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Functional annotation of noncoding mutations in cancer
Husen M Umer1,2,* , Karolina Smolinska1,* , Jan Komorowski1,3,4,5 , Claes Wadelius6

In a cancer genome, the noncoding sequence contains the vast
majority of somatic mutations. While very few are expected to be
cancer drivers, those affecting regulatory elements have the
potential to have downstream effects on gene regulation that
may contribute to cancer progression. To prioritize regulatory
mutations, we screened somatic mutations in the Pan-Cancer
Analysis of Whole Genomes cohort of 2,515 cancer genomes on
individual bases to assess their potential regulatory roles in their
respective cancer types. We found a highly significant enrichment
of regulatory mutations associated with the deamination signature
overlapping a CpG site in the CCAAT/Enhancer Binding Protein β
recognition sites in many cancer types. Overall, 5,749 mutated
regulatory elements were identified in 1,844 tumor samples from
39 cohorts containing 11,962 candidate regulatory mutations. Our
analysis indicated 20 or more regulatory mutations in 5.5% of the
samples, and an overall average of six per tumor. Several recurrent
elements were identified, and major cancer-related pathways were
significantly enriched for genes nearby the mutated regulatory
elements. Our results provide a detailed view of the role of reg-
ulatory elements in cancer genomes.
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Introduction

Whole genome sequencing (WGS) has been applied to investigate
the molecular causes of cancer in several tumor types, but analysis
has mainly focused on the protein-coding regions (Lawrence et al,
2013). However, because the majority of cancer genomic alterations
are located in the noncoding regions, several recent studies have
conducted detailed investigations on the impact of noncoding
mutations in cancer (Hess et al, 2019; Liu et al, 2019; Kumar et al,
2020; Zhu et al, 2020). The impact of noncoding mutations has
mainly been signified by recent discoveries of driver mutations in
the TERT promoter, enhancers of PAX5 and TAL and other regulatory
elements (Huang et al, 2013; Fredriksson et al, 2014; Mansour et al,
2014; Weinhold et al, 2014; Katainen et al, 2015; Melton et al, 2015;

Nik-Zainal et al, 2016; Rheinbay et al, 2017). Recent efforts from the
Pan-Cancer Analysis of Whole Genomes (PCAWG) project provided
further evidence on the importance of noncoding mutations by
identifying driver mutations in several noncoding regions including
the 59 region of TP53 and 39 untranslated regions of NFKBIZ and
TOB1 (Rheinbay et al, 2020). However, the large size of the non-
coding genome in combination with sparse distribution of muta-
tions in the genome has made it difficult to identify regulatory
mutations in particular those that might not be highly recurrent
(Sur & Taipale, 2016). To overcome this issue, two approaches are
followed: (i) mutational burden tests (Lawrence et al, 2014; Lanzós
et al, 2017; Zhu et al, 2020) that have limited power because they
require large number of samples and (ii) functional tests (Fu et al,
2014; Lochovsky et al, 2015; Mularoni et al, 2016) investigating
regulatory elements that are limited by the availability of biological
experiments and tissue specificity of regulatory elements. As a
result, the role of noncoding mutations has been underestimated
since many of the previous statistical analyses have considered
mutation recurrence or an insufficient set of functional elements
(Weinhold et al, 2014; Rheinbay et al, 2017).

In addition, the complexity of the regulatory circuitry has
hampered pinpointing functions of the noncoding mutations (Fu
et al, 2014; Lochovsky et al, 2015; Mularoni et al, 2016). Also, cell type
specificity of regulatory elements indicates that the same muta-
tions may be functional only in certain cancer types depending on
functionality of the regulatory elements. Recent large-scale efforts
of the Encyclopedia of DNA Elements (ENCODE) and the Roadmap
Epigenomics projects have provided functional annotations for
identifying cell type–specific regulatory elements (ENCODE Project
Consortium, 2012; Roadmap Epigenomics Consortium et al, 2015).
Integrating these resources with cancer genomes provided in the
PCAWG project (ICGC/TCGA Pan-Cancer Analysis Genomes Con-
sortium, 2020) presents an opportunity to characterize the non-
coding variants of individual tumor types.

We have used a unique approach to identify mutations that
affect transcription factor (TF) motifs in tissues that are relevant to
the tumor type. Our research design is motivated by the immediate
impact of TFs on gene regulation. To this end, we used cell type–
specific annotations to perform a comprehensive analysis of somatic

1Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden 2Department of Oncology-Pathology, Karolinska Institutet,
Stockholm, Sweden 3Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland 4Swedish Collegium for Advanced Study, Uppsala, Sweden
5Washington National Primate Research Center, Seattle, WA, USA 6Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University,
Uppsala, Sweden

Correspondence: claes.wadelius@igp.uu.se
*Husen M Umer and Karolina Smolinska contributed equally to this work

© 2021 Umer et al. https://doi.org/10.26508/lsa.201900523 vol 4 | no 9 | e201900523 1 of 14

http://crossmark.crossref.org/dialog/?doi=10.26508/lsa.201900523&domain=pdf
https://orcid.org/0000-0003-3971-2462
https://orcid.org/0000-0003-3971-2462
https://orcid.org/0000-0003-0907-5298
https://orcid.org/0000-0003-0907-5298
https://orcid.org/0000-0003-0907-5298
https://orcid.org/0000-0003-0907-5298
https://orcid.org/0000-0002-2033-7829
https://orcid.org/0000-0002-2033-7829
https://doi.org/10.26508/lsa.201900523
mailto:claes.wadelius@igp.uu.se
https://doi.org/10.26508/lsa.201900523


mutations in the PCAWG project and found many mutations in reg-
ulatory elements that are candidates to be functional.

Results

Functional annotations to prioritize noncoding mutations

We obtained high-quality somatic mutations from 2,515 tumor
samples in 37 cancer types from the PCAWG project (See the Ma-
terials and Methods section and Fig S1). The vast majority of the
mutations were located in the noncoding genome of which a fraction
is expected to be functional. We reasoned that only mutations with
regulatory functions in relevant cells and motifs should be consid-
ered. 85.8% of the mutations overlapped ENCODE DNaseI hyper-
sensitive sites (DHSs) or TF binding sites (TFBSs) irrespective of cell
type specificity (n = 105 cell lines) whereas only 3.7% of the mutations
overlapped DHSs or TFBSs from cell lines matching the cancer types
(Fig 1A). Nearly four million mutations overlapped TF motifs (Fig S2).
However, only about 1.8% of them overlappedmatching TF peaks and
another 5.7% were marked by DHSs in matching cell lines (Fig 1B and
D), whereas inactive chromatin states had a high load of somatic
mutations (Fig 1C).

To quantify the importance of the chromatin signals, we applied
a logistic regression model to assign a weight to each annotation
(Fig S3). The model was trained on TF motifs within functional
regulatory regions detected in massively parallel reporter assays
(Ernst et al, 2016; Tewhey et al, 2016; Vockley et al, 2016; Umer et al,
2019 Preprint) (see the Materials and Methods section). Interest-
ingly, matching TFBSs and DHSs from relevant cell lines had 90%
and 79% positive predictive power in identifying functional motifs,
respectively. Thus, a regulatory score was computed for each
mutated motif using the funMotifs framework (Umer et al, 2019
Preprint). Also, we re-annotated the entire set of TF motifs using
simulated mutations from 103 randomized sets to enable statistical
evaluation of the regulatory scores.

We performed cohort-specific analysis to identify regulatory
mutations in 44 cohorts (Rheinbay et al, 2020) (Fig 1D). The cohort
set included a Pan-CCancer cohort combining all tumors except
lymphoma and melanoma (ATELM). The statistical analyses to
identify regulatory mutations and mutated regulatory elements
were conducted on each cohort separately (Fig S3). Because
multiple neighboring mutated motifs may affect the same regu-
latory element, we defined mutated elements by merging mutated
motifs within 200 bp (see the Materials and Methods section). To
account for local hypermutated regions, we assessed the signifi-
cance of the regulatory score of each element by comparing it to a
local background distribution of simulated elements within a 50 kb
window and only those with empirical P-value < 0.05 were retained
(Table S1 and Fig S4). However, because of the lack of a well-
designed simulated mutation dataset that recapitulates mutation
occurrence in various cancer types, we enforced additional con-
ditions on the significant elements. To this end, the mutation
significance level of each element was evaluated using Active-
DriverWGS and those with false discovery rate (FDR) < 0.05 were kept
(see the Materials and Methods section) (Zhu et al, 2020). To ensure

the regulatory role of the mutated elements, we also conditioned
the elements to contain at least one regulatory mutation. As
depicted in Fig 1E, mutations in the significant elements with high
impact on TF motifs and overlapping chromatin signals in a matching
tissue type were defined as regulatory mutations (see the Materials
and Methods section). Moreover, to avoid removing mutations due
to the lack of motif predictions for TFs or the lack of ChIP-seq
experiments in the designated cell lines, we extended the mutated
elements to be of a typical regulatory element size (200 bp) and
additional mutations that were located in the regulatory elements
were retained. The element size was based on the observation that
most TFs in the same regulatory element bind within 200 bp
(Diamanti et al, 2016). The final set of recurrent regulatory elements
was conditioned to be mutated in at least three samples. These
analyses provided the set of significant mutated elements that
have potential regulatory roles per cohort. Across the 44 cohorts
98,302 regulatory mutations were identified (Table S2). Initially,
FOXP1, IRF1, and ZNF263 each had more than one million predicted
motifs and therefore they were most enriched for mutations in
comparison to other TFs. However, after conditioning on the functional
annotations defined here only a small fraction of the mutated motifs
remained (Fig S5).

Mutational signatures in TFBSs

To characterize the mutational processes underlying mutations in
TFBSs (Alexandrov et al, 2013, 2020), we examined differences in
the mutational context of regulatory mutations identified above
and the remainingmutations per cancer type (see theMaterials and
Methods section). Overall, 46 single-base substitution (SBS) and
double-base substitution (DBS) signatures had a significantly
different contribution in at least one cancer type (Kolmogorov–
Smirnov two-sided test, P-value < 0.05, Fig 2). Interestingly, en-
richment of SBS1, SBS30, and SBS39 was higher for regulatory
mutations, whereas enrichment of SBS8, SB12, and SBS36 was lower
in at least 15 cancer types. These signatures have previously been
reported as the most common signatures across the tumors in
PCAWG (Alexandrov et al, 2020). Notably, APOBEC associated sig-
natures (SBS2, SBS13, and SBS69) were significantly less enriched
for regulatory mutations in many cancer types (Rheinbay et al,
2020). We also measured the cosine similarity between trinucle-
otide context profiles of the regulatory mutations and COSMIC SBS
signatures v3 (see the Materials and Methods section) (Tate et al,
2019). The cosine similarity levels were low for most of the SBS
signatures (mean cosine similarity = 0.26, standard deviation = 0.17).
The differences in the signatures associated with regulatory mu-
tations and other mutations may suggest that different processes
are involved in creating mutations in TFBSs (Fig 2).

Moreover, in skin melanomas, regulatory mutations had a sig-
nificantly lower contribution from UV-light associated signatures:
SBS7a, SBS7c, SBS38, SBS65, SBS67, SBS75, and DBS13 (Rheinbay
et al, 2020). Furthermore, the cosine similarity between the context
of regulatory mutations in skin melanomas and the COSMIC sig-
natures was below 0.42 for all SBS signatures (median value = 0.06,
Fig 2) except SBS7a and SBS7b that are associated to UV-light (Fig S6,
see the Materials and Methods section).
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Mutational patterns in TFBSs

Next, we asked whether regulatory mutations target motifs of any
specific TF (Fig 3A). In agreement with previous studies, we found
CTCF as the most mutated TF in most of the cohorts. Its motifs were
mostly mutated in digestive tract tumors (3,784 CTCF mutated

motifs, P-value = 0.0097), esophagus cancers (1,154, P-value = 0.0097),
liver-HCC (1,570,P-value = 0.0097), and skinmelanomas (1,016, P-value =
0.0097, Fig 3B) (Katainen et al, 2015; Sabarinathan et al, 2016; Umer
et al, 2016). In the ATELM cohort, 5,968 CTCF motifs were mutated
(P-value = 0.0097); 25.5% and 18.3% of those were in liver-HCC and in
esophagus cancers, respectively. Interestingly, the mutational profile

Figure 1. Mutation rates and selection of regulatory candidates.
(A) Somatic mutations overlapping transcription factor binding sites (TFBSs) or DNaseI hypersensitive sites (DHSs) from cell lines matching the corresponding cancer
types (3.7%) and other cell lines (82.1%). “None” denotes mutations that do not overlap any TFBS or DHS. (B) Overlap of somatic mutations in TF motifs with TFBSs or DHSs
from cell lines matching the corresponding cancer types. “None” denotes mutations that do not overlap any TFBS or DHS from the respective cell lines. (C) Enrichment of
mutations per chromatin state in 1 Mb windows across the genome. The average per window is taken as the total number of mutations divided by the total number of
samples (2,515). The 15-model chromatin states are collapsed by representing Tx, TxFlnk, TxWk as Tx; TssA, TssAFlnk, TssBiv, and BivFlnk as Tss; Enh, EnhG, and EnhBiv as
Enh; ReprPC and ReprPCWk as Repr; Quies, ZNF/Rpts, and Het as Quies. (D) Rate of somatic mutations per chromosome. The rate is calculated as the total number of
mutations in 50 kb windows divided by the total number of samples (2,515). The colors exhibit mutations that (i) overlap TF motifs and matching TFBSs or DHSs from
respective cell lines (red), (ii) overlapmotifs but no DHS/TFBS is found from the respective cell line (green), (iii) overlap DHSs/TFBSs from respective cell lines but have no
overlap with TFmotifs (blue), (iv) have no overlap with TFmotifs or TFBSs/DHSs from the respective cell lines (gray). The labeled bars represent the hyper-mutated loci that
on average contain more than one mutation per 50 kb. (E) Strategy applied to detect regulatory mutations. The red box represents TF motifs, the red peak represents
binding site of a TF matching the motif, the black peak represents binding site of a TF not matching the motif, and the green peaks represent DHSs. The star indicates the
mutation located in a significant regulatory element.
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of regulatory mutations in CTCF motif showed an overrepresentation
of SBS17b signature in esophagus, lymph-NOS, colorectal, and
stomach cancers (Fig S7). Also, the cosine similarity between the
profile context of the CTCF regulatorymutations in these cancer types
and SBS17b was between 0.6 and 0.72. The etiology of the SBS17b
signature is unknown, nevertheless the association of the oxidative
damage of DNA and SBS17b in gastrointestinal cancers has been
reported previously (Kauppi et al, 2016; Tomkova et al, 2018).
Sabarinathan et al (2016) have attributed mutations at active motifs
of CTCF and other TFs in melanomas to impairment of the DNA repair
machinery. However, even though CTCF bindings in GM12878 are
almost as abundant as in HepG2 (human liver carcinoma cells) and
keratinocytes, themutation rate in CTCFmotifs wasmuch lower in the
lymphomas compared to liver cancers and melanomas. Notably,
signatures SBS7a and SBS7b that are characteristic for the UV-light
exposure were enriched for CTCF mutations in melanomas (Fig S7)
and had the highest cosine similarity (SBS7a: 0.50 and SBS7b: 0.82)
among the other UV-light signatures. Finally, in lung cancers (Lung-
AdenoCA and Lung-SCC) SBS4 signature, which is associated to

tobacco smoking, had the highest contribution (Letouzé et al, 2017).
Overall, different spectra of mutational signatures were observed at
CTCF motifs in different cancer types.

Interestingly, position 9 of the CTCFmotif was frequentlymutated
(Fig 3F), particularly in liver, esophagus and stomach, which is in
agreement with our previous findings (Umer et al, 2016). The mu-
tational profile of regulatory mutations identified at position 9
clearly indicated the elevation of C[T>G]N mutations, which is
characteristic for the SBS17b signature (cosine similarity = 0.47, Fig
S8). In contrast, positions 13 and 14 of the CTCF motif were sig-
nificantly mutated in melanomas, indicating different mutational
signatures associations at CTCF motifs in gastrointestinal cancers
and melanomas.

Furthermore, motifs of CCAAT/Enhancer Binding Protein β
(CEBPB) were found to have a significant number of mutations in
many cohorts (Fig 3B). In the ATELM cohort, 1,436 CEBPB motifs were
mutated (P-value = 0.0097; fold-enrichment = 1.7 over the back-
ground enrichment), which was higher than the other significantly
mutated TF motifs, that is, CEBPBG (654 motifs), CEBPD (336), ZBTB33

Figure 2. Comparison of mutational signature distribution between regulatory mutations and all mutations across 37 cancer types.
The orientation of triangles shows a direction of the signature contribution change from mutations to regulatory mutations in the same cancer type. The color of
squares indicates the significance of contribution change evaluated using a Kolmogorov–Smirnov two-sided test. The plot presents a fraction of significantly different
signatures (P-value < 0.05) in at least one cancer type.
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(409), CEBPE (323), and SPI1 (866), See Fig 3C. Furthermore, 17.1% of
the motifs were mutated in two or more samples. CEBPB has been
shown to regulate survival, apoptosis and senescence (Zhu et al,
2002; Sterneck et al, 2006; Kurzejamska et al, 2014; Barakat et al, 2015;
Tamura et al, 2015) and increased mutation rate in its motif has
been reported (Melton et al, 2015; Vorontsov et al, 2016). Elevation in
expression of CEBPB has been linked with progression of glio-
blastoma, lymphoma, and breast cancer (van de Vijver et al, 2002;
Jundt et al, 2005; Homma et al, 2006; Piva et al, 2006).

Notably, positions five and six that define a 59—C—phosphate—G—39
(CpG) site within the CEBPB motif were most significantly mutated motif
positions of all TFs excluding CTCF in the ATELM cohort (Fig 3D). As
expected, the majority of the mutations at position five and six of the
motif were C>T (94.2%) and G>A (88.4%), respectively (Fig 3E). C>T mu-
tations are characteristic of the SBS1 signature. Thus, the mutational
profile of CEBPBmotifs at position five and six could clearly be explained
by the SBS1 signature with a cosine similarity of 0.8 compared to 0.52 for
the remaining mutations (Figs S9 and S10).

Because SBS1 is characterized by deamination of 5-methyl-
cytosine to thymine in double stranded DNA that mainly causes C to

T transitions in CpG contexts, we investigated the methylation
pattern within CEBPB motifs. Analysis of methylation data from
the same tumors indicated a significantly lower mutation rate at
methylated cytosine-guanine (CG) dinucleotides within CEBPB
motifs in comparison to neighboring methylated CG dinucleotides
(Fisher’s exact test, P-value = 0.012, odds ratio = 3.83, see the
Materials and Methods section). Finally, we observed that the active
motifs of CEBPB are significantly less methylated genome-wide
than inactive motifs and still there is an abundance of mutations at
position 5 (Mann–Whitney test, P-value < 0.01, see the Materials and
Methods section). Sayeed et al (2015) have performed EMSA ex-
periments showing subtle effects of methylation in the CG site on
CEBPB binding. Notably, they found that 5-methylcytosine at the CG
site enhances binding of CEBPB. Enhanced binding of CEBPB with
C>T mutations at base 5 of the motif was recently confirmed by
Ershova et al (2020) Preprint.

Besides SBS1, the most common mutational signature in regu-
latory mutations at CEBPB motifs across most cancer types was
SBS5, which is characterized by enrichment of T>C and C>T mu-
tations. The etiology of SBS5 is unknown; however, SBS1 and SBS5

Figure 3. CCAAT/enhancer binding protein β and CTCF are the most affected TFs genome-wide.
(A) Strategy applied to align mutated motifs for computing mutational load per TF. The star indicates a significant score over the background mutational load. (B) Heat
map showing enrichment of mutations in motifs per TF over the background enrichment estimated from 103 simulated sets. The color range is based on robust quantiles
centered on 1. (C) Cumulative enrichment of mutations in motifs per TF. Labels indicate TFs with enrichment over the background higher than 1.6 and P-value < 0.01. Labels
were merged based on the decreasing enrichment value. (D) Cumulative enrichment of mutations per motif position per TF. Labels indicate TFs with enrichment over
the background higher than 2 and P-value < 0.01. (E, F) Enrichment of mutations in CCAAT/enhancer binding protein βmotif and (F) in CTCF motif. The upper panel shows
the motif logo, and the red line shows enrichment that was observed in the simulated sets.
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signatures are highly age-correlated (Alexandrov et al, 2020). The
cosine similarity between the mutational profile of CEBPB motifs
and the SBS5 signature was noticeably higher for the mutations
outside positions 5 and 6 (cosine similarity = 0.64) thanmutations at
positions 5 and 6 of the CEBPB motif (cosine similarity = 0.11, Figs S9
and S10). The lower enrichment of SBSB5 signature and lower
methylation level at position 5 and 6 of the CEBPB motif may indicate
other mechanisms than clock-wise mutational processes. Finally, by
analyzing RNA-seq frommatching samples, we found that expression
of genes in the proximity of CEPB motifs (2 kb) was significantly
dysregulated in the mutated samples (Wilcoxon signed-rank test,
P-value < 0.05, see the Materials and Methods section).

Mutated regulatory elements in cancer

We investigated the significant regulatory elements to identify re-
current events in cancer. To this end, we merged overlapping sig-
nificant elements identified across the cohorts excluding lymphoma
and melanoma cohorts. The elements that were mutated in at least
three samples were retained to obtain the final list of recurrent
elements. Across the 39 cohorts, 5,749 recurrent regulatory elements
were detected (Table S3). The elements contained 178,978 mutations
of which 11,962 were regulatory mutations that overlapped 28,292
potentially functional motifs. Our results showed an average of six
regulatory mutations per tumor sample. Also, 5.5% percent of the
samples had 20 or more regulatory mutations whereas 66.2% had six
or fewer (Fig S11). The majority of the elements were either intergenic
or intronic; 60.7% and 27.6%, respectively, whereas 6.9% were in
promoters, and the remaining 4.8% were located in UTRs.

Overall, 16.7% and 10.6% of the regulatory mutations were
enriched in transcription start site (TSS) and enhancer chromatin
states, respectively. Notably, 62.1% of the tumor samples had regulatory
mutations in TSS regions.

At TSSs, motifs of SP2, EGR1, and SP1 were most frequently
mutated; 5.7%, 12.9% and 11.9% of the tumors, respectively (Fig S12).
EGR1 is a direct regulator of many tumor suppressor genes (Baron
et al, 2006), also SP TF family members (SP1 and SP2) are involved in
gene regulation in tumors (Archer, 2011). SP1 is a TF that can ac-
tivate, and repress transcription, and is involved in many cellular
processes including cell growth, apoptosis, and response to DNA
damage. In contrast, quiescent regions had the highest regulatory
mutation enrichment in CTCF, ZNF263, CEBPD, and CEBPB motifs;
31.6%, 22.1%, 20.9%, and 20.6% of the tumors, respectively (Fig S12).

As it has previously been reported, the well-known TERT promoter
was themostmutated element (Fig 4) (Fredriksson et al, 2014; Rheinbay
et al, 2020). It also had the highest functionality score (P-value = 1.3 ×
10−16) and was mutated in 35 tumor samples. C>T mutations over-
lapped position 11 in 16 EGR1 motifs. EGR1 has been shown to down-
regulate TERT expression and it has been suggested as a tumor
suppressor (Mittelbronn et al, 2009). Creation of a de novo ETSmotif at
the EGR1 motif locus has been shown to up-regulate TERT expression
(Pagel et al, 2012). Although the TERT promoter is reported as the most
recurrent element in our analysis, creation of the de novo ETS motif is
not reported because our analysis is based on pre-annotated motifs.
Therefore, additional candidatemutations creating de novomotifs will
identify further candidate elements.

Moreover, among the most recurrent elements, there were five
intergenic elements mutated in more than 18 samples (Table S3).
Recurrent elements were also found in introns of CSF2RA (n = 17
samples), GALNTL6 (17), CRISP1 (15), FGF12 (14), ZNF93 (14), DCLK1 (13),
CADM2 (13), GABRB3 (12), C3orf55 (12), IL1RAPL1 (12), and CLNK (11) (Fig 4).
CSF2RA and FGF12 are part of the Kyoto Encyclopedia of Genes and
Genomes (KEGG) cancer pathway. CSF2RA encodes for CD116 which is a
key cytokine associated to proliferation, survival, and differentiation of
myeloid cells and its deficiency has been shown to enhance t(8;21)
leukemia (Hansen et al, 2008; Matsuura et al, 2012).

Figure 4. Significantly functional mutated regulatory
elements.
The dots denote mutated elements detected in all
cohorts excluding the melanoma, lymphoma cohorts.
The colors represent feature types. The marker sizes
represent the number of samples that have regulatory
mutations in the element. Gene labels are given for
elements that are mutated in more than 10 samples.
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Previous analyses of regulatory elements have reported the 59 UTR
of WDR74 as a significantly mutated element (Weinhold et al, 2014).
However, in our analysis despite a high number of somatic mutations
that resided in the element (n = 31 mutations), only two of them were
identified as regulatory mutations (P-value = 0.01). Also, the muta-
tions in the element were scattered across motifs of multiple TFs.
Therefore, most of the mutations in this element have no effect on
regulation of WDR74. Notably, Weinhold et al (2014) did not find
altered transcription levels of WDR74 in mutated tumor samples, and
Rheinbay et al (2020) filtered out the elements associated to WDR74
owing to mapping issues. These results show that functional an-
notations are needed to overcome the limits of mutational burden
tests because not all mutations in a regulatory element are func-
tional. This also indicates that our method is complementary to
previous methods for finding coding and noncoding candidates.

We also found multiple genes with several recurrent mutated
elements in various gene regions, mostly in introns. For instance,

Suppressor Of Cytokine Signalling 1 (SOCS1) had a recurrent ele-
ment in its proximal promoter in prostate, colorectal and pan-
creatic cancer samples (FDR < 0.00225, Fig 5A). It also had recurrent
elements in 59 UTR and the first intron in 9 lymphoma samples (Fig
S13). SOCS1 is a known oncogene in many cancer types including
lymphoma (Beaurivage et al, 2016; Chevrier et al, 2017; Khan et al,
2020; Liu et al, 2003). Interestingly, the intergenic region nearby
TRIB2 was highly enriched for mutated elements (three elements
with FDR < 0.0014), and its expression was significantly increased in
the mutant bladder cancer samples compared to the samples that
lacked mutations in the associated elements excluding samples
that had copy number variants (CNVs) at the loci (Fig 5B, see the
Materials and Methods section). Expression of TRIB2 is increased in
melanoma, colon and pancreatic cancer which leads to impaired
therapeutic response and poor clinical outcome (Hill et al, 2017).
Furthermore, MED10 had multiple hotspots in its promoter, and
an associated intergenic region (FDR < 0.022). The elements were

Figure 5. Differential expression of genes associated to highly recurrent mutated elements.
(A) The three highly mutated elements are found in the 59UTR, intron and proximal-promoter of the SOCS1 oncogene. Only mutations found in potential regulatory
elements are shown. The dots in the upper panel represent mutations. The boxes in the middle panel represent gene exons. TF peaks from ChIP-seq data in GM12878 are
shown in the lower panel. (B, C, D) Box plots of expression levels (FPKM and upper quantile normalized) for (B) TRIB2 in bladder samples, (C) MED10 in bladder samples and
(D) DSC3 in lung samples with and without mutations in their associated elements. The central line is the median, the box boundaries are the 25th and 75th quartiles
and the individual samples are indicated with dots. The P-values were calculated using a permutation-based t test approach excluding samples that had significant copy
number variants at the loci (see the Materials and Methods section).
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mostly found in kidney, pancreas, lung, head, esophagus and bladder
cancers. MED10 was significantly up-regulated in bladder mutant
samples (P-value = 0.02, Fig 5C). Increased expression of MED10 is
associated with poor outcome in liver, renal cancer and glioma (MED10
prognostics from https://www.proteinatlas.org/ENSG00000133398-MED10,
Uhlén et al, 2015). Finally, DSC3 also had multiple recurrent elements
and it was up-regulated in the mutant samples from lung cancer
(P-value = 0.01, Fig 5D).

To avoid bias from hyper-mutated elements and samples, we
investigated the lymphoma andmelanoma cohorts separately from
the other 39 cohorts. In the lymphatic system cohorts, only 23
regulatory elements were identified and five of the elements
overlapped mutated elements from the non-lymphatic system
cohorts (Table S4 and Fig S13). The Immunoglobulin Heavy (IGH)
locus was the most mutated element (Fig S13). There were three
highly recurrent mutated elements overlapping multiple IGH
segments including IGHJ6, IGHG3, IGHG1, and IGHM that were mu-
tated in 97 Lymph-BNHLs, 44 Lymph-CLLs, and 2 Lymph-NOS. In-
terestingly, Bach1::Mafk and TCF12 motif were most enriched for
mutations at this hotspot and were mutated in 46 and 44 samples,
respectively. However, because of the high mutation rates in the
immunoglobin loci, special care needs to be taken for further
consideration of these elements. Also, in the melanoma cohort, we
identified 151 mutated elements, and 36.6% of them overlapped
mutated elements from the other cohorts (Table S5 and Fig S14).

Enrichment of cancer genes and pathways in mutated regulatory
elements

We sought to investigate the effects of the recurrent elements
identified across the 39 cohorts in which the lymphoma and
melanoma samples were excluded (Table S3). Overall, we identified
362 genes that were enriched for mutations in 10 or more samples
by combining genes within 2 kb upstream/downstream of the
mutated elements. The closest gene was considered when genes
were not present in the 2 kb proximity from the mutated elements
(see the Materials and Methods section, Table S6). The list

comprised genes with established roles in cancer such as CTNNA2
(n = 54 samples), TERT (38), CTNNA3 (37), LRP1B (33), PTPRT (33),
CDH11 (28), FGF12 (24), DCC (21), FGF13 (21), and RUNX1T1 (21). Our
analysis also indicated other genes that had high enrichment for
mutations (more than65 samples) in theirmutated elements including
BRINP3, CNTNAP2, CDH9, CSMD3, BAI3, KLHL1, NOVA1, LINC000273,
GALNTL6, and SLITRK5. We further investigated overrepresentation of
pathways for the genes in which their associated regulatory elements
were mutated in at least three samples. Interestingly, the major KEGG
Cancer Pathways (KEGG ID: hsa05200) was significantly enriched and it
was most mutated (FDR = 6.0 × 10−5, n = 462 tumors, hypergeometric
test). PI3K-Akt, Rap1, and cAMP signaling pathways were among the top
mutated ones with significant FDRs < 0.0015 (Table S7). The most
enriched pathways (FDR < 0.05) that weremutated inmore than 10% of
the samples are shown in Fig 6.

Discussion

We focused here on the potential functional mutations for eval-
uating mutational burden in TF motifs and for identifying can-
didate functional elements in cancer. Overall, we processed more
than 25 million observed mutations, 2.6 billion simulated mu-
tations and millions of functional annotation tracks. Our study is
the largest analysis of noncoding mutations in TF motifs to date. A
rigorous annotation pipeline was applied to identify functional
TF motifs in cell types matching the corresponding cancer.
The cancer type–specific annotations led to the identification of
regulatory mutations that had a significant impact on TF motifs.
Mutational signature analysis indicated different mutational
processes underlying regulatory mutations in comparison to other
mutations. Interestingly, APOBEC-associated signatures that are
enriched across cancer types were significantly lower enriched for
regulatory mutations in a combined cancer type cohort. Also,
regulatory mutations in melanoma samples had significantly lower
contributions to many of the UV-light signatures that are usually
observed in melanoma.

Figure 6. Most enriched pathways.
The percentage of samples that aremutated per pathway are shown next to the pathway labels. The colors represent cancer types of themutated samples. Cancer types
that had <10 samples mutated are shown as Others. Samples that had regulatory mutations in a gene associated to the respective pathway are indicated with a bar line
and those that had a mutation in the identified mutated elements but lacked direct-functionality evidence are shown as dots.
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Two approaches were applied to identify recurrent events that
may point to positive selection in cancer. The first approach was to
identify recurrent mutation patterns by accounting for the sparse
distribution of noncoding mutations. In addition to CTCF, we iden-
tified mutations in motifs of CEBPB across many cancer types and, in
particular, mutations affecting the CpG site of the motif that were
attributable to the SBS1 signature. It has been shown that methyl-
ation improves binding of the CEBP family so mutating the CpG may
affect binding by both changing the motif and preventing DNA
methylation (Vinson & Chatterjee, 2012; Sayeed et al, 2015; Yin et al,
2017). CEBP proteins have also been found to be critical for activation
of tissue specific promoters in many tissues (Buck et al, 2001; Rishi
et al, 2010). Therefore, mutations at these sites are highly suggestive
of potential effects on the target genes. Most of the enriched cancer
types had a similar mutation rates in CEBPB motifs whereas CTCF
motifs were highly mutated particularly in gastrointestinal cancers
and melanomas, whereas lymphoma cohorts were not enriched for
recurrent patterns.

Our second approach was to identify functional regulatory el-
ements that were recurrently mutated. Performing meta-cohort
analysis by integrating multiple cancer types was key to identify
highly mutated elements across the cancer types. We observed a
significant enrichment of cancer-associated genes near the
identified recurrent elements indicating that cancer genes lacking
coding mutations may be differentially expressed because of
mutations in their regulatory elements. Furthermore, many cancer
pathways were significantly enriched for genes that were associ-
ated to the mutated regulatory elements. These findings suggest a
role of noncoding mutations in cancer, especially when looking for
functional mutations and not only drivers.

We expect a higher number of candidate functional mutations to
be eventually found since we have only included established TF
motifs in our analysis. Therefore, future analysis investigating de
novo motifs will identify further candidate mutations that enhance
binding of TFs. Also, discovery of further TF models and generating
new datasets for cell types or TFs that are not yet assayed will
improve identification of regulatory elements. Finally, the power to
detect regulatory mutations is smaller than for finding coding
mutations. The reason is that coding sequences mainly are the
same between cancer types whereas enhancer and other regula-
tory elements differ between cell types limiting the possibility to
find recurrent events. Therefore, larger studies are needed to find
all functional and recurrent elements that are mutated in cancer.

Materials and Methods

Somatic mutation collection

Single nucleotide variants (SNVs) and short insertions and dele-
tions <100 bp were retrieved from the catalog of somatic mutations
of 2,577 white-listed samples in the PCAWG project. Somatic mu-
tations that were concordantly detected by at least two of the four
mutation calling pipelines were kept. Samples with more than
100,000 somatic mutations were marked as hypermutated, thus
removed from the collection (n = 63). Multiple nearby SNVs from the

same samples were collapsed into dinucleotide (DNP), trinucleo-
tide (TNP), and oligonucleotide (ONP) polymorphisms.

Mutation simulation

Simulated sets (n = 100) were generated following the Sanger
simulation strategy (Rheinbay et al, 2020). Briefly, each mutation
was shuffled to a random position with an identical trinucleotide
context. To get a mutation rate similar to the observed dataset, the
random position was selected within a 50 kb window and 50 bp
away from the original mutation position. In addition, we also
included the three simulation sets generated in the driver paper
(Rheinbay et al, 2020).

Motif identification and annotation

We used the funMotifs framework to annotate TF motifs (Umer et al,
2019 Preprint). Briefly, TFBSs and DHSs in 105 cell lines and tissues
were gathered from www.encodeproject.org (accessed on 29 No-
vember 2016) (ENCODE Project Consortium, 2012). Position fre-
quency matrices were downloaded for 519 TFs from JASPAR 2016
(Mathelier et al, 2016). The ENCODE regions were merged and
scanned for significant k-mers (P-value < 1 × 10−4) using FIMO (Grant
et al, 2011). Only top significant motif instances (n = 85,459,976)
covering 14% of the genome were considered within each TF motif
set (Z-score > 1). The Z-score was based on the scores of all
identified motif instances of each TF, that is, instances with a score
one standard deviation above the mean (Umer et al, 2019 Preprint).

Next, genomic datasets were collected from various assays and
cell lines. For each tumor type, we gathered annotations from the
cell lines most similar to the respective tumor type (Table S8). In
cases where no data were available for any closely related cell line,
we imputed signals from the other available cell lines only when
the annotations were available in at least four cell lines. For cat-
egorical annotations, the most common label was assigned to fill
the missing value, whereas for numeric features the arithmetic
mean was taken from the tissues that had the annotations. The
annotations were TF binding assays and DHSs from ENCODE
(ENCODE Project Consortium, 2012), replication domains from Liu
et al (2016), TF expression from GTEx V6p (Carithers & Moore, 2015),
CAGE peaks from FANTOM (Andersson et al, 2014; FANTOM
Consortium and the RIKEN PMI and CLST (DGT), 2014), and chro-
matin states from RoadMap Epigenomics (Roadmap Epigenomics
Consortium et al, 2015) (Table S9).

Mutation scoring mechanism

TF motifs were annotated for each tumor type based on annota-
tions of cells most similar to the respective tumor type. Weights for
the annotation features were obtained from a logistic regression
model that was trained on functional elements from massively
parallel reporter assays in the funMotifs framework (Umer et al,
2019 Preprint). Only features with a positive log odds ratio were
used. TF motifs overlapping somatic mutations were scored based
on weights of the overlapping annotations in the corresponding
tumor type, and changes in the motif matching score (Umer et al,
2019 Preprint). The change in motif matching score was computed
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as the absolute value of the reference allele minus the mutant
allele in the corresponding Position frequency matrix (Fu et al, 2014).

Cohort specific analysis

To account for variable mutation rates across the cancer types, the
observed and the simulated somatic mutations were distributed
onto 44 cohorts (Table S10). 29 of the cohorts were tumor type
specific and the remaining ones included combinations of tumor
types. We discarded all mutated motifs of TFs not expressed in cell
lines respective to the cancer types. Next, regulatory elements and
mutations were identified from each cohort separately. The cohort
specific analysis allowed us to account for the high mutation rates
in melanomas as well as high mutation rates at the immuno-
globulin loci in lymphomas. Melanomas showed the highest vari-
ation across the tumor samples whereas lymphatic system tumors
had large number of mutations in the immunoglobulin loci.

Identification of mutated elements

In each cohort, mutated motifs within 200 bp were merged to form
mutated genomic elements and the mean of the motif scores was
assigned to the corresponding elements. To account for hyper-
mutated regions, the score of each element was compared to a
neighborhood background distribution of scores. For each element
an empirical P-value was calculated by comparing the regulatory
score of the mutated element to the scores of elements in the
simulated sets within a 50 kb window. The 50-kb window was used
because the simulated sets were generated by shuffling the ob-
servedmutations within the same distance. Finally, elements with a
P-value < 0.05 were selected to have significant regulatory scores.

We compared the distribution of the P-values to the theoretical
distribution to ensure the statistics are not inflated. The theoretical
distribution was obtained based on randomly selected simulated
elements from the same window as the observed element. The
score of the selected element was compared to the other simulated
elements in the window to compute a P-value. The resulting
P-values across the windows were collected to generate the final
background distribution and compute the quantile–quantile plots
shown in Fig S4.

In addition, we applied ActiveDriverWGS to evaluate the muta-
tion significance level of the elements that had significant regu-
latory score from the previous step (Zhu et al, 2020). The mutation
enrichment was estimated based on all annotated somatic mu-
tations. The background model was created using Poisson gen-
eralized linear regression based on the mutations presented in the
±50 kb window around the elements. For SNVs, the trinucleotide
composition was treated as cofactors. Importantly, ActiveDriverWGS
excludes potentially hypermutated samples with more than 30 mu-
tations per megabase. The significantly mutated elements (FDR < 0.05)
were retained except those that were in coding regions.

Following this strategy, mutated elements were obtained for all
the cohorts. The tumor meta-cohorts that contained samples from
all tumor types except lymphoma and melanoma samples enabled
discovery of mutated elements across all cancer types.

Mutations within the significantly mutated elements were de-
fined as regulatory mutations if they changed thematching score of

a functional TF motif within the element by more than 0.3 con-
trasting the background nucleotide frequency on a single position
which is 0.25 per nucleotide. Also, the regulatory mutations had to
overlap either a matching TF peak or DNase1 from a tissue cor-
responding to the same tumor type.

Thus, only significant elements that contained regulatory muta-
tions were retained and those without any regulatory mutation were
discarded evenwhen theyweremutated inmany samples. Finally, we
extended the significant elements to 200 bp and intersected them
with the entire set of mutations to retain any additional mutation
that was removed because of the lack of overlapping TF motifs.

Mutational signature analysis

Mutational signatures were provided by the PCAWG-7 group (Synapse:
syn11738306: SignatureAnalyzer_COMPOSITE.SBS_signature_probability.
context_sample_matrix.031918.txt and SignatureAnalyzer_DBS_signature_
probability.context_sample_matrix.042018.txt). Somatic mutations
observed in the PCAWG catalog were divided into three categories:
SBS and DBS. Next, signature contribution values were assigned to
mutations according to their category, sample identificatory and
mutation feature type. For SBS signatures, the feature type consists
of substitution and 1 of 96-trinucleotide contexts of the mutation,
which was obtained using a MutationalPatterns R package (Blokzijl
et al, 2018), whereas a DBS signature feature was a dinucleotide
substitution. The mutational signature analysis was performed for
each of the cancer type.

We compared the contribution of mutational signatures between
regulatory mutations and the remaining somatic mutations. The
direction of the signature contribution change was defined as the
difference of the average signature contribution of regulatory mu-
tations and the remaining somatic mutations. To evaluate the sig-
nificance of the signature contribution differences for each of the
cancer type, we performed a Kolmogorov–Smirnov two-sided test.

To measure the similarity between mutational profiles of regulatory
mutations and COSMIC signatures (mutational signatures version 3 re-
leased in May 2019), we used a cosine similarity score, which was es-
timated using a cos_sim_matrix() function from theMutationalPatterns R
package. The mutational profiles of regulatory mutations were a 96-
trinucleotide mutation count matrix, where each column represented a
cancer type and each row a trinucleotide context. To determinate the
similarity level of signature profiles of regulatory mutations and COSMIC
signatures, we used a threshold of 0.7 cosine similarity, which was also
used by Liu et al (2019). The cosine similarity analysis was reproduced for
regulatory mutations at CTCF and CEBPB motifs.

Finally, the mutational profiles of regulatory mutations at position
9 of CTCF and positions 5 and 6 of CEBPB were visualized using the
plot_96_profile() function from the MutationalPatterns R package.

Identification of TFs with a significant number of mutated motifs

To obtain the list of TFs that have a significant number of mutated
motifs in cancer, we compared the observed number of mutated
motifs of each TF to the number of mutated motifs of the same TF in
the simulated sets. This test was aimed to take into account the
number of motifs belonging to each TF, because TFs with a very
large number of motifs are expected to acquire more mutations but
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that may not result in a significant effect on the TF’s function in the
genome. The number of regulatory mutations in motifs of each TF
was counted both in the observed set as well as in the 103 sim-
ulated sets. Notably, for the observed mutation set, only motifs
enriched for regulatorymutations were considered, whereas for the
simulated set, similarly to the observed set, mutations were required a
change in themotifmatching scoreno <0.3 andpresenceof amatching
binding TF peak or DNaseI signal. In addition, in the simulated sets we
discarded mutations with a significantly low functionality score (one
standard deviation away from the mean of scores of the regulatory
mutations annotated to the same TFs in the observed set). An em-
pirical P-value was computed by comparing the frequency of regu-
latory mutation per TF in the observed set and the simulated sets.

Identification of significantly mutated TF motif positions

Thenumber ofmutations at thepositions of each TFmotif was counted
by aligning all significantly mutated motifs of the same TF across the
genome. An empirical P-value was computed by comparing the fre-
quency of regulatory mutations at each position of the TF motif with
the frequency of mutations at the same TF motif position in the
simulated sets. Only mutations with the functional evidence from the
simulated sets were considered, the functional impact was evaluated
as described above for significantly mutated TF motifs.

Next, we validated an association of accumulated muta-
tions within CEBPB motifs and presence of CG dinucleotides by
comparing a mutational rate of methylated CpGs within CEBPB
motifs and methylated CpGs next to CEBPB motifs. The Illumina
HumanMethylation450 BeadChip data were obtained from ICGA
Data Portal (accessed on 13 Aug 2020) for 778 patients from 21
cancer types. We kept CpGs that were methylated (β > 0.2) in at least
one patient. Based on the methylation data, we identified CpGs
within CEBPB motifs and CpGs that were the closest to CEBPB
motifs. Next, we checked the mutation status of CpGs by over-
lapping a CpG position with C>T mutations observed in the one of
the cancer types that has available methylation data. Also, we
required that CpG would be methylated and mutated in the same
patient. In addition, we required that mutation in CEBPB-related
CpGs would be annotated to CEBPB motifs. We used Fisher’s Exact
test to check if the mutation rate significantly differed between
CpGs inside and outside of CEBPB motif. We examined the meth-
ylation rate at position 5 of CEBPBmotifs in five cell lines (Table S11).
For each cell line, the active motifs were defined by overlapping
CEBPB motifs and ChIP-seq peaks. The inactive motifs were defined
as CEBPB motifs lacking ChIP-seq peaks from the corresponding
cell line. The methylation levels for position 5 of the motifs were
extracted from the ENCODE WGBS experiments. A Mann–Whitney
test was performed by comparing the methylation levels of active
and inactive motifs genome-wide for each cell line.

Finally, we evaluated the difference in the gene expression
between mutated and non-mutated CEBPB motifs. We identified all
genes located ±2 kb around mutated CEBPB motifs and divided
RNA-seq samples based on mutation status of the motif. For each
mutated sample, we randomly selected a sample that was not
mutated on the same position of CEBPB motif and then used to test
the difference in the expression of the closest gene using a Wil-
coxon signed-rank test.

Element gene assignment

Significant regulatory mutated elements across the cohorts ex-
cluding lymphoma andmelanoma cohorts were merged to obtain a
final list of Pan-Cancer candidates. Only elements that had at least
one regulatory mutation and mutations from three different tumor
samples were considered for further analysis.

We hypothesized that multiple elements located in a neigh-
borhood region may target the same genes. As it has been ex-
perimentally shown, two different sites in the TERT promoter lead to
aberrant regulation of TERT. Known protein-coding genes and
lincRNAs were obtained from GENCODE v19 (Harrow et al, 2012).
Each mutated element was extended by 2 kb. Extended elements
that overlapped a gene were assigned to that gene. Otherwise, the
first closest downstream and upstream genes to the element were
assigned. Next, each element was assigned to a feature type
depending on its location. Elements that overlapped noncoding
regions of a gene were assigned as intronic, elements that were
located 2 kb upstream of the gene were assigned as promoters and
the remaining elements were assigned as intergenic. In cases of
overlaps, the feature type with the largest number of mutations was
assigned. Finally, the list of enriched genes was obtained by ag-
gregating the gene-element assignments. Moreover, to avoid the
impact of coding mutations on the analysis, we excluded mutated
elements that overlapped gene coding sequences.

Gene expression analysis

Gene expression counts were processed as generated by the
PCAWG-3 group. Briefly, for each sample reads were aligned with
TopHat2 and STAR aligners. Read counts to genes were calculated
using htseq-count against the GENCODE v19. Counts were nor-
malized using fragments per kilobase of transcript per million
mapped reads (FPKM) normalization and upper quartile normali-
zation. The final expression values were given as an average of the
TopHat2 and STAR-based alignments. The expression level of each
gene was compared between the mutated and non-mutated
samples using a t test statistic controlling for the effect of copy
number variants (see below). A randomization process, similar to
the one implemented in Feigin et al (2017), was applied to evaluate
the significance of each t-value. Briefly, the mutated and not-
mutated samples were combined and randomly permuted be-
tween the two classes for 100,000 iterations. A t-value was obtained
on each iteration by comparing samples from the two randomly
assigned classes. The observed t-value was compared to the
simulated distribution of t-values from the permutations and
empirical P-values were calculated. Importantly, to incorporate
more expression data we took into consideration regulatory ele-
ments with one or more mutated sample. However, only genes that
had mutations in at least three samples with expression data
across their associated elements were considered for this analysis.

Copy number variants impact on the gene expression

The CNVs per sample, as well as, amplification and deletion peaks
from GISTIC were provided by the PCAWG-11 group (Synapse:
syn8042988 and syn8293244: amp_genes.conf_95.rmcnv.pt_170207.txt
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and del_genes.conf_95.rmcnv.pt_170207.txt). Only CNVs with three
stars (the highest confident) were kept and intersected with the
significant amplification and deletion peaks. Samples withmutations
within the extracted CNV segments in the same samples were
identified and removed from the set of mutated elements. The gene
expression analysis on the new set of mutated elements was per-
formed as described above.

Pathway enrichment analysis

The KEGG pathways of Homo sapiens were downloaded via the
REST-style KEGGAPI (Release 74.0) (Kanehisa & Goto, 2000; Kanehisa
et al, 2014). The genes associated to the Pan-Cancer set (excluding
lymphoma and melanoma cohorts) of recurrent elements were
searched in each pathway and the enrichment was assessed based
on a hypergeometric test; taking into account the total number of
genes in the pathway, the number of the putative target genes
enriched in the pathway, and the total number of genes used as in
the test. P-values were adjusted using the Benjamini–Hochberg
method.

Data Availability

The PCAWG datasets used in the study are available at Synapse
(https://www.synapse.org/): somatic mutations (syn9758012), RNA-
seq data (syn5553991), mutational signatures (syn11738306), and
somatic copy number (syn8042988 and syn8293244). The annota-
tion data are publicly available through the ENCODE portal (http://
www.encodeproject.org/).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201900523.
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