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Proteoglycans are a specific subset of glycoproteins found at the cell surface and in the
extracellular matrix, where they interact with a plethora of proteins involved in metabolic
homeostasis and meta-inflammation. Over the last decade, new insights have emerged
on the mechanism and biological significance of these interactions in the context of
diet-induced disorders such as obesity and type-2 diabetes. Complications of energy
metabolism drive most diet-induced metabolic disorders, which results in low-grade
chronic inflammation, thereby affecting proper function of many vital organs involved in
energy homeostasis, such as the brain, liver, kidney, heart and adipose tissue. Here, we
discuss how heparan, chondroitin and keratan sulfate proteoglycans modulate obesity-
induced metabolic dysfunction and low-grade inflammation that impact the initiation and
progression of obesity-associated morbidities.
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INTRODUCTION

Obesity and its co-morbidities are responsible for a global health problem carrying a significant
economic burden. The most common obesity-mediated complications include type-2 diabetes
(T2D), cardiovascular disease and chronic kidney disease, yet the contributing mechanisms
to these diseases remain to be fully established (1, 2). Obesity and in particular central
adiposity – the excess deposition of visceral fat – is associated with increased serum levels
of pro-inflammatory cytokines such as interleukin 6 (IL-6), C-reactive protein (CRP), and
tumor necrosis factor (TNF) (3–5). This type of low-grade tissue inflammation, also called
meta-inflammation, of multiple organs such as liver, adipose tissue, pancreas, kidney, heart,
and brain is an important contributing risk factor for the development of insulin resistance.

Abbreviations: αMSH, A-melanocyte stimulating hormone; AgRP, agouti-related protein; ApoB, apolipoprotein B;
ApoE, apolipoprotein E; AT, adipose tissue; BAT, brown adipose tissue; Bgn, biglycan; BMI, body-mass index; CD,
cluster of differentiation; CRP, C-reactive protein; CSPG, chondroitin sulfate proteoglycans; DAMPs, danger-associated
molecular patterns; DCN, decorin; DIO, diet induced obesity; DKD, diabetic kidney disease; DSPG, dermatan sulfate
proteoglycans; ECM, extracellular matrix; ESM1, endothelial cell-specific molecule 1; FGFs, fibroblast growth factors; GAG,
glycosaminoglycan; Gal, galactose; GlcA, glucoronic acid; GlcNAc, N-acetyl glucosamine; GlcNS, N-sulfated glucosamine;
GPC, glypicans; GPI, glycosylphosphatidylinositol; GWAS, genome-wide association study; HFD, high fat diet; HIF1,
hypoxia inducible factor 1; HPSE, heparanase; HS, heparan sulfate; HS6ST, HS 6-O-sulfotransferase; HSPG, heparan
sulfate proteoglycans; HSPG2, perlecan; ICAM-1, intercellular adhesion molecule; IdoA, iduronic acid; IL-1β, interleukin
1 beta; IL-6, interleukin 6; KS, keratan sulfate; KSPG, keratan sulfate proteoglycans; LDL, low-density lipoproteins;
LDLR, low-density lipoprotein receptor; LPS, lipopolysaccharide; Lum, lumican; MC-4R, melanocortin-4-receptor; MCH,
melanin concentrating hormone; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; NDST,
N-deacetylase/N-sulfotransferase; NLRP3, NLR family pyrin domain containing 3; OGN, osteoglycin; PGs, proteoglycans;
SDC, Syndecan; SGBS, Simpson-Golabi-Behmel syndrome; SLRP, small leucine-rich proteoglycans; SNPs, single nucleotide
polymorphisms; SULF2, sulfatase 2; T1/2D, type-1/2 diabetes; T4, thyroxine; TGF-β, transforming growth factor beta;
Th1, T-helper type 1; TLR, toll-like receptor; TNF, tumor necrosis factor; TRL, triglyceride-rich lipoproteins; VLDL, very
low-density lipoproteins; XYLT, xylosyltransferases.
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The ensuing chronic tissue inflammation is also associated with
fibrosis and necrosis, leading to progressive tissue damage.
While obesity-associated inflammation is well recognized, the
exact etiology is still poorly understood. The complex nature of
obesity-induced inflammation presents a challenge to understand
the underlying molecular mechanisms that contribute to
development of obesity and its associated inflammation. The
extracellular matrix (ECM) surrounding cells is a central hub
in mediating metabolic and inflammatory signal transduction,
regulating fibrotic processes and ensuring the functional integrity
of cells. In this review we will describe the central role of heparan,
chondroitin and keratan sulfate proteoglycans found in the ECM
in processes critical for initiation, progression and the chronic
nature of meta-inflammation in the context of obesity and T2D.

DIET-INDUCED META-INFLAMMATION
AFFECTS SPECIFIC TISSUES CRITICAL
FOR ENERGY HOMEOSTASIS

Adipose Tissue Inflammation
Adipose tissue (AT) has an enormous plasticity to adapt to
nutritional changes. However, under conditions of constant
overnutrition, AT expands beyond its limits and is associated
with the development of inflammation, impaired angiogenesis
and ectopic fat deposition in organs such as liver and skeletal
muscle. This detrimental cycle leads to tissue dysfunction
and development of insulin resistance. Adipose depots are a
conglomerate of various cell types, such as mature adipocytes
embedded in the stroma with preadipocytes, fibroblasts, immune
cells and endothelial cells. Immune cells, primarily macrophages,
residing in AT maintain the integrity and hormonal sensitivity
of adipocytes in a normal lean state. Macrophages are
characterized by their “polar” state, displaying more of a pro-
inflammatory or anti-inflammatory and, resolving phenotype.
Resident macrophages of lean subjects present an M2-polarized
or resolving state which is generally associated with anti-
inflammatory properties. However, during progressive weight
gain and development of obesity macrophages change into
pro-inflammatory M1-like macrophages, which produce pro-
inflammatory cytokines attracting more M1-macrophages to
infiltrate the AT. The thereby activated inflammatory program
has an overall T-helper type 1 (Th1) nature, which is usually
associated with infection. Unlike acute inflammation, the meta-
inflammation in an obese state is not resolved, which leads to a
chronic inflammatory response that triggers insulin resistance of
adipocytes resulting in lipid spill-over to peripheral organs (5, 6).

Liver Is a Central Hub for Energy
Homeostasis
One of the major organs affected by diet-induced meta-
inflammation and AT insulin resistance is the liver. It plays
a central role in maintaining whole body energy homeostasis
and is considered an energy storage and redistribution node.
Consisting predominantly of hepatocytes it is also populated
by fenestrated sinusoidal endothelium and Kupffer-cells,

which are specific resident hepatic macrophages important for
normal liver function especially in the lean state. However,
in the context of energy excess, such as obesity, Kupffer-cells
get activated analogous to resident AT macrophages thereby
recruiting more immune cells and promoting hepatic insulin
resistance. Consequently, this negatively affects insulin-mediated
inhibition of hepatic glucose production (gluconeogenesis)
thereby driving elevated glucose levels in afflicted patients (7,
8). Hepatic insulin resistance also prevents insulin-mediated
inhibition of production of very-low density lipoproteins
(VLDL) in hepatocytes and impairs hepatic lipoprotein
clearance of low-density lipoproteins (LDL) and triglyceride-
rich lipoprotein (TRL) remnants. This results in the onset of
metabolic dyslipidemia, which in conjunction with chronic
inflammation drives the progression of cardiovascular disease.
Importantly, insulin resistance favors the development of
excessive fat accumulation in the liver, also called steatohepatitis
creating a vicious cycle of escalating inflammation, insulin
resistance and fibrosis which leads to non-alcoholic fatty
liver disease (NAFLD). Furthermore, AT-derived circulating
cytokines and adipokines promote NAFLD (9–11). Without
intervention NAFLD progresses to liver cirrhosis and ultimately
to hepatocellular carcinoma. However, even after weight loss
intervention, a permanent inflammatory fingerprint lingers in
AT and liver (12).

Kidney Dysfunction Induced by
Meta-Inflammation
While the consequences of obesity and insulin resistance in
liver and AT are often discussed, less attention is paid to
the kidneys which are important for detoxifying processes and
contribute to organ dysfunction in disease states. Increased
obesity prevalence has been associated with a rise in chronic
kidney disease progression and not surprisingly obese individuals
are at elevated risk for developing end-stage kidney disease
(13). Similarly, experimental mouse models of obesity, such
as high fat diet (HFD) fed models, develop increased kidney
injury (14). HFD-mediated kidney injury results in leakage
of albumin in the urine (albuminuria), renal fibrosis, insulin
resistance, and elevated inflammation in mice (15). Obesity
and diabetes mediated end-stage kidney disease is characterized
by an accumulation of lipids within the kidney met with
increased inflammation (2). IL-6, TNF, IL-1β and MCP-1
levels are elevated in kidneys from a diet-induced obesity rat
model, associated with increased kidney fibrosis and sclerotic
lesions (16). Similarly, TNF is elevated in sera obtained from
patients with diabetic kidney disease (DKD), as well as in
an obese-diabetic mouse model that presents with kidney
disease (17). Furthermore, oxidative stress is upregulated in
kidneys from preclinical obesity-induced DKD models (18)
together with increased inflammation in perirenal visceral
AT, all of which was reversed after treatment with an
angiotensin II inhibitor (ANG 1-7) (19). Collectively, these
data suggest that obesity and AT inflammation contribute
to kidney complications observed in obese experimental and
clinical models.
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THE EXTRACELLULAR MATRIX
SURROUNDING ADIPOCYTES PLAYS
A CENTRAL ROLE IN METABOLIC
INFLAMMATION

In recent years the importance of the adipocyte
microenvironment has gained more prominence as ECM
composition, remodeling and interacting factors significantly
contribute to the detrimental consequences of obesity. The
ECM is a key regulator for maintaining optimal cell and tissue
homeostasis by disseminating and integrating cues from and to
surrounding cells as well as distant organs. ECM remodeling
is critical for differentiation of adipocytes, the integrity of
expanding adipocytes as well as recruitment of immune cells
(20). AT has the capacity to expand either through hyperplasia, a
result of increased preadipocyte proliferation and differentiation
into adipocytes, or through hypertrophy by expanding the
lipid storage capacity of existing adipocytes. In the process
of adipocyte differentiation, the ECM undergoes structural
changes from a fibrillar to a laminar structure. The fibrillar
structure of preadipocytes, mainly containing collagen I,
plasmin, and fibronectin, is replaced by a laminar structure built
by collagen VI, laminin, and a high amounts of collagen IV (21).
During excessive AT expansion, imbalances in ECM synthesis
and degradation lead to fibrosis, one of the hallmarks of AT
dysfunction associated with meta-inflammation and progression
of advanced insulin resistance (22). Moreover, hypertrophy
induces hypoxia and mechanical stress (6, 23, 24). Hypoxia
contributes to meta-inflammation through activation of hypoxia
inducible factor 1 (HIF1) resulting in increased transcription of
a pro-inflammatory gene program in adipocytes and patrolling
immune cells (23, 24). Concomitantly, angiogenesis is induced
during AT expansion to support the growing tissue with essential
nutrients, hormones, growth factors, and oxygen. However, in an
obese state, the angiogenic capacity of endothelial cells declines,
resulting in augmented tissue hypoxia and cell apoptosis.
This process requires infiltration of immune cells including
macrophages to clear dying adipocytes thereby forming so-called
crown-like structures. Although flexible to some degree, the
ECM provides a rigid mesh that puts mechanical pressure
on adipocytes. This occurs during hypertrophy and induces
an inflammatory signature during excessive expansion (20).
Modulating that mechanical stress by targeting collagen VI
levels improves lipid and energy metabolism in adipocytes
and attenuates fibrosis and metabolic inflammation (25).
These observations emphasize the therapeutic potential
of ECM modulation.

PROTEOGLYCANS ARE UBIQUITOUS
EXTRACELLULAR ENVIRONMENT
COMPONENTS REGULATING
NUMEROUS METABOLIC PROCESSES

Proteoglycans (PGs) are an integral part of the cellular
glycocalyx in the ECM and exhibit important roles in cell and

tissue homeostasis by regulating various processes such as
proliferation, differentiation, angiogenesis, and inflammation.
They consist of a core protein with one or more covalently
attached glycosaminoglycan (GAG) chains (Figure 1). The
building block of those GAG chains are repeating disaccharide
units consisting of an amino sugar and a uronic acid which
depending on the alternating glycan units determine the class
of proteoglycans. Keratan sulfate (KS) does not contain a
uronic acid but is built of repeating units of galactose (Gal)
and N-Acetyl-glucosamine (GlcNAc) attached to N- (KS-I)
or O-glycan (KS-II) chains (Figure 1). Chondroitin sulfate
(CS) consists of repeating units of N-acetyl-D-galactosamine
(GalNAc) and glucuronic acid (GlcA) residues (Figure 1).
Dermatan sulfate differs from CS only by the additional presence
of iduronic acids (IdoA) as a result of GlcA epimerization.
In contrast, heparan sulfate (HS) features repeating units of
GlcNAc or N-sulfated glucosamine (GlcNS) and a combination
of either GlcA or IdoA (Figure 1). Hence, there are three
main proteoglycan subclasses – chondroitin/dermatan sulfate
proteoglycans (CS/DSPG), heparan sulfate proteoglycans
(HSPG), and keratan sulfate proteoglycans (KSPG) (Figure 1).
One important feature of GAG chains attached to proteoglycans
is their high degree of sulfation resulting in generation of
a strongly negatively charged polysaccharide. This gives
proteoglycans an enormous capacity to act as a charge-barrier
in the ECM, hindering some factors to bind and allowing others
to interact (26). Many ligands of PGs have been identified over
the years, including growth factors such as fibroblast growth
factors (FGFs), cytokines and chemokines, cell surface receptors,
cell adhesion molecules, and other ECM components such as
collagen and fibronectin. Some proteoglycan interactions require
GAG chains, others are depending on the core protein (27–29).
Not surprisingly, proteoglycans are crucial regulators of many
metabolic homeostatic processes as well as of acute and chronic
inflammation (30–34). Several proteoglycans, including lumican,
perlecan, decorin, aggrecan, versican, betaglycan, biglycan, and
proteoglycan 4, have been described to be either secreted by
adipocytes or are at least abundantly present in their ECM (20,
35). Proteoglycan composition is influenced by the diabetic
condition (36), however, the amount of PGs produced during
differentiation of preadipocytes to adipocytes is controversial
with some studies noting decreased PG production during
differentiation (37), and others reporting the opposite trend
(38). The interaction of ECM components, such as collagens
and proteoglycans, with cell surface receptors is crucial during
the differentiation and expansion of adipocytes. Therefore,
a detailed understanding of the role proteoglycans and their
interaction partners play can provide novel solutions to tackle
obesity-related meta-inflammation. The link between diet-
induced metabolic inflammation and the development of insulin
resistance has been well-established over the past years, but
specific mechanisms of how the microenvironment surrounding
cells influences the progression of inflammation are still under
investigation. In this review, we will focus on the roles of
proteoglycans and their structural modifications in metabolic
homeostasis as well as their influence on AT hypertrophy and
hyperplasia and their impact on meta-inflammation in critical
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FIGURE 1 | Proteoglycans are part of the microenvironment surrounding adipocytes. Lean adipose tissue expresses low amounts of proteoglycans found in the
extracellular matrix surrounding adipocytes and stromal vascular cells, but their expression increases in obese adipose tissue, along with increased infiltration of
M1-macrophages and deposition of collagen. Several core proteins are linked to adipose tissue homeostasis, such as glypican (Gpc) and syndecans (Sdc); biglycan
(Bgn), decorin (Dcn), and lumican (Lum). Three different types of glycosaminoglycan (GAG) chains that are covalently attached to protein cores can be found in
adipose tissue. Keratan sulfate (KS) chains are either attached to asparagine (Asn) or serine/threonine (Ser/Thr) at the protein core and consist of repeating
N-acetylglucosamine (GlcNAc) and galactose (Gal) subunits. KS chains can also be sialylated (Sia) or fucosylated (Fuc). Heparan sulfate (HS) and
chondroitin/dermatan sulfates (CS/DS) are attached through a tetrasaccharide linker region starting with a xylose (Xyl), two Gal, and a glucuronic acid (GlcA) at a Ser
on the protein core. HS consists of N-acetyl-glucosamine (GlcNAc) and a combination of either GlcA or iduronic acid (IdoA). CS features N-acetyl galactosamine
(GalNAc) and GlcA residues which can be replaced by IdoA in DS. GAG chains are sulfated on various positions (N-,2-O, 3-O, 4-O, or 6-O-sulfations depicted in
red). Col: Collagen. [Proteoglycan structures adapted from Ref. (26)].

organs for obesity-associated metabolic complications such as
AT, liver and kidney.

HEPARAN SULFATE PROTEOGLYCANS,
A DEFINED GROUP OF
GLYCOPROTEINS, ACT AS REOSTATS IN
METABOLIC DISEASE

HSPGs are a group of 17 family members of proteoglycans
found in the basement membrane of cells. Despite their relatively
small number of core proteins, they are structurally very diverse.
Their primary GAG are HS chains reaching up to 40–300 sugar
residues in length which can be modified by sulfotransferases
on three different carbon positions (C2 on IdoA or C3 and C6
on GlcNAc) or an amine group (GlcNS) (Figure 1). Sulfation
occurs in clusters of variable length generating heavily sulfated

domains interspersed by unsulfated domains. A functional
consequence of this molecular sulfation diversity is the formation
of defined structural motifs which allow HS to bind and modulate
the action of numerous specific extracellular ligands, such as
cytokines and growth factors (39). HSPGs have many functions
in inflammation, including: (i) building morphogen, growth
factor, chemokine and cytokine gradients (Figure 2A); (ii)
protecting chemo- and cytokines from proteolysis (Figure 2A);
(iii) acting as co-receptors, for example with FGF receptors
(FGFRs), to stabilize receptor/ligand complexes (Figure 2A);
(iv) mediating signal transduction independently or by engaging
inflammatory receptors such as toll-like receptors (Figure 2B);
(v) regulating immune cell adhesion, migration, and activation
(Figure 2C); and (vi) binding and regulating ECM components
(Figure 2D) (40, 41). In addition, HSPGs play a central role in
liver lipid homeostasis and thus influence hyperlipidemia and
atherosclerosis development (42). Furthermore, HSPGs, such as
perlecan and agrin play an essential role in the charge-mediated

Frontiers in Immunology | www.frontiersin.org 4 May 2020 | Volume 11 | Article 769

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-00769 May 15, 2020 Time: 16:59 # 5

Pessentheiner et al. Proteoglycans and Metabolic Inflammation

FIGURE 2 | Possible mechanisms for proteoglycans in metabolic inflammation. (A) GAG chains, in particular HS, bind and present soluble inflammatory mediators,
such as cytokines and chemokines at the cell surface. They also protect those factors from proteolytic degradation. Moreover, they act as co-receptors for
ligand/receptor complexes, such as fibroblast growth factor 1 (FGF1) with FGF receptors. (B) Diabetes and metabolic inflammation lead to increased shedding of
proteoglycans from the ECM, either by cleaving the protein core or the attached GAG chains. Shed proteoglycans and GAG chains have been shown to engage with
toll-like receptors (TLRs), thereby potentiating the inflammatory response via NF-κB downstream signaling. Proteoglycans and GAGs released in the circulation can
therefore have systemic effects and could be used as biomarkers for metabolic disease (e.g., GPC4). (C) Membrane bound proteoglycans (e.g., syndecans or
glypicans) are in involved in retention of immune cells by directly engaging with lectins on the surface of immune cells. Proteoglycans also regulate the accessibility of
adhesion molecules such as ICAM-1 on the cell surface which are important for the attachment of leucocytes. (D) Proteoglycans mediate the interaction between
other ECM components such as collagens and fibrinogen. Dysregulations in ECM deposition lead to the development of fibrosis, a common pathology associated
with metabolic disease.

barrier of the glomerulus, important for the proper filtration of
the kidney, and are associated with inflammation during kidney
disease (43).

Proteoglycan Biosynthetic and Modifying
Enzymes in Meta-Inflammation
Due to the functional importance of GAG chains, enzymes
that are involved in the assembly and functionalization of
HS are consequential for HSPG-related processes making
them important to consider in the context of obesity and
meta-inflammation. The biosynthesis and modification of
GAGs require several glycosyltransferases, sulfotransferases, and
epimerases, all of which are well investigated. However, the

regulatory circuits that impact their expression and activity in a
spatial and temporal manner remain less clear.

Xylosyltransferases (XYLT) 1 and 2 initiate HS, CS and
DS biosynthesis via catalyzing a covalent linkage of xylose to
serine residues at the GAG-attachment site of the core protein
(Figure 1). Given their critical role for GAG biosynthesis it is
not surprising that their genetic inactivation results in gross
phenotypic changes. Indeed, loss of XYLT1 in humans (and mice)
is associated with short-stature due to bone development issues
making it difficult to assess the impact in the context of meta-
inflammation (44). Loss of XYLT2 in mice leads to decreased
AT mass and local inflammation, concomitant with decreased
glucose tolerance similar to a lipodystrophy phenotype (45). Also,
Xylt2-deficient mice are afflicted by multi-organ dysfunction,
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making it difficult to assess to what extent the observed AT
dysfunction plays an exclusive role in the observed metabolic
effects (45). Nevertheless, it is important to consider the impact
of Xylt2 inactivation in diet-induced obesity.

HS undergoes extensive modifications beginning with
N-deacetylation followed immediately by N-sulfation, a reaction
catalyzed by N-deacetylase/N-sulfotransferases (NDST1-4).
The structural complexity is further enhanced by epimerization
and the sulfation of several positions by 2-O, 3-O, and 6-O-
sulfotransferases. The sulfation reactions are non-template
driven and require initial N-sulfation. Altered sulfation patterns
influence the binding and signaling capacity of HS/ligand
interactions (39) and compositional variation in sulfation within
the population might influence their susceptibility for obesity
and cardiovascular disease. An example of intrinsic variation
of HS-sulfation are venous and aortic endothelial cells which
differ in their degree of sulfation (46). This discrepancy might
be the reason why there is increased leukocyte recruitment into
small veins compared to capillaries and arteries (46). Global
knock-out of Ndst1 is perinatal lethal, but conditional knock-out
mice allow investigating the impact of altered HS sulfation
under various obesity- and inflammation-related conditions.
In endothelial cells, inactivation of Ndst1 inhibits granulocyte
adhesion and diminishes binding of L-selectin in vitro (47) and
results in reduced leukocyte recruitment in DKD in vivo (48).
Embryonic stem cells from Ndst1/2 double knock-out mice fail to
differentiate into adipocytes in vitro (49) and decreased sulfation
of macrophage HS through targeted deletion of Ndst1 leads to
increased atherosclerosis and obesity development driven by
increased AT inflammation via type I interferon signaling (50,
51). However, to date no studies investigating the role of adipose
NDSTs have been reported.

WNT and FGF binding to HS and hence their respective
signaling modalities are regulated by HS, in particular via 6-
O-sulfation (52, 53). Three different HS 6-O-sulfotransferases
(HS6STs) having slightly different substrate specificities have
been identified (54) and expression of Hs6st1 is increased in
macrophages from mice suffering from CVD and obesity (55–
57). The importance of 6-O-sulfation in maintaining energy
homeostasis has been evaluated in male Hs6st2 knock-out mice.
The systemic null mice present with increased weight gain
and impaired glucose metabolism, even on a low-fat diet.
Mechanistically, this was explained by reduced brown adipose
tissue (BAT) mediated non-shivering thermogenesis as a result of
reduced circulating thyroid hormone thyroxine (T4) levels that
activate BAT (58). It is still unclear if this alteration in T4 levels
is due to impaired uptake of the HS-binding thyroid hormone
precursor thyroglobulin or due to the impact of HS on thyroid
functionality to produce and secrete T4.

Heparanase (HPSE) is an extracellular HS degrading endo-
β-D glucuronidase that is expressed in a variety of tissues.
HPSE is involved in shedding of HSPGs from the ECM, which
generates HS fragments ranging between 10 to 20 disaccharide
units that remain biologically active. This leads to a re-
organization of the ECM and therefore impacts cell motility
and invasion (59). In an inflammatory context, this facilitates
the recruitment of immune cells (60). HPSE activity also leads

to upregulation of cytokine expression in macrophages (61,
62) and its expression in turn is induced by a variety of
inflammatory cytokines, fatty acids (63) and high glucose (64).
Diabetic patients often present with elevated HPSE in their
circulation and urine (65) and HPSE upregulation is associated
with DKD (66), as well as diabetes-associated cardiovascular
diseases (67). Soluble HS fragments generated by HPSE have
been shown to promote toll-like receptor (TLR) 4 signaling in
dendritic cells (68) and human peripheral blood monocytes (69).
Not surprisingly, infusion of mice with HS fragments resulted
in marked pancreatic inflammation, while infusion in TLR4
knockout mice did not produce this inflammatory response (70).
However, soluble HS fractions can also have protective functions
and prevent bone marrow transplant rejection (71). It remains
to be elucidated if HS fragments are released more prominently
in metabolic dysfunctional patients and if their functions under
obese conditions are beneficial or detrimental for infiltrating
immune cells and the surrounding metabolic active cells.

Overall, investigation of HS-modifying enzymes comprises
certain difficulties for the development of intervention strategies
mostly due to their pleiotropic impact on all proteoglycans in
every tissue, which makes it difficult to dissect and target the
function of individual proteoglycans. Specific PGs have been
implicated in metabolic homeostasis and inflammation and as
such will be further discussed in the following sections.

Syndecans – Major Hubs for
Inflammation, Lipid Metabolism
and Satiety Control
In mammalian cells, the Syndecan (SDC) family consist of
four type I transmembrane HSPG (SDC1-4) (Table 1). They
are expressed in a developmental and cell-type specific manner
and involved in diverse biological processes ranging from
morphogenesis to energy metabolism. The major functional
groups of syndecans are the 1-3 attached HS chains on the
N-terminus. They also carry 1-3 shorter CS chains closer to
the plasma membrane. The number of attached GAG chains,
their size, composition and sulfation pattern largely influence
SDC’s binding capacity of its natural ligands. In this fashion
syndecans bind and retain multiple heparan sulfate binding
proteins (HSBPs). This will either attenuate or propagate HSBP
functions, including properties of chemokines/cytokines and
their interactions with leukocytes and endothelial cells (Figure 2)
(31, 34). Several in vitro and in vivo studies have highlighted the
diverse roles of SDCs in inflammation (31, 34, 72), but reports
investigating the impact of SDCs on obesity-related metabolic
inflammation are sparse (73–77). Using whole-genome linkage
studies a SNP in chromosomal region 20q12-13, which contains
the SDC4 gene, has been linked with increased predisposition
for T2D and obesity (78, 79). De Luca and coworkers showed
in a small cohort that children homozygous for the minor
SDC4 SNP (rs1981429) allele presented with decreased lean
mass and increased intra-abdominal fat mass (80). Fruit flies
express one functionally conserved SDC isoform and its loss in
female Drosophila reduced their body weight and body lipid
content, while males did not show body weight changes. This was
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TABLE 1 | Overview of proteoglycans associated with phenotypes in the context of metabolic dysregulation and meta-inflammation.

Proteoglycan Core mass
(kDa)a

Chain type
(number)b

Subcellular
localization

Phenotypic observations

Humans Relevant preclinical models

Heparan sulfate proteoglycans

Syndecan 1–4
(SDC1–4)

31–45 HS (2–3) in
SDC2 and 4;
HS/CS (3–4
HS/1-2 CS) in
SDC1 and 3

Membrane-bound Plasma SDC1 correlates with T1D and
DKD (77) and hypertriglyceridemia in
T2D patients (84); SNP in SDC4 linked
with predisposition to T2D and obesity
(78, 79, 80)

Increased atherosclerosis in
Apoe−/−Sdc1−/− mice (73); All SDCs:
regulation of feeding behavior (89-92)

Glypican 1–6 (GPC
1–6)

57–69 HS (1–3) Membrane-bound Simpson-Golabi-Behmel syndrome
(overgrowth) (GPC3-4) (98); GPC4
(serum, AT) increases with BMI, insulin
resistance, NAFLD (100–106); GPC5
risk allele in DKD (107)

GPC5 correlates with DKD (108);

Perlecan (HSPG2) ∼470 HS (1–3) Secreted/ECM No data reported. Obesity resistance in cartilage-rescued
Hspg2−/− mice (109); Role in
lipoprotein retention in atherosclerosis
(113, 117, 118)

Chondroitin/Dermatan sulfate proteoglycans

Endocan (ESM1) 20 DS (1) Secreted Serum and AT levels increase in obesity
(126, 134, 135); T2D (128, 129);
atherosclerosis (130); DKD (131, 135);
NAFLD (132); and psoriasis (133)

Correlation with DKD (136)

Decorin (DCN) 38–42 DS/CS (1) Secreted/ECM Increased expression in AT in obesity
and T2D (143, 149, 151); Upregulated
in DKD (156)

Dcn−/− mice: increased obesity, AT
inflammation, and glucose intolerance
(151, 153); aggravated DKD (157)

Biglycan (BGN) 38–42 DS/CS (2) Secreted/ECM Upregulation in atherosclerotic plaques
(166, 167); Increased in kidney injuries
met with elevated inflammation,
including DKD (171)

Bgn−/− mice: reduced AT inflammation
upon obesity (160); overexpression in
mice promotes atherosclerosis (166,
167); Bgn accumulates in glomeruli of
DKD mice (170)

Keratan sulfate proteoglycans

Lumican (LUM) ∼37 KS (1) Secreted Liver expression correlates with severity
of NASH and NAFLD (174–176)

Lum−/− mice (females): increased
obesity (177)

Osteoglycin (OGN) 25–72 KS and
O-linked
glycans

Secreted OGN serum levels increase in response
to weight loss in severely obese
patients (184); Associated with
atherosclerotic plaques (183)

Increased in atherosclerotic plaques in
rabbits (182); Reduced levels of Ogn in
obesity (185); Ogn−/− mice: glucose
intolerance and insulin resistance in
diet-induced obesity (185)

AT, adipose tissue; HS, heparan sulfate; DS, dermatan sulfate; CS, chondroitin sulfate; ECM, extracellular matrix; T2D, type 2 diabetes; NASH, non-alcoholic
steatohepatitis; NAFLD, non-alcoholic fatty liver disease; DKD, diabetic kidney disease. aVariation in core mass is due to species differences. bNumber of chains is
based on the number of putative attachment sites for chain initiation as well as data from the literature; the actual number of chains varies by method, tissue, and species.

associated with reduced metabolic activity, measured by O2 and
CO2 production, in mutant flies suggesting that SDCs play a key
role in the regulation of body metabolism (80).

Insulin promotes shedding of SDC1 ectodomains (81, 82)
and increased inflammatory mediators and proinflammatory
monocytes in patients with type-1 diabetes and nephropathy have
been correlated with increased plasma SDC1 levels (77). Insulin
also increases expression of SDC1 in a human hepatoma cell
line but is downregulated by increasing fatty acids levels (83). In
the liver, SDC1 is particularly important for TRL uptake from
the circulation. Hence, reduced SDC1 expression or increased
shedding contributes to the associated hypertriglyceridemia in
T2D patients (84). In fact, T2D patients present with increased
expression of an ECM enzyme, called sulfatase-2 (SULF2), that
removes 6-O sulfate groups from HS chains on SDC1 and
other HSPGs (85–87). Increased SULF2 expression was also

observed in db/db mice, a diabetic and obese mouse model
lacking leptin receptor expression. The increased liver SULF2
levels in db/db mice associated with reduced HS sulfation
on hepatocytes accompanied by reduced SDC1-mediated TRL
clearance. Moreover, therapeutic lowering of SULF2 using
antisense oligonucleotides reduced hypertriglyceridemia in db/db
mice (88) and introduced a new therapeutic window for T2D-
associated hyperlipidemia.

SDC1 is also presented at the cell surface of macrophages
where it influences migration and inflammatory resolution
response (73). Expression of SDC1 differs between macrophage
subclasses depending on their inflammatory profile. Resolving
or M2 polarized macrophages express high levels of SDC1,
in contrast pro-inflammatory M1-polarized macrophages
completely lack SDC1 expression. In particular, macrophages
derived from Sdc1 knock-out mice have reduced motility
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of M2-resolving macrophages, which is associated with
increased atherosclerosis development in Apoe−/−Sdc1−/−

mice fed a Western-type diet (73). This might be explained by
SDC1 sequestering inflammatory and chemotactic mediators
away from signaling receptors on macrophages to promote
anti-inflammatory properties. Although these data have
been observed in the context of atherosclerosis, it is likely
that macrophage-expressed SDC1 impacts other metabolic
complications such as obesity-induced diabetes.

All SDCs have been implicated in the regulation of feeding
behavior by guiding neuronal development and plasticity (89–
92). Energy intake is centrally regulated in the hypothalamus
via orexigenic/pro-feeding (agouti-related protein, AgRP) and
anorexigenic/anti-feeding, pro-opiomelanocortic neurons. Both
types of neurons make contact with melanocortin-4 receptor
(MC-4R) expressing neurons. Secretion of satiety hormones
including α-melanocyte stimulating hormone (αMSH) and
anti-satiety peptides such as AgRP and melanin concentrating
hormone (MCH) lead to inhibition or stimulation of food
intake, respectively (93). SDC3 is expressed in the hypothalamus
and its cell surface levels are regulated by nutrient conditions.
Fasting induces hypothalamic expression of SDC3 and its
ectodomain is shed in response to feeding. Sdc3−/− mice are
resistant to diet-induced obesity (94) due to reduced food
intake. Lack of SDC3 at the cell surface increases orexigenic
signaling via AgRP by preventing engagement of the anti-
satiety hormone MCH with MC-4R and potentiation of αMSH
(90). During feeding, SDC3 is cleaved by metalloproteases
inducing satiety via MCH/MC-4R signaling. Furthermore,
the shedding process appears to be regulated under fasting
conditions as well since a putative inhibitor of the shedding
process, tissue inhibitor of metalloprotease−3, is increased
by food deprivation. Transgenic overexpression of SDC1 in
the hypothalamus promotes obesity due to increased food
intake as overabundant SDC1 at the cell membrane interacts
with AgRP to potentiate its orexigenic activity (91). Loss of
SDC1 also induces hyperphagia, especially after fasting periods.
However, this is a result of reduced intradermal adipogenic
differentiation. Lack of insulating intradermal fat promotes
cold-stress resulting in hyperphagia. However, this increased
food intake does not promote weight gain since it meets the
increased energy demand of BAT to maintain body temperature
via enhanced non-shivering thermogenesis (95). Food intake
was also decreased in Sdc4−/− mice independent of the diet.
Although unclear at this point which role SDC4 plays in feeding
behavior, it further emphasizes the overall relevance of Syndecans
in satiety control (89).

Glypicans – Biomarkers for Metabolic
Syndrome and Insulin Resistance
Glypicans (GPC) are a six-member family of cell surface
glycosylphosphatidylinositol (GPI)-anchored HSPGs (96)
(Table 1). GPC can be shed from the cell surface by
phospholipase-mediated cleavage of the GPI-anchor (97)
which gives them the potential not only to influence cell surface
processes, but also processes in the extracellular environment

and to act systemically (Figure 2). In humans, mutations
in GPC3 and GPC4 are associated with the development of
the Simpson-Golabi-Behmel syndrome (SGBS), an X-linked
inherited overgrowth syndrome characterized by a broad
spectrum of clinical manifestations, such as congenital, facial
and cardiac abnormalities, organomegaly, and reduced viability
primarily in male patients (98). Interestingly, pre-adipocytes
from a male SGBS patient have been used as a model system for
human adipogenic differentiation ever since their isolation in
2001 (99).

In an unbiased screen GPC4 was identified as an adipokine
in a set of developmentally regulated genes that are differentially
expressed in subcutaneous and visceral AT of mice and men
(100). In healthy humans, subcutaneous AT has the highest GPC4
expression while in obese patients GPC4 expression decreases
in subcutaneous AT and increased in visceral AT (100, 101).
The most clinically relevant observation is a positive association
between GPC4 expression in human white AT and both body-
mass index (BMI) and central AT distribution. Since its discovery
as a novel adipokine, several studies further confirmed this
strong correlation using serum GPC4 levels and also identified
that increased GPC4 serum levels positively associated with
the prevalence of NAFLD and insulin resistance in at risk
patients (101–106). When considering GPC4 as a biomarker
for insulin resistance and NAFLD it is important to consider
sex-specific differences as healthy men present with higher
plasma GPC4 levels compared to women. However, circulating
GPC4 levels in obese and insulin resistant female patients are
dramatically elevated, reaching comparable levels as their male
counterparts (101, 105). Collectively, GPC4 seems to be a potent
biomarker for metabolic disease, however its exact functions in
obesity development and metabolic inflammation remains to
be fully established. Functionally, research supports the concept
of GPC4 as an insulin sensitizer as GPC4 directly binds the
insulin receptor, an interaction that is disrupted by insulin.
Hence, it is plausible that the insulin receptor interaction with
GPC4 stabilizes insulin receptor to prolong its presentation and
insulin reception. Recombinant GPC4 administration increases
insulin signaling in cultured adipocytes independent of its GPI
anchor, but the importance of the HS chains for the GPC4-
mediated insulin sensitization is unclear and remains to be
determined (101).

GPC5, another GPI-anchored HSPG, associated in a genome-
wide association study (GWAS) with acquired DKD [odds ratio
1.45 (95% CI, 1.18–1.79)] (107). The risk allele in the GWAS
correlated with elevated GPC5 expression in podocytes. Similarly,
GPC5 expression gradually increased in glomerular mesangial
cells in murine T2D models and associated with progression
and severity of DKD (108). In contrast, podocyte specific GPC5
knockdown in a preclinical FGF2 induced DKD model conferred
resistance to podocyte and glomerular injury. These studies
validate the importance of GPC5 in progression of DKD. It
remains unclear how GPC5 influences the pathology, but it
might involve sequestration of FGF2 and local modulation
of FGF receptor activity (107, 108). Therefore, future studies
are warranted to elucidate the involvement of GPC5 in DKD
pathophysiology.
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Perlecan – Driver of Atherogenesis and
Adipocyte Hypertrophy
The largest secreted proteoglycan (∼500 kDa) is Perlecan
(HSPG2) carrying up to three HS attachments. It is an
integral component of the ECM where it interacts with the
basement membrane (109–113) (Table 1). HSPG2 is implicated
in various pathological processes, such as tumor development,
osteoarthritis, muscle hypertrophy, atherosclerosis and diet-
induced obesity (113). Its physiological importance and complex
biology is illustrated by the fact that a null-allele of Hspg2 in mice
is embryonic lethal, but can be perinatally rescued via transgenic
expression of HSPG2 in cartilage (111). Regulation of perlecan
expression is intricate and modulated by many external factors
including growth factors, chemokines, cytokines and cellular
danger signals. Its expression and secretion is suppressed by
interferon γ but activated by nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) signaling (114, 115), as
well as in macrophages by HIF1α and HIF1β upon hypoxia, a
pertinent condition in atherosclerotic lesions and hypertrophic
AT (116). HSPG2 is abundant in the arterial wall, specifically the
intima. In this sub-endothelial layer of the artery HSPG2 binds
and traps LDL via interaction of LDL-associated apolipoprotein
B (apoB) and E (apoE) in an HS chain dependent manner.
Knock-in mice expressing perlecan lacking the HS binding sites
present with reduced subendothelial lipoprotein retention and
atherosclerosis development (113, 117, 118). Hence, hypoxia-
induced perlecan expression in macrophages could accelerate
lipoprotein trapping in the subendothelial layers of arteries as
well as promote hypertrophy (over hyperplasia) in expanding AT.
It is thus not surprising that perinatally rescued Hspg2-deficient
(Hspg2−/−tg) mice are resistant to diet-induced obesity due to
reduced AT hypertrophy (109). The additional improvements in
hepatic steatosis and insulin sensitivity might also be attributed
to elevated muscle energy metabolism. However, the impact
of Hspg2-loss on metabolic/adipose inflammation and insights
as to how perlecan can affect adipocyte hypertrophy remain
to be determined.

CHONDROITIN, DERMATAN AND
KERATAN SULFATE PROTEOGLYCANS
HAVE PLEOTROPIC ROLES IN
META-INFLAMMATION INITIATION AND
PROGRESSION

Unlike HSPGs, CSPG and DSPGs are a group of mostly secreted
proteins forming an integral part of the ECM (Figure 1).
They are involved in many essential physiological functions
such as morphogenesis, inflammation and neuronal plasticity
and play central roles in pathological processes such as cancer,
osteoarthritis and thrombosis making them potential therapeutic
targets (119, 120). Several secreted matrix CS/DS and KS
proteoglycans contain leucine-rich repeats (LRRs) in their
protein core (around 42 kDa), categorizing them as small leucine-
rich proteoglycans (SLRPs). Five classes based on their structural
relationship and associated GAG chain are described: Class I

consists of CS/DS containing biglycan (Bgn), decorin (Dcn)
and asporin, class II is formed by KS-associated PGs such as
fibromodulin and lumican (Lum), class III consists of osteoglycin
and opticin and non-canonical classes IV and V lack GAG
attachments (121). SLRPs have been implicated in maintaining
matrix assembly, thereby fine-tune the tissue-specific micro-
environment and are involved in multiple metabolic processes,
including inflammation (27).

The first step in CS/DS biosynthesis is building the shared
GAG tetrasaccharide linker on a serine residue of the core protein
(Figure 1). Subsequent polymerization, sulfation, epimerization
and degradation of the disaccharide subunits requires a distinct
set of enzymes not shared with HSPGs (122). Little is known
about how alterations in CS/DS composition affect metabolic
dysfunctions and meta-inflammation except for a report on a
spontaneous mutated mouse line, small with kinky tail. This
mouse model lacks functional chondroitin sulfate synthase 1
and presents with increased age-related, low-grade inflammation
(123). Overall, this lack of knowledge is due to the fact that the
number, diversity and redundancy of CSPG-specific biosynthetic
enzymes make it difficult to probe this issue. Historically this
has shifted the focus to evaluating core proteoglycans in meta-
inflammation, which we will discuss in the following sections.

Endocan – Potential Biomarker for T2D
Severity and Co-morbidities
Transcription of the endothelial cell-specific molecule 1 (ESM1)
gene produces Endocan, a DSPG that is secreted in the
ECM carrying a single DS chain covalently linked to serine
137 (Table 1) (124). Primarily expressed by lung and kidney
endothelial cells, endocan is upregulated by pro-inflammatory
cytokines such as TNF and interleukin 1-β (IL1-β) (124).
Once in the circulation ESM1 can interfere with leucocyte
extravasation by blocking the interaction of leukocyte function-
associated antigen-1 and intercellular adhesion molecule (ICAM-
1), suggesting that endocan is part of a negative feedback
loop to attenuate the inflammatory recruitment response (125).
ESM1 is secreted by adipocytes and its expression progressively
increases during adipogenesis. As expected AT ESM1 expression
and circulating ESM1 levels increased in obese patients (126).
In contrast, insulin and cortisol administration inhibit ESM1
expression in adipocytes in vitro (126, 127). Because of its
potential as a marker for endothelial dysfunction and its
association with AT and obesity, endocan is evaluated as a
potential biomarker for several obesity associated conditions.
Several studies observed elevated plasma endocan levels in
T2D patients (128, 129) as well as a correlation with the
onset of T2D associated morbidities including atherosclerosis
(130), nephropathy (131), and NAFLD (132). In psoriasis
patients, a common chronic inflammatory skin disease, elevated
endocan levels correlated with enhanced mean carotid artery
intima-media thickness, BMI, and TNF levels (133). However,
conflicting data in T2D patients indicated that using endocan as
a prognostic biomarker is a much more sophisticated endeavor,
as plasma endocan concentrations were significantly reduced and
correlated inversely with waist circumference and CRP levels, a
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marker for systemic inflammation (126, 134, 135). In the same
T2D patient population endocan serum levels associated with
increased urinary albumin to creatinine ratios, suggesting a role
for endocan in the progression of kidney injury in obesity-
mediated diabetes (135). Evaluation of a DKD mouse model
confirmed that ESM1 expression decreased in glomeruli with
an ensuing reduction in endocan plasma levels and increased
urinary concentration (136). Thus, evidence is mounting that
endocan can be a useful biomarker for the severity of T2D and
the onset of its co-morbidities. Collectively, functional studies of
the role of endocan are needed to help to clarify the contribution
of endocan to the development of T2D.

Opposing Roles of Biglycan and Decorin
in Obesity and Meta-Inflammation
Bgn and Dcn are ECM proteins with high expression in
AT that share similar structural features (Table 1). Multiple
roles have been attributed to Bgn and Dcn, including matrix
remodeling via interaction with collagens (137), regulation of
growth factor signaling such as transforming growth factor β

(TGF-β) (138), and contribution to the proliferation of cells
such as preadipocytes (139, 140). Both SLRPs regulate innate
immune responses through direct interaction with TLR2 and
TLR4 (Figure 2) (141, 142). However, despite their similarities
they tend to have opposing roles in the context of diet-induced
obesity (DIO) with Dcn having protective attributes and Bgn
promoting meta-inflammation.

Decorin – Friend or a Foe in
Inflammatory Diseases?
One of the best studied SLRPs is DCN, an ECM CSPG that
regulates both innate and adaptive immunity in opposing
manner. DCN interacts with TLR2 and TLR4 on innate immune
cells to promote expression of pro-inflammatory cytokines such
as TNF and IL12p70. Support for its physiological importance as
an enhancer of innate immunity was provided by the observation
that LPS-induced sepsis is mitigated in Dcn−/− mice (142).
In contrast, DCN, as well as BGN, are inhibitors of adaptive
immunity and specifically of classical complement activation.
Both PGs bind and sequester complement component 1q thereby
preventing its recruitment to antigen-antibody complexes. This
event prevents proper C1 complex activation and suppresses
the adaptive inflammatory response and cytokine production.
This, in the context of metabolic inflammation, can attenuate
complement overactivation at the onset of its manifestation (143,
144). DCN also modulates engagement of cytokines with their
receptors. For example, DCN interacts with TGF-β, a major
activator of fibrinogenesis, to suppress its response. The reduced
TGF-β reception can further mitigate inflammation, fibrosis and
tissue hypoxia in the context of metabolic disorders such as
obesity and non-alcoholic steatohepatitis (NASH) (145).

Many factors, including cytokines, modulate DCN expression
that result in upregulation, such as TGF-β and TNF (146),
as well as down-regulation by IL-1, IL-6, and IL-10 (30, 147,
148). Its expression also exhibits regional variation, particularly
between subcutaneous and visceral AT depots, with higher

DCN expression in the latter (149, 150). DCN is predominantly
expressed by the stromal vascular pre-adipocyte fraction and
to a lesser extent by mature adipocytes (151). The complex
transcriptional regulation also translates in a multifaceted impact
of decorin expression on adipogenesis. Silencing of Dcn in vitro
increased the differentiation potential of visceral preadipocytes
without affecting subcutaneous preadipocyte differentiation.
High levels of recombinant DCN protein was able to overcome
this divergences as it inhibited adipogenic differentiation in both
depots (150). It is generally well-accepted that subcutaneous
and visceral ATs display distinct features such as different
gene expression, higher lipolytic rate and decreased insulin
sensitivity in visceral AT (152). Future research needs to
elucidate if DCN is a key determinant of some of these depot-
specific differences.

Obese and T2D patients present with increased DCN
expression in AT. This phenomenon is attenuated after
administration of thiazolidinediones, a potent class of insulin
sensitizing drugs. This suggests that insulin resistance is partially
responsible for the increase in AT DCN expression in T2D (143,
149). However, after bariatric surgery, which induces substantial
weight loss and improved glucose tolerance, DCN expression
is further upregulated in subcutaneous AT (151). Systemic
Dcn knock-out mice have increased HFD-induced obesity,
aggravated glucose intolerance and a higher risk of developing
spontaneous intestinal tumors (151, 153). The study provided
indirect evidence suggesting that altered DCN-associated ECM
remodeling mediated some of these effects. In addition the
lack of DCN production in white AT from HFD-fed Dcn−/−

mice associated with augmented AT inflammation measured
by increased expression of complement and coagulation related
genes (151). Other reports described DCN as a resistin receptor
on adipose progenitor cells (140). Resistin is an adipokine
promoting inflammation and insulin resistance in rodents (154)
and in humans it is positively associated with AT macrophage
content and increased during bouts of systemic inflammation
(154). Single nucleotide polymorphisms (SNPs) in the human
DCN gene locus correlate with elevated plasma resistin levels,
while SNPs in the resistin gene correlate with higher susceptibility
for T2D (155). It remains to be determined how and to what
extend DCN impacts metabolic consequence associated with
elevated resistin expression. One possibility is that DCN serves as
a decoy receptor or scavenging agent which buffers the increased
resistin secretion associated with excessive AT expansion.

In a patient study of DKD, both DCN and BGN were
identified to be upregulated in kidney cortex and glomerular
biopsies from patients with DKD. Only DCN was increased in the
plasma of these DKD patients and correlated with a significant
reduction in glomerular filtration rate (a clinical characteristic
of DKD progression) (156). Dcn deficiency in a streptozotocin-
induced type 1 diabetes mouse model promoted DKD, resulting
in elevated albumin to creatinine ratios and increased fibrosis
(157). Moreover, in a follow-up study, diabetic Dcn−/− mice
showed aggravated kidney injury met with an accumulation in
renal BGN content, accentuating potential opposing roles of
DCN and BGN in kidney injury (158). The protective effect
of decorin in DKD is a multifactorial process and evidence
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supports that the impact is mediated via decorin binding to
TGF and the insulin-like growth factor-I receptor. Binding
to the former attenuates inflammation, while binding to the
latter will promote anti-apoptotic effects in tubular epithelial
cells, synthesis of fibrillin-1 in renal fibroblasts and inhibition
of proliferation and migration. Decorin seems to have the
potential to attenuate metabolic inflammation. Hence, factors
that modulate its expression as well as decorin itself have
great potential as future therapeutic targets for inflammation-
associated morbidities in metabolic disease.

Biglycan – Danger Signal in Metabolic
Disease
Both biglycan and decorin are signaling molecules and
established ECM-derived danger-associated molecular patterns
(DAMPs). Under normal conditions BGN is sequestered in the
ECM but gets released during cellular stress and inflammation,
as for instance during obesity. Once in its soluble form BGN
is a ligand for TLR2 and TLR4 present on innate immune
cells. The complex between BGN, TLRs and their co-receptors
cluster of differentiation (CD) 14 and lymphocyte antigen 96
promotes activation of an inflammatory cascade engaging the
NLR family pyrin domain containing 3 (NLRP3) inflammasome
leading to IL-1β and IL-6 secretion (141, 159). Because of its
role as a DAMP, Bgn-deficient mice were studied to evaluate
the impact of BGN on meta-inflammation in the context
of diet-induced obesity. The lack of BGN expression in this
HFD-fed model was associated with a reduction in obesity-
driven inflammation in visceral AT independent of changes
in adiposity (160). Bgn expression in AT reportedly increases
during obesity which correlates positively with the expression of
inflammatory genes and inversely with adiponectin (139, 160–
163). The exact mechanism regulating Bgn expression during
obesogenic conditions remains unknown, but involves factors
such as pro-inflammatory cytokines (IL-6 and IL-1β) as well
as adipokines such as adiponectin (141). Adiponectin prevents
hyperglycemia and promotes fatty acid oxidation. Unlike most
adipokines, plasma and AT adiponectin levels are reduced in
obese patients and mice (164, 165). A correlation between
biglycan and adiponectin expression is evident in Bgn-null mice
as they have elevated adiponectin levels, independent of their
diet. However, Bgn knock-down in adipocytes in vitro had
the opposite effect on adiponectin expression (162). Thus, the
mechanisms leading to the increased adiponectin expression
in vivo might be a metabolic adaption and needs to be
further studied.

In addition to its detrimental roles in obesity, BGN also
influences atherosclerosis development. BGN is the proteoglycan
that is most co-localized with apoB in murine and human
atherosclerotic plaques (166, 167). When overexpressed in
smooth muscle cells of mice lacking low-density lipoprotein
receptor (LDLR), it promotes atherosclerosis likely because it
enhances the retention of apoCIII-enriched LDL and TRLs in the
subendothelial matrix (168, 169).

BGN has also been demonstrated to play a role in the
development and progression of kidney disease in obese and

diabetic experimental models. Thompson et al. demonstrated
that Ldlr knockout mice which were induced to be diabetic
through streptozotocin injections, experienced glomerular BGN
accumulation. Interestingly, this was met with elevated renal
lipid accumulation and an increase in TGF-β, suggesting the
involvement of BGN in lipotoxicity-mediated DKD (170).
Soluble BGN is being considered a biomarker for kidney
injuries, which are met with elevated inflammation, including
obesity-mediated DKD (171). Collectively, studies show that
elevated BGN expression and shedding was associated with
obesity associated co-morbidities, rendering BGN as a potential
diagnostic marker and therapeutic target.

Lumican – Pro-inflammatory Diagnostic
Marker for NAFLD Progression?
Lumican (Lum) belongs to class II SLRPs that carry KS-chains
(121). In contrast to HS, CS and DS which attach to the core
protein at a serine residue, keratan sulfate is attached via O- or
N-glyosidic bindings at asparagine and serine/threonine residues
(Table 1 and Figure 1). Similar to BGN and DCN, Lum is found
in the ECM where it interacts with collagens and is associated
with repair processes in collagen-rich connective tissues (137).
In contrast to BGN and DCN, Lum does not directly interact
with TLR2/4, but interferes with the adaptor protein CD14
which facilitates LPS presentation to CD14 (172). Moreover,
TNF-stimulated fibroblasts produce Lum that in turn promotes
fibrocyte differentiation (173). In fact, Lum expression in the liver
is tightly correlated with the severity of NAFLD and NASH and
is currently evaluated as a biomarker for progression of such liver
complications (174–176).

A recent report described a role for Lum in obesity and
inflammation (177). As for other SLRPs, visceral AT exhibits
higher Lum expression compared to subcutaneous AT and
increases during obesity progression. Interestingly, Wolff and
coworkers observed sex-specific differences in weight gain
and obesity-related inflammation in Lum full body knock-
out mice during diet-induced obesity (177). Based on its
positive correlation with inflammation, loss of Lum should
be protective against obesity and meta-inflammation. However,
female Lum−/− mice showed increased fat accumulation and
AT inflammation which was also associated with accelerated
progression of insulin resistance, whereas male mice were
devoid of detrimental phenotypes (177). This study also tested
the therapeutic potential of Lum by Adeno-associated Virus-
mediated overexpression of Lum in male mice which mildly
improved insulin sensitivity. As with other SLRPs, Lum’s role in
obesity-related morbidities is controversial and could be based
on the disease-specific context. Mechanisms explaining sex- and
tissue-depending impacts of Lum pose interesting aspects for
future investigations.

Osteoglycin – Coordinator of Bone
Formation With Novel Roles in
Controlling Energy Homeostasis
Osteoglycin (OGN), also known as mimecan, is a class
III SLRP associated with KS GAG chains. In addition to
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FIGURE 3 | Several proteoglycans are deregulated in the obese state and differentially expressed in an adipose depot and sex specific manner. Obesity is defined by
a body mass index of over 35 (weight in kg/height in m2). Multiple proteoglycans are upregulated in an obese state in adipose tissue, kidney, and liver. Also, serum
levels of glypican-4 (GPC4) increase which could be used as a marker for insulin resistance. Serum endocan (ESM1) levels are deregulated in obese subjects and
depending on the specific disease context can be up- or downregulated. Interestingly, some proteoglycans are higher expressed in visceral white adipose tissue
(vWAT) compared to subcutaneous white adipose tissue (sWAT) which might account for depot specific differences (biglycan, Bgn; decorin, Dcn; lumican, Lum).
Also, proteoglycans show differential expression in males and females independent of the diet.

GAG chains other O-linked glycosylation of OGN have
been described, but the glycan-type remains unidentified
(Table 1). OGN is expressed in several isoforms resulting
from differential splicing, alternative polyadenylation, and
posttranslational modifications such as glycosylation (178).
In an inflammatory context, the largest 72 kDa glycosylated
leukocyte-derived isoform has been described to enhance
the activation of TLR4 during viral cardiac inflammation
(179). Ogn expression is upregulated by INF-y and TNF in
an NF-κB dependent manner (180, 181). These phenomena
could be connected to increased OGN expression found in
atherosclerotic plaques, where these pathways are activated
(182, 183). OGN binds and increases collagen cross-linking
and bone formation, respectively. OGN is highly expressed in
osteoblasts, but also expressed, albeit to a lesser degree, in
cardiomyocytes, vascular smooth muscle cells, fibroblasts and
neurons (178). Recent data shows that OGN is expressed in

AT and involved in regulation of glucose homeostasis (184).
Lack of Ogn expression increases glucose intolerance and
elevates insulin levels in HFD-fed Ogn−/− mice and ectopic
administration of OGN improves glucose tolerance (185). Lee
et al., showed that Ogn expression levels negatively correlate
with diet-induced obesity and blood glucose levels and that
ectopic administered OGN increases insulin secretion and
glucose intolerance in mice. In severely obese humans, OGN
serum levels increased in response to weight loss (185). It
is assumed that this weight loss could be mediated by OGN
regulating food intake. A previous study reported that injection
of recombinant OGN in db/db mice induced an anorexic effect
(184). However, this could not be reproduced in the later study
of Lee et al., who showed the opposite effect (185). Different
mouse models and technical differences might explain the
discrepancies, but future studies are needed to clarify the effect
of OGN on food intake.
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CLINICAL SIGNIFICANCE AND
POTENTIAL THERAPEUTIC
APPLICATION OF PROTEOGLYCANS

Heparin, a naturally derived, heavily sulfated HS, is an
essential and commonly used anti-coagulant in the clinic
worldwide. Low molecular weight heparin analogs have
anti-inflammatory properties without unwarranted anti-
coagulant activity rendering these analogs as interesting
candidates for clinical evaluation (186). Proteoglycans and
associated GAG chains are utilized in the clinic for drug
delivery methods and several experimental studies have
evaluated the benefit of applying proteoglycans in the clinic
as biomarkers and therapeutic targets for various diseases
(187–189). This current review highlights several key clinical
studies implicating proteoglycans as potential therapeutic
targets or biomarkers for obesity-mediated inflammatory
diseases. In summary, several proteoglycans are modulated
in clinical and experimental models of obesity and its
co-morbidities (summarized in Table 1 and Figure 3).
Specifically, diabetic patients have been observed to have
increased heparinase in the blood and urine, demonstrating
that heparin and HS chain modifications could be important
in diabetes and its co-morbidities (65). In separate studies
authors demonstrated that soluble fragments generated
from heparinase activity resulted in activation of TLR4
signaling, further implicating their involvement in meta-
inflammation. Several studies mentioned above include
strong association for many PGs and disease outcome in
distinct patient cohorts of obesity and diabetes, such as
GPC4 and ESM1. Interestingly, obese mice treated with oral
administration of salmon cartilage proteoglycans experienced
improvement in hyperglycemia and insulin sensitivity associated
with a reduction in the expression of key inflammatory
modulators such as TNF, IL-6 and C-X-C motif chemokine
ligand 2 in AT (190). Studies like this one highlight the
overall benefit of implementing the therapeutic potential
of proteoglycans.

CONCLUSION AND OUTLOOK

Undoubtful, proteoglycans play significant roles in mediating
metabolic inflammation. Despite recent advances, our
understanding of the specific roles of PGs during obesity
progression and metabolic inflammation is still nascent.
Many of the reports discussed in this review are primarily
observational and lack mechanistic explanations. Model
systems that allow studying proteoglycan interactions with
inflammatory components have been generated in the past
several years. However, few studies discriminate between
the protein and GAG moiety of proteoglycans. This lack of
properly addressing the importance of the glycoforms might
explain discrepancies in study outcomes. Also, many of the
proteoglycans’ functions might be triggered in a context- and
tissue-dependent fashion. Thus, generation and investigation
of conditional proteoglycan knock-out models is warranted to
clarify the roles of proteoglycans upon diet-induced obesity and
meta-inflammation. Overall it is evident that proteoglycans are
interesting diagnostic or therapeutic targets, and specific roles
in obesity-related inflammation and receptor interactions need
to be fully identified and understood prior to consider them as
such in the future.
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