antibody-coated channels, adhesion was decreased at all TFPI concentrations when the
shear was increased from 0.35dyn/cm2 to 0.60dyn/cm2 (Fig 6B). In previous studies, antibody-
based capture in straight channels generally was not possible above 0.5dyn/cm2 due to slow
binding kinetics and short interaction time at higher shear [33]. Further modification to chan-
nel design (i.e. posts to affect streamlines to increase collision rates) or coating (i.e. use of selec-
tins to induce rolling behavior) to enhance capture is often necessary at higher shear [34–36].
Nonetheless, in our system, we observed adhesion even at 0.60dyn/cm2, most likely an effect of
the high TF ligand density expressed on MDA-MB-231.

Having already shown that FVIIa concentration affected adhesion of MDA-MB-231 under
low shear (0.35dyn/cm2), we reasoned that not all TF sites were bound to FVIIa at 10nM and
that adhesion under higher shear would be possible if we further increased the concentration
of FVIIa. Hence, we saturated the TF on the surface of MDA-MB-231 cells by increasing FVIIa
concentration from 10nM to 100nM under higher and more physiologically relevant shear. At
0.60dyn/cm2, we found that this saturating concentration of FVIIa did increase the adhesion of
MDA-MB-231 to immobilized TFPI within the channels (Fig 6B inset). When the shear stress
was further increased to 1.0dyn/cm2, we found that the saturating FVIIa concentration of
100nM permitted small amounts of adhesion whereas the use of signal-transducing concentra-
tions of FVIIa (10nM) [37] did not. However, no adhesion was seen at the higher FVIIa con-
centration when the shear was further increased to 1.3dyn/cm2 (Fig 6C).

Discussion
Tissue factor is abundantly expressed by malignant breast and other types of tumor cells, with
expression correlating to metastatic potential [2,3]. The role of TF in tumor cell behavior has

Fig 5. Effect of FVIIa and FX in adhesion of MDA-MB-231 to TFPI-immobilized channels (0.35dyn/cm2). A.MDA-MB-231 cells were treated with
different combinations of FVIIa (10nM) and FX (10nM) before introduction into TFPI-immobilized channels. Adhesion of MDA-MB-231 to immobilized TFPI in
microfluidic channels was abolished when FVIIa was absent (* p<0.05, n = 6). B.MDA-MB-231 cells were treated with different concentrations of FVIIa
(0–100nM) prior to perfusion with TFPI-immobilized channels. Increasing the concentration of FVIIa to 100nM significantly increased adhesion of MDA-MB-
231 to immobilized TFPI in microfluidic channels (* p< 0.05, n = 3).

doi:10.1371/journal.pone.0123717.g005
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been examined, with prior studies primarily focusing on tumor-associated thrombosis, prolif-
eration, and angiogenesis [1–3,5]. Fischer et al. evaluated TF as an adhesive ligand and showed
that TF-expressing J82 bladder cancer cells bound to TFPI under static conditions and that TF

Fig 6. Effect of shear, TFPI-coating concentration and FVIIa concentration in MDA-MB-231 adhesion to protein-immobilized channels under shear.
A.Microfluidic channels were immobilized with different concentrations of anti-TF IgG antibody (20–100μg/mL), and MDA-MB-231 cells were introduced at a
shear of 0.35 and 0.60dyn/cm2. Adhesion of MDA-MB-231 cells to anti-TF IgG antibody reached a plateau at 50μg/mL at both shear stresses (n = 3). B.
Microfluidic channels were immobilized with different concentrations of TFPI (5–100μg/mL), and MDA-MB-231 cells (pretreated with 10nM FVIIa and FX)
were introduced at a shear of 0.35 and 0.60dyn/cm2. The adhesion of MDA-MB-231 increased with increasing TFPI concentration (n = 3). Inset.When FVIIa
concentration was increased from 10nM to 100nM at a shear of 0.60dyn/cm2, the adhesion of MDA-MB-231 to TFPI-coated channels increased (n = 3). C.
Microfluidic channels were immobilized with 100μg/mL TFPI, and MDA-MB-231 cells (pretreated with 10nM or 100nM FVIIa, and 10nM FX) were introduced
at a range of shear stresses (0.35–1.3dyn/cm2). The adhesion of MDA-MB-231 decreased with increasing shear. Increasing the concentration of FVIIa from
10nM to 100nM increased adhesion of MDA-MB-231 to immobilized TFPI at 0.35 and 0.60dyn/cm2. A few tumor cells bound at 1.3dyn/cm2 with the higher,
but not the lower, FVIIa concentration (n = 3).

doi:10.1371/journal.pone.0123717.g006
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was expressed at the leading edge of a tumor in situ, in close proximity to TFPI. Their results
supported the role of TF-TFPI interactions in tumor invasion into the extracellular matrix
[23]. To the best of our knowledge, there are no previous studies evaluating the arrest of TF-ex-
pressing tumor cells through interactions with TFPI under shear. In this study, we showed that
high TF-expressing breast cancer cells could bind to immobilized TFPI in vitro under shear in
a FVIIa- and TF-dependent manner. Our data lends support to our hypothesis that TF-TFPI
may represent a novel receptor-ligand pair that could help mediate adhesion of circulating
tumor cells under low shear in microvasculature at metastatic sites in vivo. If this hypothesis
were correct, then the TF-TFPI interactions would likely be a contributory rather than the sole
mechanism of mediating tumor cell adhesion to endothelial cells. Based on our data showing
that high TF and TFPI concentrations are needed for adhesion to purified immobilized protein
in vitro, these interactions would likely only be relevant for tumors that highly express TF [2]
and vascular beds that highly express TFPI, such as the lung [38,39].

Factor VII was sufficient to mediate binding of high TF-expressing cancer cells to immobi-
lized TFPI under static and low shear conditions, however the concentration of FVII was a lim-
iting factor. Physiological concentrations of FVIIa (less than 1nM for coagulation and 10nM
minimum for signaling [37]) was insufficient to saturate all of the TF expressed on MDA-MB-
231. Increasing the FVIIa concentration to 100nM, (which saturated TF binding sites based on
flow cytometric assessment) significantly increased the adhesion of cancer cells to immobilized
TFPI in our study, particularly under shear conditions. Although the FVIIa concentration is
higher than that normally present in plasma [37], high local concentrations are possible due to
ectopic production of FVII by TF-expressing cancer cells [40–42].

In this study, we found that only FVIIa was necessary for the adhesion of TF-expressing
MDA-MB-231 to TFPI, similar to results reported by Fischer et al. [23] Typically, TFPI forms
a quaternary complex with TF, FVIIa and FXa by binding to FVIIa and FXa through the first
and second Kunitz domain respectively [22]. The binding can occur by TFPI binding to FXa,
and then to TF/FVIIa complex, or by TFPI binding to FVIIa and FX complexed to TF. Howev-
er, FXa is not required for the binding of TF to TFPI, but rather TFPI can bind to the TF/FVIIa
complex directly through its first Kunitz domain in the absence of FXa [43]. Instead, FXa only
serves to strengthen the quaternary complex. This direct binding of TF/FVIIa to TFPI is in
agreement with our result that FXa is not required in mediating adhesion of TF-expressing
tumor cells to immobilized TFPI.

Most previous studies focus on capture of circulating tumor cells with selectin-mediated
rolling, then subsequent integrin-mediated adhesion to endothelium, modeling the leukocyte
adhesion cascade [10,15,44]. Our results support our current hypothesis that TFPI, which is
constitutively expressed on the endothelium [20], can be another candidate responsible for
helping the capture of high TF-expressing tumor cells to endothelial cells with high TFPI ex-
pression. We observed adhesion at shear stresses of 0.35dyn/cm2 to 1.3dyn/cm2, which over-
laps with physiological shear (0.25dyn/cm2 to 4.0dyn/cm2 [45]) in capillary venules. Only a few
cells adhered at 1.3dyn/cm2 when FVIIa and TFPI were saturating. The lack of adhesion above
1.0dyn/cm2 is not surprising, as a higher shear would decrease the time for interaction between
TF and TFPI to induce adhesion. However, if selectins were upregulated on the endothelium
(post-exposure to inflammatory cytokines or vasoactive mediators), it is possible that induction
of rolling behavior in cancer cells may sufficiently slow the velocity of circulating tumor cells to
promote adhesion to TFPI. Selectin-induced rolling by tumor cells has been well-characterized
[15,46]. Unfortunately, MDA-MB-231 cells exhibit minimal selectin-mediated rolling [47] and
we cannot use this cell line to test if selectin-mediated rolling would promote adhesion of
tumor cells to immobilized TFPI in our in vitro system.
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The microfluidic system used herein to study tumor cell adhesion is a simple system of
straight channels and immobilized recombinant proteins, but it was sufficient to show that
high TF-expressing tumor cells can bind to high concentrations of immobilized recombinant
TFPI under low shear. Previous studies of the interactions between cells and proteins under
shear mainly used parallel plate flow chamber or channels with dimensions approaching that
of infinite planes [33,48]. The microfluidic channels in this study are more representative of
the tumor vasculature in terms of dimensions. Green et al. have shown that rolling and adhe-
sion of leukocytes are dependent on the gradient of shear across the cross section of the chan-
nel; increased adhesion was observed when the cross section is decreased to physiologically
relevant dimensions [49]. Thus, the use of smaller dimensions may explain the observed bind-
ing at higher shear than previously reported.

There are no reports on the in vivo ligand density of TFPI on endothelial cells, so it was diffi-
cult to determine if the TFPI concentration in our in vitro system was within a physiological
range. In QCM experiments, the concentration used was half of that in adhesion experiments
with microfluidic channels due to volume constraints of the apparatus; however, the quick sat-
uration in signal in QCM indicated that the amount added was sufficient to saturate the sur-
face. We proceeded to estimate in vivo TFPI surface ligand density using HUVEC as a model
endothelium. The TFPI concentration on these cells was calculated to be around 3x1010 pro-
teins/cm2, which was 100-fold lower than the estimated density of our coated channel based on
our QCMmeasurements. It should be noted that the measured QCMmass is a hydrated mass
with contributions from both proteins and surrounding water molecules. As much as 90% of
hydrated mass in QCMmeasurements may be due to water [50–52]. Thus, the actual concen-
tration on the channel may be lower than what we estimated with QCM. Furthermore, the ex-
pression of TFPI also varies throughout the vasculature system depending on location and
organ, with highest expressions in lung vasculature [38–39], one of the main sites of breast can-
cer metastasis. TFPI expression on endothelial cells is also increased in patients with cancer
metastasis [53]. Thus, we speculate that it is possible that the high TFPI concentrations re-
quired to mediate adhesion under low shear in our microfluidic channels can occur in specific
vascular beds that are relevant for metastasis in vivo, such as the lung. Our data also indicates
that the surface density of TFPI on HUVECs is unlikely to support adhesion under
shear conditions.

There is currently extensive interest in capturing circulating tumor cells using tumor-specif-
ic markers for diagnostic applications [32,34,36,54–56]. Usually, an antibody cocktail must be
tailored for a specific cancer cell type based on its surface marker expressions, such as epithelial
cell adhesion molecule (EpCAM) for epithelial cancers, human epithelial growth factor recep-
tor 2 (HER2) for breast cancer and prostate specific membrane antigen (PSMA) for prostate
cancer [32,34,55,56]. Tissue factor is over-expressed in different types of cancer [2] so it may
be possible to use TF as a target to capture circulating tumor cells for an array of different tu-
mors. The expression of TF is also correlated with the progression, malignancy and metastasis
of cancer [57]. Tissue factor has been proposed as a potential marker for circulating breast can-
cer cells and stem cells, as well as a novel target for treatment of breast cancer [58–60]. Our
study also provides data that supports the potential use of anti-TF antibodies to capture TF-ex-
pressing cancer or stem cells from the circulation.

In this study, we demonstrated that TF-expressing tumor cells bind to immobilized purified
TFPI in vitro under low physiological shear. This data lends support to our hypothesis that
TF-TFPI interactions represent a novel mechanism by which high TF-expressing tumor cells
can arrest in high TFPI-expressing vasculature. The experimental results also illustrate that TF
is a potential target for capturing circulating tumor cells.
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Supporting Information
S1 Fig. Expression and density of TFPI on the surface of HUVEC. Representative flow cyto-
metric fluorescence histogram of TFPI expression on HUVEC. Cells (5x105) were incubated
with a monoclonal antibody against TFPI (40μg/mL, bold line) or isotype control (40 μg/mL,
dotted line), followed by an Alexa-488-conjugated secondary antibody (10μg/mL). The
HUVEC did express TFPI with low to moderate surface density (n = 3).
(TIF)
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