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Background: Low-dose computed tomography (LDCT) scans can effectively reduce the radiation 
damage to patients, but this is highly detrimental to CT image quality. Deep convolutional neural networks 
(CNNs) have shown their potential in improving LDCT image quality. However, the conventional CNN-
based approaches rely fundamentally on the convolution operations, which are ineffective for modeling the 
correlations among nonlocal similar structures and the regionally distinct statistical properties in CT images. 
This modeling deficiency hampers the denoising performance for CT images derived in this manner.
Methods: In this paper, we propose an adaptive global context (AGC) modeling scheme to describe the 
nonlocal correlations and the regionally distinct statistics in CT images with negligible computation load. We 
further propose an AGC-based long-short residual encoder-decoder (AGC-LSRED) network for efficient 
LDCT image noise artifact-suppression tasks. Specifically, stacks of residual AGC attention blocks (RAGCBs) 
with long and short skip connections are constructed in the AGC-LSRED network, which allows valuable 
structural and positional information to be bypassed through these identity-based skip connections and thus 
eases the training of the deep denoising network. For training the AGC-LSRED network, we propose a 
compound loss that combines the L1 loss, adversarial loss, and self-supervised multi-scale perceptual loss.
Results: Quantitative and qualitative experimental studies were performed to verify and validate the 
effectiveness of the proposed method. The simulation experiments demonstrated the proposed method 
exhibits the best result in terms of noise suppression [root-mean-square error (RMSE) =9.02; peak signal-
to-noise ratio (PSNR) =33.17] and fine structure preservation [structural similarity index (SSIM) =0.925] 
compared with other competitive CNN-based methods. The experiments on real data illustrated that the 
proposed method has advantages over other methods in terms of radiologists’ subjective assessment scores 
(averaged scores =4.34).
Conclusions: With the use of the AGC modeling scheme to characterize the structural information in 
CT images and of residual AGC-attention blocks with long and short skip connections to ease the network 
training, the proposed AGC-LSRED method achieves satisfactory results in preserving fine anatomical 
structures and suppressing noise in LDCT images.
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Introduction

With a high capability to image the internal structure 
of the human body in a noninvasive manner, computed 
tomography (CT) is critical in detecting lesions, tumors, 
and metastasis (1). However, the high level of accumulated 
radiation exposure from a CT examination and the risk of 
radiation-induced cancer and genetic or other diseases is of 
a significant concern to patients and operators. Minimizing 
X-ray exposure to patients has been one of the major 
efforts undertaken in the CT field (2,3). As the tube current 
[milliampere-seconds (mAs)] is linearly related to the 
radiation dose, a reduction in mAs is perhaps the simplest 
and most effective way to reduce radiation exposure. 
However, the low-mAs-acquisition protocols may be highly 
detrimental to image quality, resulting in images with 
unavoidable noise-induced artifacts, which may hamper 
detection accuracy.

Thus far, various noise suppression strategies have been 
proposed to address the noise artifacts problem in low-dose 
CT (LDCT), including sinogram domain smoothing (4,5), 
model-based iterative reconstruction (MBIR) (6,7), and 
image domain denoising (8,9). Sinogram domain smoothing 
methods seek an optimal estimation of the ideal projection 
by optimizing a cost function in sinogram domain and then 
reconstructs the CT image from the estimated projection 
via the traditional filtered back-projection (FBP) algorithm. 
MBIR methods optimize a cost function according to 
both the raw data statistics and the prior knowledge of the 
reconstructed object for image reconstruction by using 
iterative algorithms. Although these above methods can 
suppress the noise of CT images, they depend heavily on 
the manual design of appropriate prior models, posing a 
significant challenge to researchers. In addition, the CT 
images reconstructed with these techniques still suffer 
from the oversmoothing of subtle tissue structures. Image 
domain denoising methods are postprocessing techniques 
which mitigate noise and artifacts directly from reconstructed 
CT images. Conventional postprocessing methods include 
nonlocal mean algorithms (10,11), dictionary-learning-
based algorithms (9,12), low-rank algorithms (13,14), and 
diffusion filter algorithms (15), among others. Since the 
noise artifact statistics in the reconstructed LDCT images 

are inhomogeneous, using these conventional postprocessing 
methods to achieve a good balance between fine structure 
preservation and noise artifact suppression is difficult.

Recently, with the rapid development of deep learning 
techniques, deep convolutional neural networks (CNNs), 
which learn nonlinear parametric mapping from a low-
quality data manifold to a high-quality data manifold, 
have shown considerable potential for LDCT image noise 
suppression. For example, Chen et al. (16) combined 
an autoencoder, deconvolution network, and shortcut 
connections with a residual encoder-decoder CNN (RED-
CNN) for LDCT imaging. Yang et al. (17) proposed a 
new CT image denoising method based on the generative 
adversarial network with Wasserstein distance and 
perceptual similarity. Zavala-Mondragon et al. (18) proposed 
a learned wavelet-frame shrinkage network (LWFSN) and 
its residual counterpart (rLWFSN) for LDCT image noise 
suppression.

Tissue structures in CT images show evident nonlocal 
self-similarity properties (19,20). The global contextual 
information across large tissue regions, otherwise known 
as long-range dependency, is desirable for modeling the 
correlations among nonlocal similar structures. On the 
other hand, the conventional CNN-based approaches are 
based fundamentally on the convolution operations. They 
extract informative features within local receptive fields; 
thus, the global contextual information can only be captured 
by deeply stacking a series of convolutional layers. However, 
a deeper network architecture suffers from optimization 
difficulty and computational inefficiency. The pooling layers 
may increase the size of the receptive fields of the CNN 
networks, but the simple maximizing or averaging feature 
aggregation strategy hinders its representational ability for 
meaningful global contextual information. The nonlocal 
network (NLnet) (21), however, solves this problem via 
a self-attention mechanism. For each query position, the 
NLnet computes the query-specific global context (GC) as 
a weighted sum of the features at all positions in the input 
feature images to guide the convolutional filtering. For 
example, Li et al. (22) proposed a novel three-dimensional 
(3D) self-attention CNN for the LDCT denoising problem. 
Bera et al. (23) proposed a novel convolutional module as 
the first attempt to utilize the neighborhood similarity of 
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CT images for denoising tasks. The query-specific GC 
modeling mechanism in an NLnet needs to generate huge 
attention maps to measure the relationships for each query 
position pair. Since the input features images always have 
high resolution in CT imaging tasks, NLnet-based methods 
have high computation complexity, which makes their 
integration into multiple layers problematic, resulting in 
ineffective modeling of the global contextual information in 
these layers.

Through a rigorous empirical analysis, Cao et al. (24) 
found that the GCs modeled with the NLnet are almost 
the same for different query positions within an image. 
Based on this finding, they created a simplified network 
based on a query-independent formulation, called the GC 
network, which maintains the accuracy of NLnet but with 
significantly less computation. The lightweight property of 
GC block allows it to be applied to multiple layers, leading 
to a better performance than that of the NLnet. The GC 
network aggregates the features of all positions together 
to form a GC feature for a feature image. Furthermore, 
different tissue structures and lesion changes generally vary 
greatly within a CT image, which leads to large statistical 
differences for the local neighbor regions containing 
distinct tissue structures or lesions. This, however, cannot 
be well described by a single GC feature as done in the GC 
network. This deviation in prior knowledge deviation from 
the real CT images limits the capability of such a useful 
GC modeling scheme and invites news development to 
further strengthen the field of CT image noise suppression. 
To this end, we propose an adaptive GC (AGC) modeling 
scheme for better representing the local contextual semantic 
information of CT images with much a lower computation 
cost than that of NLnet.

As for the network training, it is known that reducing 
the per-pixel loss as that as of mean-square error (MSE) 
between the network output and the ground truth alone 
tend to make output images oversmoothed and increase 
the image blur (25). The same effect can also be observed 
in traditional neural network-based CT image denoising 
methods (16). In this study, we propose a compound loss 
that combines the L1 loss [or called mean absolute error 
(MAE) loss], adversarial loss, and self-supervised, multiscale 
perceptual loss to practically solve the oversmoothing 
problem.

The work most similar to ours is that of Yang et al. and Li 
et al. (17,22), who also adopted a combination of adversarial 
loss and perceptual loss to produce sharper results. Our 
work differs from theirs in many important ways, and we 

would like to highlight some key points below.
(I) We propose an AGC modeling scheme to describe 

the nonlocal correlations and the regionally 
distinct statistics in CT images. The proposed 
AGC model, which contains soft split, aggregation, 
and replacement procedures, aggregates locally 
contextual semantic information adaptively for 
each regional neighborhood (referred to as patch 
in this paper). Furthermore, with a soft split and 
replacement strategy, the strong correlations among 
surrounding patches can be considered, leading to 
a better preservation of fine structural information 
such as tissue edges and textures represented by 
surrounding patches.

(II) We further propose an AGC-based long-short 
RED (AGC-LSRED) network for efficient LDCT 
image noise reduction. Specifically, an encoder-
decoder structure with long skip connections is 
adopted as the backbone of the proposed denoising 
network. To better extract deeper semantic features, 
we propose to use stack of residual AGC attention 
blocks (RAGCBs) with short skip connection as 
the feature extractor in each layer. The long and 
short skip connections allow the valuable structural 
and positional information to be bypassed through 
these identity-based skip connections, which can 
ease the training of the deep denoising network.

(III) We propose a compound loss to better preserve 
the fine structures of the denoised results. In the 
compound loss, we adopt the L1 loss to encourage 
data fidelity for the generator network, the 
adversarial loss to measure the discrepancy between 
distributions of ground truth images and resulting 
images for producing more realistic images, and 
the self-supervised multiscale perceptual loss to 
measure the difference between image features in 
terms of both low-level semantic features and high-
level semantic features. Our study demonstrated 
that the proposed network can achieve satisfactory 
results in preserving fine anatomical structures and 
suppressing noise in LDCT images.

Methods

AGC modeling scheme

The GC module
The general GC modeling framework can be defined as 
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follows (24):

( )1
pN

i i j jj
Z X Xδ α

=
= + ∑  [1]

where C H WX × ×∈  and C H WZ × ×∈  denote the input 
and output feature image with a channel number of C, 
respectively; a height of H and width of W; i denotes 
the index of the query position; j enumerates all possible 
positions; Np = H × W is the number of positions in the 
feature map; α j is the aggregation weight; and δ(∙) is 
the feature transformation operation used to capture 
channel-wise dependencies which can be denoted as  
δ(∙) = Wv2ReLU(LN(Wv1(∙))), where Wv1 and Wv2 denote two 
linear transformations, respectively.

The proposed AGC module
On the basis of GC, we propose the AGC module to better 
describe the different local data statistics in CT feature 
image. The proposed AGC modeling mechanism consists 
of three processes: soft split, aggregation, and replacement, 
as illustrated in Figures 1,2.

(I) Soft split: we apply the soft split for modeling each 

local contextual information. To avoid information 
loss, we split the CT image feature into patches 
with overlapping. For the input feature images 

C H WX × ×∈ , suppose the size of each patch is 
C×k×k with d overlapping, then the total of 

1 1H k W kL
k d k d
− −   = + × +   − −     patches can be extracted. After 

the soft split, the patches are input into the next 
process.

(II) Aggregation: we compute the GC information 
within a patch using the features of all positions 
within it and add the aggregated GC information to 
each query position of this patch to form the patch 
output. This process can be defined as follows:
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 where l denotes the index of the patch; Nl is the 
number of positions in the feature map of the lth 
patch; i denotes the index of the query position; 
and j enumerates all possible positions in it. For 
the weight l

jα , we use the following Gaussian 
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Figure 1 Architecture of the AGC module. The structure of the transform module is shown in Figure 2. 1×1 Conv, convolution layer with 
kernel size of 1×1; AGC, adaptive global context.

Figure 2 Structure of the transform module. 1×1 Conv, convolution layer with kernel size of 1×1; ReLU, rectified linear unit.
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,  where Wk is a linear 
transformation.

(III) Replacement: after the aggregation process, the 
GC-encoded patches are placed back to its position. 
For each position, there are multiple GC-encoded 
values from neighboring overlapping patches. We 
obtain the final value of each position by averaging 
its values from all patches overlapping it.

AGC-LSRED generator network

Network architecture
As illustrated in Figure 3, the proposed AGC-LSRED 
generator is mainly composed of three parts: shallow feature 
extraction, LSRED deep feature extraction, and feature 
refinement. Specifically, denoting the input LDCT image 
with XLD and the output of the AGC-LSRED generator 
with YLD, we first use two consecutive convolution layers 
to extract the shallow features FSF from the input XLD. We 

then use the proposed LSRED module to extract the deep 
features FDF from FSF. Finally, the extracted deep features 
are further refined with two consecutive convolution layers 
to form the final denoised output YLD. In the following 
sections, we describe the proposed LSRED deep feature 
extractor module in detail.

LSRED
Inspired by the work of Chen et al. (16), we use an encoder-
decoder structure along with long skip connections as the 
backbone of the LSRED deep feature extractor, which 
contains RAGCBs with short skip connections, max-pooling 
downsamplings, bilinear interpolation upsamplings, and 
long skip connections, as shown in Figure 3. Specifically, 
in the encoder part of the LSRED, we first use two layers, 
which respectively contains M consecutive RAGCB 
modules followed with the max-pooling operation to extract 
the major deep structural features from the input shallow 
feature image FSF, while discarding the detail structures. We 
then use R consecutive RAGCB modules to further refine 
these extracted features in a deeper embedding manifold 
and obtain the refined deep structural features. For the 
decoder part of the LSRED, two layers that respectively 
contain the upsampling operation and M consecutive 
RAGCB modules are adopted to reconstruct the deep 
textured structural features of the CT image, FDF, from the 
information consolidated by the encoder. Three long skip 
connections are used to stabilize the train process.

The structure of the proposed RAGCB block is shown 
in Figure 4, which contains two stacked convolution layers, 
an AGC attention module, and a short skip connection. In 
each RAGCB module, the contextual semantic information 
within the feature images is adaptively captured by the 
proposed AGC modeling scheme. This kind of attention 

Figure 4 Structure of the proposed RAGCB module. Conv, 
convolution layer; ReLU, rectified linear unit; AGC, adaptive 
global context; RAGCB, residual AGC attention block.
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mechanism furnishes the proposed network with the ability 
to adaptively model the correlations among neighboring 
structures and hence enhance the representative learning 
ability.

In CT images, the preservation of subtle details and 
textures is highly desirable for clinical diagnosis, while the 
positional information is also critical for the localization of 
lesion changes. In the proposed LSRED module, the long 
and short skip connections can not only better guide the 
gradient backpropagation but also improve the information 
of the detailed structural and positional information 
from shallow layers to deep layers in a coarse level and 
a fine level, respectively, which helps the recovery of the 
underlying subtle details and textures for CT images.

AGC-attention-based discriminator network

The discriminator used in the proposed model is the same 
as that used in the method proposed by Bera et al. (23). 
The same spectral-normalized Markov patch (SNMP) 
discriminator is used as the backbone of the discriminator. 
The SNMP discriminator was first proposed in a patch-
based general adversarial network (GAN) loss called 
spectral-normalized patch GAN (SN-PatchGAN) by Yu 
et al. (26). Compared with conventional discriminator, 
it can better focus on local locations and semantics. We 
further added our proposed AGC module to the SNMP 
discriminator network to adaptively capture the global 
contextual semantic information. The structure of the 
proposed AGC-based SNMP (AGC-SNMP) discriminator 
is shown in Figure 5.

Loss function

Adversarial loss
The adversarial loss encourages the generator to convert the 
data distribution from a high-noise version to a low-noise 
version. In this work, we adopt the Wasserstein distance as 
the adversarial loss, which is defined as follows:

( ) ( ) ( )( ) ( )( )2

2
min max , 1

Y XND LDWGAN Y P X P X XG D
L D G D Y D G X D Xλ   = Ε −Ε + Ε ∇ −       

 

 



 [3]

where G and D are the proposed AGC-LSRED generator 

and AGC-SNMP discriminator, respectively; 
NDYP  and LDXP  

denote the distribution of the normal-dose ground truth 
CT images and noisy LDCT images, respectively; X

  is 
sampled uniformly along a straight line connecting pairs 
of generated samples and real samples; and λ is a weighting 
parameter. The generator G and the discriminator D are 
trained alternately by fixing one and updating the other.

L1 loss
In this study, we used the L1 loss to encourage data fidelity 
for the generator network. Compared with the L2 loss 
(i.e., the MSE loss), the L1 loss does not overpenalize large 
differences or tolerate small errors between the estimated 
image, leading to better preservation of details and textures. 
The L1 loss is defined as follows:

( ) ( ) ( )
1 , 1X YLD ND

L X P Y P
L G G X Y = Ε −  

 [4]

Self-supervised multiscale perceptual loss
Perceptual loss, which is used to simulate human vision 
mechanism, compares the denoised image and the ground-
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Figure 5 Structure of the AGC-SNMP discriminator network. NDCT, normal-dose computed tomography; conv, convolution layer; 
ReLU, rectified linear unit; AGC, adaptive global context; SNMP, spectral-normalized Markov patch; AGC-SNMP, AGC-based SNMP.
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truth image in a feature manifold. Previous studies (17,27) 
have demonstrated that it can achieve improved results in 
terms of fine structure preservation. The visual geometry 
group (VGG) was been widely used as the feature extractor 
in previous works (17,28). Considering that the VGG 
feature extractor was originally trained for classifying natural 
images and thus might cause a loss of important domain-
specific information for CT images. Li et al. (22) designed an 
autoencoder neural network and proposed a self-supervised 
learning scheme to train it. In this study, we adopted the 
same network structure and self-supervised learning strategy 
as that of Li et al. (22) to extract features for our perceptual 
loss design. In the perceptual loss network proposed by 
Li et al., only the output features of the last layer of the 
encoder network are used for image feature comparison. In 
this study, we instead employed the output features of each 
layer of the encoder for the image feature comparison, as 
demonstrated in Figure 6. With such a multiscale perceptual 
loss, the generator has the ability to compare the denoised 
result against the ground truth image in terms of both low-
level semantic features and high-level semantic features, 
thus leading to a better performance for preserving both 
major and subtle structures. The proposed self-supervised 
multiscale perceptual loss can be defined as follows:

( ) ( )( ) ( )( )
3 2

,
1X YLD ND

Perceptual i iX P Y P F
i

L G G X G Yφ φ   =

 = Ε − 
 
∑

 

 [5]

where ϕi denotes the ith feature extractor in the encoder.
The total loss for training our AGC-LSRED network 

can be expressed as follows:

( ) ( ) ( )
1- 1 2,AGC LSRED L WGAN PerceptualL L G L D G L Gλ λ= + +  [6]

where λ1 and λ2 are 2 manual weighting parameters.

Datasets

In this work, the American Association of Physicists in 
Medicine (AAPM)-Mayo dataset was used to evaluate and 

validate the proposed AGC-LSRED denoising method. 
This AAPM-Mayo dataset is a real clinical dataset licensed 
by Mayo Clinic for the 2016 National Institutes of Health 
(NIH)-AAPM-Mayo Clinic LDCT Grand Challenge (29). 
The dataset contains normal-dose abdominal CT images and 
quarter-dose CT images from 10 anonymous patients. In our 
experiments, we used CT images with a 3-mm slice thickness 
of 9 patients as the training set, comprising 4334 CT  
images, and we used CT images of 1 patient (L506) as the 
test set, comprising 422 CT images.

In addition, normal-dose CT and LDCT scans acquired 
from clinical CT colonography studies were used to 
further evaluate and validate the proposed AGC-LSRED 
method. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013) and was 
approved by the institutional ethics committee of the 
Fourth Military Medical University. Informed consent 
was obtained from all the patients. The normal-dose scan 
was first acquired using an uCT760 CT scanner (United 
Imaging Healthcare, Brooklyn, NY, USA) at an X-ray tube 
voltage of 120 kVp and a tube current of 98 mAs. This was 
followed by low-dose scanning at an X-ray tube voltage of 
100 kVp and a tube current of 24 mAs. The other scanning 
parameters were as follows: 0.579 s per gantry rotation, 
3-mm slice thickness, and voxel size 0.7617×0.7617 mm2. 
The reconstructed image was of 512×512 size.

Results

Parameter setting

In our experiments, we set the size of convolutional 
kernel of each convolutional layer in the generator and 
the discriminator to be 3×3 and the number of channels 
to be 64. In the AGC-LSRED generator network, we 
empirically set M=4 and R=6. In the soft split of the AGC 
module, we set k=15 and d=8 for the first layer of the 
encoder and the last layer of the decoder in the LSRED 

Figure 6 Architecture of self-supervised multiscale perceptual loss. Conv, convolution.
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and we set k=8 and d=6 for the other layer of LSRED. In 
order to train the network, we took 20 randomly cropped 
64×64 blocks from each slice, resulting in a total of 86,680 
training blocks. The batch size was set to 8. We initially 
set the learning rate to be 1e−4 for the generator network 
and 4e−4 for the discriminator network. The two learning 
rates were both set to be decreased by a factor of two every 
6,000 iterations. We set the parameters λ1 and λ2 to both 
be 0.1. For the Wasserstein GAN (WGAN) training, the 
weighting parameter λ that controls the tradeoff between 
Wasserstein distance and gradient penalty was set to 10. We 
used the Adam optimizer to train the network. We trained 
the network until the loss did not improve after 200 epochs. 
The networks were implemented using PyTorch and were 
trained/tested on an artificial intelligence (AI) workstation 
equipped with an Nvidia Tesla V100 GPU.

We compare the proposed method with the recently 
developed state-of-the-art deep learning-based LDCT 
denoising algorithms, including RED-CNN (16), conveying 
path-based convolutional encoder-decoder (CPCE) (28), 
WGAN (17), and NLnet (23). For these comparison 
methods, the AAPM-Mayo dataset was also used to train 
the network, and the network parameters were set as they 

were described in their literatures. We also conduct an 
ablation study to demonstrate effects of the proposed AGC 
module and the self-supervised multiscale perceptual loss. 
The source codes are available online (https://github.com/
Frank-ZhangYK/AGC-LSRED).

Experimental results of AAPM-Mayo data

Visual evaluation
To show the denoising effect of the proposed network, 
we selected the visualization results of three representative 
slices of test patient L506, as shown in Figures 7-12, where 
Figures 8,10,12 show the zoomed region of interest (ROI) 
marked by red rectangles in Figures 7,9,11, respectively. 
The display windows of Figures 7-12  are all set to  
−160,240 Hounsfield units (HU). It can be observed that 
all the deep learning-based methods can suppress the noise. 
Compared with other methods, the proposed AGC-LSRED 
method performs much better in terms of both noise 
suppression and fine structure preservation.

We further illustrate the coronal view of the test patient 
L506 in Figures 13,14. We can observe that the proposed 
AGC-LSRED method provides more homogeneous 

Figure 7 Processing results of the first representative slice of patient L506. (A) LDCT; (B) NDCT; (C) RED-CNN; (D) CPCE; (E) 
WGAN; (F) NLnet; (G) AGC-LSRED. The display window is −160,240 HU. The yellow line indicates vessel and the purple line 
indicates the liver nodule. The red rectangle shows in Figure 8. LDCT, low-dose computed tomography; NDCT, normal-dose computed 
tomography; RED-CNN, residual encoder-decoder convolutional neural network; CPCE, conveying path-based convolutional encoder-
decoder; WGAN, Wasserstein general adversarial network; NLnet, nonlocal network; AGC-LSRED, adaptive global context-based long-
short residual encoder-decoder; HU, Hounsfield units.
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Figure 8 Zoomed images of a selected region, outlined by the red rectangle in Figure 7B. (A) LDCT; (B) NDCT; (C) RED-CNN; (D) 
CPCE; (E) WGAN; (F) NLnet; (G) AGC-LSRED. The display window is −160,240 HU. The blue ellipses indicate the low-attenuation 
lesions in the posterior hepatic lobe, and the red ellipses indicate the tissue structures. LDCT, low-dose computed tomography; NDCT, 
normal-dose computed tomography; RED-CNN, residual encoder-decoder convolutional neural network; CPCE, conveying path-based 
convolutional encoder-decoder; WGAN, Wasserstein general adversarial network; NLnet, nonlocal network; AGC-LSRED, adaptive global 
context-based long-short residual encoder-decoder; HU, Hounsfield units.

Figure 9 Processing results of the second representative slice of patient L506. (A) LDCT; (B) NDCT; (C) RED-CNN; (D) CPCE; (E) 
WGAN; (F) NLnet; (G) AGC-LSRED. The display window is −160,240 HU. The red rectangle shows in Figure 10. LDCT, low-dose 
computed tomography; NDCT, normal-dose computed tomography; RED-CNN, residual encoder-decoder convolutional neural network; 
CPCE, conveying path-based convolutional encoder-decoder; WGAN, Wasserstein general adversarial network; NLnet, nonlocal network; 
AGC-LSRED, adaptive global context-based long-short residual encoder-decoder; HU, Hounsfield units.
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Figure 10 Zoomed images of a selected region, outlined by the red rectangle in Figure 9B. (A) LDCT; (B) NDCT; (C) RED-CNN; (D) 
CPCE; (E) WGAN; (F) NLnet; (G) AGC-LSRED. The display window is −160,240 HU. The blue arrows indicate the obvious visual 
difference of the proposed method. LDCT, low-dose computed tomography; NDCT, normal-dose computed tomography; RED-CNN, 
residual encoder-decoder convolutional neural network; CPCE, conveying path-based convolutional encoder-decoder; WGAN, Wasserstein 
general adversarial network; NLnet, nonlocal network; AGC-LSRED, adaptive global context-based long-short residual encoder-decoder; 
HU, Hounsfield units.
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Figure 11 Processing results of the third representative slice of patient L506. (A) LDCT; (B) NDCT; (C) RED-CNN; (D) CPCE; (E) 
WGAN; (F) NLnet; (G) AGC-LSRED. The display window is −160,240 HU. The red rectangle shows in Figure 12. LDCT, low-dose 
computed tomography; NDCT, normal-dose CT; RED-CNN, residual encoder-decoder convolutional neural network; CPCE, conveying 
path-based convolutional encoder-decoder; WGAN, Wasserstein general adversarial network; NLnet, nonlocal network; AGC-LSRED, 
adaptive global context-based long-short residual encoder-decoder; HU, Hounsfield units.
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Figure 12 Zoomed images of a selected region outlined by the red rectangle in Figure 11B. (A) LDCT; (B) NDCT; (C) RED-CNN; 
(D) CPCE; (E) WGAN; (F) NLnet; (G) AGC-LSRED. The display window is −160,240 HU. The red arrows and the yellow ellipses 
indicate the visual obvious difference of the proposed method. LDCT, low-dose computed tomography; NDCT, normal-dose computed 
tomography; RED-CNN, residual encoder-decoder convolutional neural network; CPCE, conveying path-based convolutional encoder-
decoder; WGAN, Wasserstein general adversarial network; NLnet, nonlocal network; AGC-LSRED, adaptive global context-based long-
short residual encoder-decoder; HU, Hounsfield units.

processing results with better performance of fine structure 
preservation compared with other methods, especially for 
the selected ROI containing the suspected liver nodule 
lesion (as outlined by the red rectangle in Figure 13B).

To further compare the performance differences between 
RED-CNN, CPCE, WGAN, NLnet, and the proposed 
AGC-LSRED, we drew the intensity profiles through the 
vessel (along the yellow line in Figure 7B) and liver nodule 
(along the purple line in Figure 7B) in Figure 15A,15B, 
respectively. Compared with other methods, the results 
obtained by the proposed method are more consistent with 
the ground truth. The results demonstrate the proposed 
AGC-LSRED method performs better in preserving 
structures of the organ tissues.

Quantitative evaluation
To further illustrate the effectiveness of the proposed 
method, we quantitatively calculate the peak signal-to-
noise ratio (PSNR), the structural similarity index (SSIM), 
and the root-MSE (RMSE) values. Table 1 summarizes the 
comparative results for each method. It demonstrates the 
proposed AGC-LSRED method exhibits the best result 

with the lowest RMSE and the highest PSNR and SSIM.

Haralick texture measures
To further validate the effectiveness of the proposed AGC-
LSRED method on texture preservation, Haralick texture 
feature measurement (30) was used in this study. Haralick 
texture features were extracted from the regions marked 
with the red rectangle in Figure 7B. The corresponding ROI 
of the normal-dose CT images was used as the baseline. We 
extracted 13 Haralick texture features from the ROIs and 
then calculated the normalized Euclidean distance between 
the features of the reference image and the processed 
results. The normalized Euclidean distances were then 
calculated for the reference image and the images were 
processed using the RED-CNN, CPCE, WGAN, NLnet, 
and proposed method. A shorter distance indicates better 
texture preservation. The corresponding results are shown 
in Table 2. The gain of our proposed method in preserving 
the abdominal tissue texture is obvious.

Ablation analysis
We completed an ablation study to identify effects of the 



Quantitative Imaging in Medicine and Surgery, Vol 13, No 10 October 2023 6539

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(10):6528-6545 | https://dx.doi.org/10.21037/qims-23-194

LDCT NDCT RED-CNN CPCE

WGAN NLnet AGC-LSRED

A B C D

E F G

LDCT NDCT RED-CNN CPCE

WGAN NLnet AGC-LSRED

A B C D

E F G

Figure 13 Coronal section view of case L506 from the AAPM-Mayo LDCT dataset. (A) LDCT; (B) NDCT; (C) RED-CNN; (D) CPCE; 
(E) WGAN; (F) NLnet; (G) AGC-LSRED. The display window is −160,240 HU. The red rectangle shows in Figure 14. LDCT, low-dose 
computed tomography; NDCT, normal-dose computed tomography; RED-CNN, residual encoder-decoder convolutional neural network; 
CPCE, conveying path-based convolutional encoder-decoder; WGAN, Wasserstein general adversarial network; NLnet, nonlocal network; 
AGC-LSRED, adaptive global context-based long-short residual encoder-decoder; AAPM, American Association of Physicists in Medicine; 
HU, Hounsfield units.

Figure 14 Zoomed images of a selected region outlined by the red rectangle in Figure 13B. (A) LDCT; (B) NDCT; (C) RED-CNN; (D) 
CPCE; (E) WGAN; (F) NLnet; (G) AGC-LSRED. The display window is −160,240 HU. The yellow arrows indicate the obvious visual 
difference of the proposed method. LDCT, low-dose computed tomography; NDCT, normal-dose computed tomography; RED-CNN, 
residual encoder-decoder convolutional neural network; CPCE, conveying path-based convolutional encoder-decoder; WGAN, Wasserstein 
general adversarial network; NLnet, nonlocal network; AGC-LSRED, adaptive global context-based long-short residual encoder-decoder; 
HU, Hounsfield units.
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Figure 15 Intensity proles along the horizontal lines labeled in Figure 7B. (A) Intensity proles along the yellow line. (B) Intensity proles 
along the purple line. NDCT, normal-dose computed tomography; RED-CNN, residual encoder-decoder convolutional neural network; 
CPCE, conveying path-based convolutional encoder-decoder; WGAN, Wasserstein general adversarial network; NLnet, nonlocal network; 
AGC-LSRED, adaptive global context-based long-short residual encoder-decoder.

Table 1 Averaged RMSE, PSNR, and SSIM values from the processed results of all the test slices

Methods LDCT RED-CNN CPCE WGAN NLnet AGC-LSRED

RMSE 14.24 9.28 9.25 10.77 9.11 9.02†

PSNR 27.24 32.93 33.04 30.80 33.06 33.17†

SSIM 0.853 0.910 0.913 0.893 0.916 0.925†

†, the best results. RMSE, root-mean-square error; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index; LDCT, low-dose 
computed tomography; RED-CNN, residual encoder-decoder convolutional neural network; CPCE, conveying path-based convolutional 
encoder-decoder; WGAN, Wasserstein general adversarial network; NLnet, nonlocal network; AGC-LSRED, adaptive global context-based 
long-short residual encoder-decoder.

Table 2 Normalized Haralick texture distance between the ROI (as indicated in Figure 7B) of the reference image and that of the reconstructed 
results

Tissue type RED-CNN CPCE WGAN NLnet AGC-LSRED

Abdomen (ROI I) 0.0058 0.0054 0.0062 0.0046 0.0023†

†, the best results. ROI, region of interest; RED-CNN, residual encoder-decoder convolutional neural network; CPCE, conveying path-
based convolutional encoder-decoder; WGAN, Wasserstein general adversarial network; NLnet, nonlocal network; AGC-LSRED, adaptive 
global context-based long-short residual encoder-decoder.

proposed AGC module and the self-supervised multiscale 
perceptual loss. To this end, we considered three variations 
of the proposed AGC-LSRED network for comparison, as 
shown in Table 3.

Effectiveness of the AGC module
First, performed a comparison between the AGC module 
and the GC module. The quantitative values of the 
processing results using C1 and C3 are shown in Table 4. 

Table 3 Summary of all trained networks: loss functions and trainable networks

Variant name Comment

C1 Network with GC modules trained with self-supervised multiscale perceptual loss

C2 Network with AGC modules trained with self-supervised single-scale perceptual loss

C3 Network with AGC modules trained with self-supervised multiscale perceptual loss

GC, global context; AGC, adaptive global context.
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It was found that the C3 method (with the AGC module) 
performs better than does the C1 method (with the GC 
module).
Effectiveness of the self-supervised multiscale  
perceptual loss
In terms of the denoising performance of the perceptual 
loss function, we compared the C3 method (with self-
supervised multiscale perceptual loss) with the C2 method 
(with self-supervised single-scale perceptual loss). The 
quantitative results are shown in Table 4. The quantitative 
results demonstrate that using multiscale perceptual loss 
provides a better performance than does using single-scale 
perceptual loss, which verifies the effectiveness of self-
supervised multiscale perceptual loss.

Experimental results of clinical patient data

Visual evaluation
In this pilot clinical study, the 100 kVp/24 mAs LDCT 
scan from a patient was used for the evaluation, as shown 
in Figure 16A. The corresponding 120 kVp/98 mAs 
normal-dose scans from the same patient were used as the 
reference images, as shown in Figure 16B. Figures 16,17 
show the resulting images. When using real clinical data, 
the proposed method produces a most similar visual effect 
to the normal-dose reference scan and performs better than 
do other methods with respect to noise suppression and 
structure preservation.

Evaluation by radiologists
A total of 63 slices of the 100 kVp/24 mAs low-dose scan 
were independently scored by three radiologists in terms of 
noise reduction and structure and texture preservation. All 
the images to be evaluated were randomly displayed on the 
screen. The score ranged from 0 (worst) to 5 (best). The 

average scores of each radiologist for each image subset 
are presented in Table 5. The proposed AGC-LSRED 
algorithm demonstrated advantages over other methods in 
terms of subjective assessment scores.

Discussion

This paper proposes an AGC modeling scheme to 
characterize the nonlocal correlations and the regionally 
distinct statistics in CT images. The proposed AGC 
modeling mechanism contains three processes, which are 
soft split, aggregation, and replacement. In this manner, the 
locally contextual semantic information can be aggregated 
adaptively for each regional neighborhood. In addition, 
the strong correlations among surrounding patches 
can be considered with the soft split and replacement 
strategy, which helps to better preserve the fine structural 
information such as tissue edges and textures represented by 
the surrounding patches.

Various attention networks (31-34) have been developed 
in the past few years. In this study, the proposed AGC 
was developed on the basis of the GC attention modeling 
scheme. We opted for the GC-based modeling scheme (24)  
mainly because it can effectively model the GC as do 
NLnet and dual attention network (DANet) (31) (which 
is a heavy weight and difficult to integrate into multiple 
layers) with the lightweight property as do squeeze-and-
excitation network (SENet) (32), convolutional block 
attention module network (CBAM-Net) (33), and residual 
attention network (34) (which adopts rescaling for feature 
fusion and is not sufficiently effective for GC modeling). 
Combining the channel attention, as is done in DANet (31) 
and global second-order pooling convolutional network 
(GSoP-Net) (35), can be expected to improve the LDCT 
image denoising performance, and in our future work, we 
intend to investigate this possibility further. More recently, 
vision transformer (36), a full self-attention mechanism, 
originally designed for natural language processing  
(NLP) (37), has shown the state-of-the-art performance in 
several vision problems, including image classification (36), 
object detection (38), and image restoration (39). In future 
work, we aim to combine the proposed LSRED network 
framework with the vision transformer modeling scheme so 
as to better capture global interactions between contexts. 
Further improvement in noise suppression and fine 
structure preservation for LDCT images is expected.

Table 4 Quantitative results for the relevant metrics of the test 
dataset

Methods C1 C2 C3 (ours)

RMSE 9.11 9.09 9.02†

PSNR 33.08 33.12 33.17†

SSIM 0.918 0.921 0.925†

†, the best results. RMSE, root-mean-square error; PSNR, peak 
signal-to-noise ratio; SSIM, structural similarity index.
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Figure 16 Processing results of 1 slice of the real 100 kVp/24 mAs scan. (A) LDCT; (B) NDCT; (C) RED-CNN; (D) CPCE; (E) WGAN; 
(F) NLnet; (G) AGC-LSRED. The display window is −160,240 HU. The red rectangle shows in Figure 17. LDCT, low-dose computed 
tomography; NDCT, normal-dose computed tomography; RED-CNN, residual encoder-decoder convolutional neural network; CPCE, 
conveying path-based convolutional encoder-decoder; WGAN, Wasserstein general adversarial network; NLnet, nonlocal network; AGC-
LSRED, adaptive global context-based long-short residual encoder-decoder; mAs, milliampere-seconds; HU, Hounsfield units.

Figure 17 Zoomed images of a selected region outlined by the red rectangle in Figure 16A. (A) LDCT; (B) NDCT; (C) RED-CNN; (D) 
CPCE; (E) WGAN; (F) NLnet; (G) AGC-LSRED. The display window is −160,240 HU. LDCT, low-dose computed tomography; NDCT, 
normal-dose computed tomography; RED-CNN, residual encoder-decoder convolutional neural network; CPCE, conveying path-based 
convolutional encoder-decoder; WGAN, Wasserstein general adversarial network; NLnet, nonlocal network; AGC-LSRED, adaptive global 
context-based long-short residual encoder-decoder; HU, Hounsfield units.

Conclusions

We propose AGC-LSRED network to improve the 
performance of the structure-preserving LDCT image 
noise reduction task. The backbone of the proposed AGC-
LSRED network is an encoder-decoder structure with 
long skip connections. For each layer, we use the stack of 

residual AGC-attention blocks with short skip connection 
as the feature extractor. The proposed denoising model 
can benefit the information flow of the structural semantic 
information from shallow layers to deep layers in a coarse 
level and a fine level, respectively, thus helping the recovery 
of the underlying subtle details and textures for CT images.
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To train the proposed AGC-LSRED network, we 
propose a compound loss that combines the L1 loss, 
adversarial loss, and perceptual loss for better preserving 
the fine structures of the denoised results. Compared with 
conventional perceptual loss, the proposed self-supervised 
multiscale perceptual loss provides the generator with the 
ability to compare the denoised result against the ground-
truth image in terms of both low-level semantic features 
and high-level semantic features, thus leading to a better 
performance in preserving of both major and subtle 
structures.

LDCT data from the AAPM-Mayo clinical dataset and 
real clinical CT colonography studies were used to evaluate 
the proposed AGC-LSRED denoising method. The results 
indicate that the proposed method is superior for both noise 
suppression and fine structure preservation compared with 
the other competitive CNN-based methods.
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