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Abstract

Genomes of hepatitis E virus (HEV), rubivirus and cutthroat virus (CTV) contain a region of high proline density and low
amino acid (aa) complexity, named the polyproline region (PPR). In HEV genotypes 1, 3 and 4, it is the only region within the
non-structural open reading frame (ORF1) with positive selection (4–10 codons with dN/dS.1). This region has the highest
density of sites with homoplasy values .0.5. Genotypes 3 and 4 show ,3-fold increase in homoplastic density (HD) in the
PPR compared to any other region in ORF1, genotype 1 does not exhibit significant HD (p,0.0001). PPR sequence
divergence was found to be 2-fold greater for HEV genotypes 3 and 4 than for genotype 1. The data suggest the PPR plays
an important role in host-range adaptation. Although the PPR appears to be hypervariable and homoplastic, it retains as
much phylogenetic signal as any other similar sized region in the ORF1, indicating that convergent evolution operates
within the major HEV phylogenetic lineages. Analyses of sequence-based secondary structure and the tertiary structure
identify PPR as an intrinsically disordered region (IDR), implicating its role in regulation of replication. The identified
propensity for the disorder-to-order state transitions indicates the PPR is involved in protein-protein interactions.
Furthermore, the PPR of all four HEV genotypes contains seven putative linear binding motifs for ligands involved in the
regulation of a wide number of cellular signaling processes. Structure-based analysis of possible molecular functions of
these motifs showed the PPR is prone to bind a wide variety of ligands. Collectively, these data suggest a role for the PPR in
HEV adaptation. Particularly as an IDR, the PPR likely contributes to fine tuning of viral replication through protein-protein
interactions and should be considered as a target for development of novel anti-viral drugs.
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Introduction

Hepatitis E virus (HEV), a hepevirus [1], causes epidemic and

sporadic cases of hepatitis in humans [2]. Initially, HEV infection

and hepatitis E were encountered primarily in developing

countries, and in developed countries were recognized as

associated with international travel. However, as detection

techniques have improved, HEV infection has been found to be

more prevalent than originally thought and is currently found

worldwide [3]. HEV sequences are segregated into four genotypes.

HEV genotypes 1 and 2 infect primarily humans along the fecal/

oral transmission route, while genotypes 3 and 4 can infect

humans, swine, deer and boar. In humans, infection by genotypes

3 and 4 appears to be primarily zoonotic [4,5]. The epidemiology

of HEV infections is complex and the virus can be transmitted

through multiple modes [6].

The HEV genome is a positive-sense, single-stranded RNA of

about 7.2 kb with a 59-methylguanine cap and 39-poly(A) tail. The

genome contains three overlapping open reading frames (ORFs).

ORF1 encodes the non-structural proteins responsible for viral

replication. ORF2 encodes the viral capsid protein, and ORF3

encodes a protein, which has regulatory functions [1]. The ORF1

non-structural proteins share the highest homology with a group of

viruses called rubi-like viruses which includes Rubivirus, Betate-

travirus, Benyvirus, Omegatetravirus, Sclerotinia sclerotiorum debili-

tation-associated virus and cutthroat trout virus (CTV) [7,8,9].

Sequence divergence among HEV isolates is highest in a region

preceding the helicase in the nonstructural polyprotein [10]. This

region contains a disproportionate number of prolines as

compared with the rest of the nonstructural polyprotein and is

known as the polyproline region (PPR). Because of sequence

variability the region is also known as the hypervariable region

[11,12]. The Institut National de la Recherche Agronomique (INRA),

home of the Pfam database, states that the PPR belongs to protein

family 12526 (DUF3729, CDD:152960) [13]. This protein is of

unknown function and is found in association with several proteins

including pfam 01660 (viral methyltransferase), pfam 05417

(protease C41), pfam 01661 (Appr-10-p processing enzyme/macro

domain) [14], pfam 01443 (UvrD/REP helicase) and pfam 00978

(RNA-dependent RNA polymerase). The HEV PPR was first

reported by Koonin et al. [10] as a putative protein hinge. Proteins

and peptides with stretches of multiple prolines may not have

stable tertiary structure [15,16,17], which is consistent with the

PPR acting as a hinge. However, the functions of the HEV PPR, if

any, are unknown. The PPR does not appear to be required for

the replication of rubivirus [18] or HEV [12]. Immediately

upstream from the PPR is a region with no known function [10].

Tzeng et al. showed that a deletion of this region and part of the
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PPR created a rubivirus mutant that was unable to self-replicate

[18]. However, Pudupakam et al. found that deletions in the PPR

did not abolish HEV infectivity in vivo or in vitro, although near-

complete deletion of the PPR yielded evidence of attenuation [12]

and suggested that the PPR may interact with viral and host

factors to modulate replication efficiency [19]. This paper presents

data indicating a role of the PPR in HEV adaptation.

Materials and Methods

The sequences used in this study were obtained from GenBank

(Table S1).

Sequence Alignment
HEV genotype 1 to 4 sequences were initially aligned with

ClustalX (ver. 2) [20]. Peptides from the HEV PPR for genotypes

1, 3 and 4 were individually realigned using MUSCLE (ver. 3.6)

[21].

Identification of the PPR
To identify the PPR in sequences used in this study, a small Perl

(Strawberry Perl 5.12.1.0) script was written to scan the viral

genomes and determine the number of prolines within a 30-

residue window and a step of one residue. A value of 9 prolines in

a window was chosen as the cutoff for a PPR (cutoff was 8 for

genotype 2).

Shannon entropy
Shannon entropy was calculated for each position in an

alignment of amino acid (aa) sequences using BioEdit (ver.

7.0.5.3) [22]. Because of the per residue variation, the average

entropy for a sliding window of 30 residues with a one-residue step

was used to smooth the data for this analysis.

Selective pressure
Selective pressure was calculated as dN/dS using the one-rate

fixed effects likelihood method in HyPhy (ver. 2.0020101222beta)

with a p,0.05 considered statistically significant [23].

Homoplastic density
The homoplasy index was calculated using PAUP*(ver.

4.10beta) with the apolist command [24]. The homoplastic density

was obtained by counting the number of homoplastic sites with

values .0.5 within a 50-nucleotide (nt) sliding window with a one-

base step.

Intrinsically disordered region prediction
Intrinsically disordered regions (IDRs) in individual sequences

were predicted using the DISOPRED2 server [25] at its default

settings. This method was chosen because it is conservative in its

estimations of disorder. DISOPRED2 is based on a database of

high-resolution crystallographic information (#2 Å). A sequence

query is aligned to similar regions from Protein Data Bank (PDB:

www.pdb.org) for which no coordinate information is available, as

disordered regions cannot be modeled through crystallography.

These results were confirmed using IUPred by screening for long

disordered regions [26]. IUPRED is based on the computation of

pair-wise interaction energies of residues in the query sequences to

estimate their tendency to form stabilizing pair-wise interactions

[27].

Linear Motifs
Functional sites in the PPR conforming to the constraints of

linear motifs (LMs) [28,29] were predicted using the Eukaryote

linear motif (ELM) server at elm.eu.org [30]. LMs were predicted

for each genotype (genotypes 1–4) and the Japanese wild boar

sequences [31], and compared to identify motifs found in all

sequences. Only LMs that were found to be common to all the

sequences were considered to be putative HEV LMs. For example,

the LIG_CYCLIN_1 site was discarded from this analysis because

a required MOD_CDK motif was found only in genotype 3

sequences.

Tree comparison
Continuous non-overlapping windows in HEV genotypes 1, 3

and 4 were created using the length of the polyproline region for

each genotype as the window size. The windows for each genotype

were situated so that one of the windows would be the polyproline

region itself. Neighbor-joining trees were created for aligned full-

length ORF1 sequences and each of the window regions with

DNADIST, using the Kimura 2-parameter substitution model,

and NEIGHBOR [32]. The tree for each window region was

compared to the full-length ORF1 tree with the nodal and split

distance methods in TPOD/FMTS (ver. 3.3) [33].

3-Dimensional (3D) Structure
Analysis was conducted using the PPR of the HEV genotype 3

sequence with GenBank accession number AB091394. The PPR

was 81 residues long located between protein positions 707–831

(according to reference M74506).

Ten full-atomic ab-initio-based 3D models of the HEV genotype

3 PPR were automatically generated using the I-TASSER

software package (ver. 1.1) [34,35]. Briefly, to excise continuous

fragments from template alignments, 5 threading programs were

sequentially implemented against the PDB to select the best

templates matching the query sequence. Template selection by

each method was restricted to 20 matches. Assembly of the

continuous fragments was performed by running 14 Monte Carlo

simulations. Full-atomic 3D models were generated after energy

minimization refinements of assembled structures. Accuracy of

predicted models was evaluated by confidence scores (C-scores).

The C-score is a confidence score for estimating the quality of

predicted models. This score is typically in the range of [25, 2],

where a high value signifies a model with a high confidence and

vice-versa. A TM-score .0.5 indicates a model of correct topology

and a TM-score ,0.17 means a random similarity. A full detail of

implemented protocols is available in [34].

Molecular analysis described herein was performed using the

top-ranked 3D model. To assess the overall stereochemical quality

of the generated 3D model, the geometrical accuracy of the

residues and 3D profile quality index were inspected with the

PROCHECK (ver. 3.5) [36] and VADAR (ver. 1.8) [37]

programs, respectively. Additional refinement to remove atomic

clashes was carried out using the WHATIF (ver. 8.0) modeling

package software [38].

Secondary Structure
The sequence-based prediction of the secondary structure of the

HEV PPR, was performed using PSIPRED (ver. 2.6) [39].

Secondary structure assignment in the PPR was done using the

standard DSSP method [40].

The Hepatitis E Virus Polyproline Region
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Accessible Molecular Surface
To assess the exposed surface area, the accessible surface area

(ASA) or the area where a water molecule could access or contact,

the accessible molecular surface of residues in the PPR model was

calculated. The ASA for each residue was computed and

measured in square Angstroms (Å) as implemented in the

WHATIF modeling package software [38].

Electrostatic Surface
Simulation of atomic-scale information on energetic contribu-

tions to atomic interactions and biomolecular structure of the

HEV PPR 3D model was performed to examine possible

biomolecular functions and highlight regions of potential interest.

Electrostatic properties were evaluated via an implicit method for

modeling biomolecular solvation through solution of the Poisson-

Boltzmann (PB) equation. The electrostatic potentials around the

PPR molecule were calculated with APBS (ver. 1.2) [41] and

visualized with PyMOL (ver. 1.1r2pre) [42].

Structure-based function predictions
To associate possible molecular functions to the PPR 3D model,

gene ontology (GO) terms were derived using a structure-based

method for annotation of biological function. The 3D model was

threaded against a set of function libraries by global and local

structure matches. GO terms were then derived from the best

functional homology templates (TM score cutoff .0.5). A total of

ten matches were extracted and ranked by their TM-score [34,35].

GO terms associated with each of these functional PDB template

analogs were compiled and the consensus GO terms among them

was used to predict molecular functions in the PPR. Analysis was

conducted using the COFACTOR algorithm [43,44].

Protein binding regions in IDRs
Disordered protein segments can function as linkers between

globular domains because of their flexibility [45]. Additionally,

disordered regions in proteins can have important functional roles

by binding specifically to other proteins, DNA or RNA ligands.

These binding interactions, known as coupled folding and binding,

involve transient disorder-to-order state transitions with more

stable secondary and tertiary structural elements [46,47]. Studies

have shown that disordered regions with the properties to be

involved in coupled folding and binding can be distinguished from

those that lack them [48,49,50,51].

The PPR IDR was examined to determine its ability to undergo

coupled folding and binding using an algorithm to identify protein

binding regions. Predictions were carried out using the ANCHOR

program (ver. 1.0) [52,53]. Briefly, prediction of protein binding

regions was done from the aa sequence of PPR (ref. AB091394).

Recognition of binding regions was based on the properties of

residues located in the IDR to energetically gain favorable intra-

chain interactions to form a stable secondary structure by

interacting with a protein partner. Estimation of residue properties

relied on the energy estimation framework implemented for

disorder predictions in IUPRED [27]. To decrease the false-

positive rate on globular domains and transmembrane segments,

short regions ,6 residues and regions with an average IUPRED

score (disorder tendency of a residue) ,0.1 were filtered out.

Results

Proline distribution within the ORF1-protein
The ORF1-encoded proteins of hepeviruses were examined

using a Perl script to count the number of Pro residues within a 30-

aa sliding window. Analysis identified protein regions with the

highest Pro density across this family of viruses (Table 1). An

alignment of HEV genotype 1–4 sequences showed that the PPR

was bound by conserved sequences TLYTRTWS and

RRLLXTYPDG at the N- and C-sides, respectively. HEV

isolated from avians and rats were also found to have PPR, but

did not have the conserved sequence boundaries found in

genotypes 1–4. Sequence conservation of PPR boundaries could

not be established with certainty because of the limited number of

extant sequences. Similar to genotypes 1–4, the PPR in the avian

and rat sequences was located upstream from the putative macro

domain as shown earlier [14].

Sequence diversity
Shannon entropy analysis using a 30-aa sliding window showed

that the PPR in human and avian HEV represents the most

divergent protein region (Fig. 1). The PPR sequence divergence is

.2-fold greater for HEV zoonotic genotypes 3 and 4 than for

human genotype 1, suggesting the potential association between

sequence heterogeneity and the number of hosts.

Selection
An examination of selective pressure along ORF1 was

conducted using calculation of dN/dS values for each codon. It

was found that ORF1 is in general under strong negative selection.

There are no dN/dS values with $1 anywhere in ORF1 except for

the region encoding for the PPR. The PPR from genotypes 1, 3

and 4 contains 4–10 codons with dN/dS.1, indicating that the

PPR is the only genomic region in these genotypes that has

experienced detectable positive selection (Fig. 2).

Homoplastic density
The PPR has the highest density of sites with homoplasy index

values .0.5 (Fig. 3). Genotypes 3 and 4 show ,3-fold increase in

density of strongly homoplastic sites (HD) in the PPR compared to

any other region in ORF1 whereas genotype 1 does not exhibit

significant HD (p,0.0001) (Fig. 3). In general, the genotype 3 and

4 ORF1 has a ,2-fold greater HD than genotype 1. The genotype

1 sequence database contains only 17 sequences, whereas the

genotype 3 and 4 databases contain 74 and 55 sequences,

respectively. To eliminate the possibility that the observation of a

lower HD in genotype 1 is related to a small number of sequences

available, 17 sequences were selected at random for genotypes 3

and 4. However, analysis of the lower number of sequences still

yielded high HD in the PPR (data not shown). Additional analysis

was conducted using only the genotype 3b sequences alone

(n = 20). The genotype 3b PPR shows a high HD, but is 30%

lower than seen with all genotype 3 or 4 sequences (data not

shown). The data suggest that the higher HD in genotypes 3 and 4

result from a greater sequence divergence as compared to

genotype 1, possibly reflecting the more diverse host range for

genotypes 3 and 4.

The intrinsically disordered region
Many polyproline regions are known to be unstructured or

disordered [54]. To examine whether the HEV PPR belongs to

this class of IDRs, 2 algorithms were used in this analysis. The

HEV genotype 1, 3 and 4 PPRs were predicted to be IDRs located

between conserved sequences TLYTRTWS and RRLLXT

YPDG. Genotype 2 was also predicted to have an IDR, located

between these conserved sequences, which, however, does not

coincide with the region of the highest Pro density as was observed

for genotypes 1, 3 and 4 (Table 1). This table also shows that the

The Hepatitis E Virus Polyproline Region
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Table 1. Calculated boundaries for viral IDRs and highest proline density.

IDR Polyproline

ID start stop max start stop Pro avg P

AY535004 Av 533 618 0.845 560 562 19 18.8

GU345042 Ra 570 678 0.612 595 624 22 22.5

M80581 1 711 778 0.604 729 754 18 16.6

M74506 2 701 717 0.211 759 760 14

AB369691 3b 720 788 0.748 729 781 27 27.0

EU723515 3f 710 818 0.641 758 810 35 27.0

AB220972 4 710 795 0.682 726 747 22 20.5

AB602441 WB 711 799 0.641 770 771 20 17.5

DQ085338 Rub 713 808 0.943 730 770 26 26.0

HQ731075 CTV 637 725 0.577 710 712 19

ID shows GenBank accession numbers for sequences used in the IDR calculation (DISOPRED2 [25]) and the polyproline sliding-window analysis. Class codes to right of
each ID are: Av, avian; Ra, rat; genotype 1; genotype 2; subgenotype 3b; subgenotype 3f; genotype 4; WB, Japanese wild boar; Rub, rubivirus and CTV, cutthroat trout
virus. The start and stop positions are those obtained from each calculation. Max is the maximum disorder probability in the PPR (threshold = 0.05). Pro lists the number
of prolines in each PPR IDR. Avg P is the average number of prolines in all members of a class. Empty avg P indicates presence of only a single member in that class.
doi:10.1371/journal.pone.0035974.t001

Figure 1. Shannon entropy for alignments of rubi-like viruses. Data are shown as the average Shannon entropy in 30-aa acid windows with a
one-residue step. Sequences are full-length with the three ORFs concatenated in head-to-tail fashion as ORF1, ORF2 and ORF3. Rubi (rubivirus),
DQ085338; g1 (genotype 1), M80581; g2 (genotype 2), M74506; g3 (genotype 3), AB369691; g4 (genotype 4), AB220972; avian, AY535004. Subtype 3f
sequences have a 27-aa sequence duplication removed from the PPR to allow better alignment of sequences. The PPRs are located by the grey arrow
(avian HEV) and the black arrow (rubivirus and HEV genotypes 1, 3 and 4). The white arrow is immediately upstream from the rubivirus
endopeptidase (centered near residue 1010).
doi:10.1371/journal.pone.0035974.g001
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putative genotype 2 PPR has the lowest probability of being an

IDR and the lowest number of prolines.

The PPRs in avian and rat HEV located upstream from the

putative macro domain were also predicted to be IDRs (Fig. 4).

Taking into consideration that the predicted genotype 1–4 IDRs

are flanked by or located near conserved regions, the conserved

IDR boundaries may be located between aa positions 533 and 618

(AY535004), and 570 and 678 (GU345042) of the ORF1-encoded

polyprotein for avian and rat HEV, respectively. An alignment of

CDD:152960 sequences at NCBI [55] suggests that the conserved

aa sequences KLLTLKELA and EEVLALLP [13] in avian HEV

serve as the N- and C-terminal IDR boundaries.

The PPRs from genotypes 1, 3 and 4, and avian HEV contain a

low fraction of Ile, Met, Phe, Trp and Tyr and a high fraction of

Ala, Gly, Pro and Ser (Fig. 5), which is consistent with a low aa

complexity of known IDRs. IDRs usually have a low proportion of

bulky hydrophobic aa, a high proportion of polar and charged aa

[45] and structure breaking aa, like Pro and Gly [27].

Duplications of sequence have been found within some IDRs

[15,54]. An examination of genotype 3 PPR sequences revealed

that some genotype 3f sequences contain a 27-aa, head-to-tail

duplication (Fig. 6) near the C- terminus of the PPR. Further

examination showed that some genotype 3e sequences contain a

potentially more complex indel pattern, which results in a 13-aa

insertion in this region and some genotype 3a sequences have a 4-

to 6-residue insertion in this region dominated by Pro (Fig. 6).

PPR of rubi-like viruses
Homology between HEV and rubivirus non-structural genes

suggests that HEV belongs to a group of animal, plant and mycotic

viruses known as the rubi-like viruses [7]. Besides hepeviruses, only

rubiviruses and CTV contain a PPR located upstream from the

macro domain (Table 1). The rubivirus PPR also has high genetic

diversity (Fig. 1) and sites under positive selection (Fig. 2).

However, similar to genotype 1, the rubivirus PPR as well as the

entire non-structural polyprotein has a very low HD (Fig. 3). CTV

could not be tested for these properties as there is only one full-

length sequence extant [9]. Like the hepeviruses, rubiviruses and

CTV exhibits high disorder probability in its PPR (Fig. 4). The

rubivirus PPR also has a low aa complexity (Fig. 5).

Phylogenetic fidelity
The detection of considerable homoplasy and high genetic

diversity in the PPR, as compared to other regions in the ORF1,

suggests that there should be a substantial decline in homology

among HEV sequences in the PPR, particularly for genotypes 3

Figure 2. dN/dS values for rubivirus and HEV. For genotypes 1, 3 and 4, and rubivirus, results of analysis are shown across from aa positions 701
to 800, which includes the PPR IDR region. Values .1 represent positions under positive selection. Insert shows dN/dS values for the PPR IDR of avian
HEV (528 to 614 aa). There are no dN/dS values $1 in ORF1 outside the regions shown.
doi:10.1371/journal.pone.0035974.g002
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and 4 sequences. This decline should be reflected in distortion of

phylogenetic relationships among different sequences in the PPR.

However, such a suggestion contrasts to the successful use of

phylogenetic trees to genotype HEV isolates using this region

[56,57,58,59]. To determine whether the PPR phylogenetic signal

is reduced when compared to other ORF1-regions, the TOPD/

FMTS program [33] was used to examine concordance of

phylogenetic trees generated using a sliding window across the

ORF1. The phylogenetic signal for the tree from each window was

compared to a tree for the entire ORF1. Using the nodal distance

method, the PPR was found to have about the same phylogenetic

signal as any other region when compared to the complete ORF1

tree (Fig. 7).

Linear Motifs
Linear motifs (LMs) are short peptide segments that do not

require 3D organization in order to function. These motifs operate

as sites of regulation and are found in IDRs [28,29]. Accordingly,

the HEV PPR was examined for the occurrence of LMs. Using the

search engine at elm.eu.org, seven LMs were found to be common

across all four HEV genotypes and in HEV sequences from

Japanese wild boars (Table 2). These sites, which are all in the

IDR, included two protease cleavage sites (CLV_NDR_NDR_1

and CLV_PCSK_SKI1_1), three ligand binding sites (LIG_EH_1,

LIG_EVH1_1 and LIG_SH2_STAT5) and two kinase phosphor-

ylation sites (MOD_PKA_2 and MOD_PLK).

Protein binding region in the HEV genotype 3 PPR
The ANCHOR algorithm was used to show that the 52-aa

region in the PPR (AB091394) between aa positions 707–758 (ref.

M74506) is prone to transient disorder-to-order transitions upon

binding to a protein ligand. The highest probability scores ($0.74)

were observed for subregions 707-TSGFSSDFS-715 and 737-

VSDIWVLPP-745 (Fig. 8D). Four of the LMs were found to be

located within these subregions, namely, kinase phosphorylation

sites (MOD_CK1_1, 708-SGFSSDF-714 and MOD_GSK3_1,

708-SGFSSDFS-715), glycosaminoglycan attachment site

(MOD_GlcNHglycan, 707-TSGF-710), and ligand binding site

(LIG_SH3_3, 739-DIWVLPP-745).

3D-model of the HEV genotype 3 PPR
To examine further the structural properties of the PPR and

investigate its possible molecular functional roles, we predicted the

3D molecular structure of the HEV PPR. The top-ranked 3D-

model generated by I-TASSER [34,35] yielded a C-

score = 22.71, an estimated accuracy of 0.460.14 (TM-score)

and an estimated resolution of 9.464.6 Å. Identification of 98.1%

of residues falling within favorable and allowed regions of the

Ramachandran plots and analysis of the 3D-profile indexes (Fig.

S1 and S2) indicate a good stereochemical quality of the 3D-model

(Fig. 8E). Lack of regular strand and helix secondary structure was

observed in the PPR model generated by the DSSP secondary

structure assignment [40]. Based on PSIPRED’s 3-state, secondary

structure prediction for this region, all residues were identified as

Figure 3. Homoplastic density. A sliding window was used to count the number of aa within each window having a homoplastic index of $0.5
(shown on the left). Numerals below y axis represent nt positions in ORF1.
doi:10.1371/journal.pone.0035974.g003
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Figure 4. Disorder probability. Disorder probability for aa sequence of selected sequences was calculated using DISOPRED2. A threshold value of
0.05 was set to distinguish between ordered and disordered region along the genome (dashed line). Regions above the threshold are predicted to be
disordered (see table 1). All these viruses have a peak above 0.05 within their respective PPRs, positions 570 to 800. Rubivirus has two peaks, one in
the PPR and the second at about position 1000, which is just upstream of the endopeptidase (denoted by the asterisk).
doi:10.1371/journal.pone.0035974.g004

Figure 5. Proportion of aa in the PPR IDR of rubi-like viruses.
doi:10.1371/journal.pone.0035974.g005

The Hepatitis E Virus Polyproline Region
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Figure 6. Sequence duplications in genotype 3. Selected genotype 3 PPR sequences were aligned against EU723516. Each sequence is
identified by its GenBank accession number and subtype. Boxes show sequence duplications for 3f and insertions for 3e and 3a sequences. Carets
identify an alternative alignment region for the PVHKP peptide (positions 776–780) for genotype 3e.
doi:10.1371/journal.pone.0035974.g006

Figure 7. Nodal distance. The nodal distance calculated for consecutive non-overlapping windows in ORF1. The closer to zero the nodal distance
is for a window, the more it is like the nodal distance for the full-length ORF1. Black arrows delineate the PPR.
doi:10.1371/journal.pone.0035974.g007
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random coil (Fig. S3). Also shown in Fig. 8 are aa physicochemical

properties mapped onto the 3D model, which reveal the PPR’s

high composition of flexible and hydrophilic polar residues. These

findings provide evidence that this PPR is intrinsically disordered.

Surface and electrostatic properties
Approximately 70% of the residues in the PPR 3D-model were

observed to be exposed (surface accessibility $15 Å2; Fig. 8G).

Mapping of the computed electrostatic potentials onto the surface

showed that the PPR surface is mainly negatively charged (Fig. 8E).

Two major regions (surface patches) of high negative polarity

(indicated by color density in Fig. 8E) were identified on the

surface of PPR. The electrostatic potential properties at these two

sites suggest that the PPR may be involved in protein-protein

interactions [60].

Prediction of molecular functions
COFACTOR was used to identify putative molecular functions

of the PPR based on the predicted 3D structure by using GO

annotations [43,44]. The best PDB structural analogs of the PPR

and the consensus GO annotations associated to them are shown

in Table 3. Binding interactions were found to be the major

molecular functional role among the top six functions attributed to

the PPR, of which protein-protein interaction was one of such

roles (GO:0005515; in Table 4). These results suggest that, similar

to other IDRs [45], the PPR may be involved in binding of a wide

variety of substrates.

Discussion

The functional significance of the HEV PPR remains unknown.

The data obtained in the present study suggest that the substantial

sequence variability of PPR plays an important role in viral

adaptation. Although the exact role of the PPR in HEV

adaptation is not known, several findings indicate that the PPR

may be involved in determination of host range. The HEV

lineages of genotypes 1 and 2 are anthropotropic, while the

genotype 3 and 4 HEV strains infect not only humans but also

several animal species [5], suggesting their zoonotic origin.

Consistent with the broad host range of zoonotic HEV lineages,

PPR in HEV genotypes 3 and 4 is ,2-fold more heterogeneous

than in HEV genotype 1 (Fig. 1). The limited number of available

sequences did not allow for assessing the degree of PPR

heterogeneity in genotype 2.

Analysis of distribution of highly homoplastic sites along ORF1

was especially informative (Fig. 3). It was found that the PPR had

the 3-fold greater HD than any other region within ORF1 of HEV

genotypes 3 and 4, although no difference in HD was observed

along ORF1 in genotype 1. Moreover, Shannon entropy in ORF1

from genotypes 3 and 4 was .2 times greater than in genotype 1

in the PPR (Fig. 1). The presence of many highly homoplastic sites

indicates the operation of recurrent selection pressures on ORF1

and especially the PPR in the zoonotic genotypes 3 and 4. This

finding suggests convergent evolution of the PPR, which is

probably related to shuttling HEV infection among various

susceptible species of hosts.

The PPR is the only region in ORF1 that contains sites under

positive selection (Fig. 2). All 3 HEV genotypes, for which the

sufficient number of sequences was available for analysis, contain

4–10 codons with dN/dS.1. Since both anthropotropic and

zoonotic genotypes experienced detectable positive selection, the

PPR is not only involved in adaptation to the host range but

expresses other adaptive traits shared by all genotypes.

The PPR also has a low content of bulky hydrophobic aas (Ile,

Met, Phe, Trp and Tyr) and a high proportion of polar and

charged aas (Ala, Gly, Pro and Ser) (Fig. 5) [27,45]. The fractional

Table 2. List of ELM’s common to HEV genotypes 1–4 in the PPR.

Motif Mod Description Notes pfam ID

CLV_NDR_NDR_1 N-Arg dibasic convertase
(nardilysine) cleavage site

N-arginine dibasic convertase is an endopeptidase in
dibasic sites processing secreted proteins.

PF00675

CLV_PCSK_SKI1_1 Subtilisin/kexin isozyme-1 (SKI1)
cleavage site

The subtilisin-like proprotein convertases are expressed
in mammalian neural and endocrine cells and play a major
role in the proteolytic processing of both neuropeptide
and peptide hormone precursors.

PF00082

LIG_EH_1 Asn-Pro-Phe motif responsible
for the interaction with Eps15
homology (EH) domain

NPF motif interacting with EH domains, usually during
regulation of endocytotic processes and vesicular trafficking

LIG_EVH1_1 Proline-rich sequences that bind
to the signal transduction
modules EVH1

Many EVH1-containing proteins are associated closely with
actin-based structures and are involved in re-organization
of the actin cytoskeleton. The engrailed homology domain
1 motif is found in homeodomain containing active
repressors and other transcription families.

LIG_SH2_STAT5 X STAT5 Src Homology 2 (SH2)
domain binding motif.

STAT5 Src Homology 2 (SH2) domain binding motif.
This is one of the most promiscuous motifs in ELM. It will
match to approximately every third Tyr residue. Therefore
the predictive power is very weak.

PF00017

MOD_PKA_2 X Secondary preference for
PKA-type AGC kinase
phosphorylation.

PKA belongs to the large set of related AGC kinases
having a preference for phosphorylating basophilic sites.
cAMP-dependent protein kinase A (PKA) is the major target
for cAMP action in eukaryotic cells.

MOD_PLK X Site phosphorylated by the
Polo-like-kinase

Site recognised and phosphorylated by the
Polo-like-Kinase

PF00659

Motif is the ELM motif. X in the Mod column indicates phosphorylation of Thr/Ser in the motif. Pfam ID contains the ID for the protein family that cleaves or modifies the
motif.
doi:10.1371/journal.pone.0035974.t002
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content of aa in the PPR is maintained across all four HEV

genotypes (Fig. 7). The confluence of findings showing high Pro

density, high average Shannon entropy (Fig. 1), positive selection

(Fig. 2) and reduction in ordered secondary structure (Fig. 4)

strongly suggests that the HEV PPR is an IDR. Analysis carried

out on the PPR 3D-model for HEV genotype 3 also confirmed

that the PPR lacks regular structure, is highly polarized, negatively

charged, largely solvent accessible and flexible, all characteristics

of IDRs (Fig. 8) [29,60]. All HEV sequences studied have this

IDR, including sequences from avians and rats. As HEV belongs

to rubi-like viruses, other members of this family were tested for

IDR; only rubivirus and CTV have a region of high polyproline

density. Rubivirus possesses two IDR-like domains: one domain

associated with its PPR and the other domain located between the

macro domain and the endopeptidase (pfam05407) (Fig. 2). It

should be noted that the latter domain in rubivirus does not have

the high Pro density or positive dN/dS. Thus, the PPR is the only

region under positive selection in HEV, rubivirus and CTV

(Fig. 2).

Positive selection and high homoplastic density in the PPR of

HEV genotype 3 and 4 should lead to a highly diverse population

of sequences within the PPR. Indeed, the PPR has a high degree of

divergence (Fig. 3) and accordingly, has been called the

hypervariable region [11]. All these factors taken together with

reduction in aa composition complexity should substantially

scramble phylogenetic relationships of the PPR from different

HEV strains because of the small contribution of many sites to

homology in this region. However, an examination of the PPR

shows that it has approximately the same degree of phylogenetic

signal as seen in most other regions of similar size in ORF1 (Fig. 6).

Application of this region to phylogenetic analysis of HEV

genotypes and subtypes seems to be as accurate as the use of

any other genomic regions [56,57,58,59]. This observation

indicates that the observed homoplasy and positive selection are

specific to HEV genotypes and subtypes, and occur within the

boundaries of the major HEV lineages. Thus, both homoplasy and

positive selection most probably reflect recurrent adaptation events

experienced by each HEV lineage and are specific to these

lineages. These considerations explain the reduced contribution of

Figure 8. Predicted tertiary structure HEV genotype 3 PPR. (A) Secondary structure features of the 3D model; coloring is based on transition
from N-termini (in blue) to C-termini (red). (B) Distribution of hydrophobicity, hydrophilic regions shown with red and hydrophobic with white (based
on a normalized consensus aa scale [64]). (C) Degree of flexibility; flexible regions shown in green and rigid with white (based on an aa scale [65]). (D)
Prediction of transient disorder-order binding region (based on the ANCHOR program); y axis represents probability scores and the x axis the residue
positions. Green line - disorder tendency, solid black line - disorder-order tendency, dot line - binding score and red line - threshold. (E ) Electrostatic
potential is mapped onto the modeled surface, colored by potential for solvent accessible surface (at a threshold level between 24 and 4). Negative
and positive potentials indicated in red and blue, respectively. (G) Surface accessibility plot; y axis represents the total accessibility in squared Å and
the x axis the aa position. A minimum area of 10 Å2 is needed to dock a water molecule (red line; accessibility threshold). 3D rendering was done in
PyMOL [42].
doi:10.1371/journal.pone.0035974.g008
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Table 3. Predicted molecular functions for the HEV PPR model.

Rank TM-Score RMSD Identity Coverage PDB homolog
Molecular function GO
terms

1 0.5528 3.35 0.04 0.95 3eqnA 0004338, 0016787,
0016798, 0008152

2 0.5385 3.62 0.15 0.95 3l3sB 0016853, 0003824,
0008152

3 0.5374 3.37 0.04 0.93 2iq7A 0008152, 0007047,
0004650, 0016787,
0016798, 0005975

4 0.5373 3.64 0.03 0.91 1wmrA 0051675, 0008152,
0016798, 0005576,
0016787, 0004553

5 0.533 3.5 0.01 0.93 1k5cA 0004650, 0005975

6 0.5316 3.41 0.13 0.91 1k5dC 0000070, 0005098,
0006913, 0005096,
0048471, 0051383,
0043547, 0031965,
0005829, 0030702,
0031291, 0032853,
0005737

7 0.5305 3.47 0.05 0.91 1nhcA 0004650, 0005576,
0016787, 0016798,
0007047, 0008152,
0005975

8 0.5289 3.59 0.05 0.93 3p85A 0003824, 0008152

9 0.5285 3.62 0.11 0.93 1vrgA 0046872, 0016874

10 0.5276 3.4 0.08 0.9 3gf7A 0016874

TM-score is a measure of global structural similarity between query and template protein. RMSD is root mean standard deviation between residues that are structurally
aligned by TM-align [66]. Identity is percentage sequence identity in the structurally aligned region. Coverage represents coverage of global structural alignment and is
equal to the number of structurally aligned residues divided by length of the query protein. PDB analog is the PDB-matched template or functional analog, from which
associated GO terms was used to predict function of query sequence.
doi:10.1371/journal.pone.0035974.t003

Table 4. Molecular function of predicted consensus GO terms for the PPR model.

Consensus GO terms Molecular function description

GO:0003824 Enzyme activity. Enzymes possess specific binding sites for substrates, and are usually composed wholly or largely
of protein.

GO:0005488 Ligand. The selective, non-covalent, often stoichiometric, interaction of a molecule with one or more specific sites
on another molecule.

GO:0000166 Interacting selectively and non-covalently with a nucleotide, any compound consisting of a nucleoside that is
esterified with (ortho)phosphate or an oligophosphate at any hydroxyl group on the ribose or deoxyribose.

GO:0005524 Interacting selectively and non-covalently with ATP, adenosine 59-triphosphate, a universally important coenzyme
and enzyme regulator.

GO:0016874 Catalysis of the joining of two substances, or two groups within a single molecule, with the concomitant hydrolysis
of the diphosphate bond in ATP or a similar triphosphate.

GO:0005515 Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins
that may include other nonprotein molecules).

GO:0016787 Catalysis of the hydrolysis of various bonds, e.g. C-O, C-N, C-C, phosphoric anhydride bonds, etc. Hydrolase is the
systematic name for any enzyme of EC class 3.

GO:0003989 Catalysis of the reaction: ATP+acetyl-CoA+HCO32 = ADP+phosphate+malonyl-CoA.

GO:0004650 Catalysis of the random hydrolysis of (1R4)-alpha-D-galactosiduronic linkages in pectate and other galacturonans.

GO:0046872 Interacting selectively and non-covalently with any metal ion.

Consensus GO terms in ranked order. Ranking based on GO scores [43,44].
doi:10.1371/journal.pone.0035974.t004
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these factors to the phylogenetic noise at the level of genotypes and

subgenotypes.

The PPR does not appear to be required for the replication of

rubivirus [18] or HEV [12,19,61]. Immediately upstream from the

PPR is a region with no known function [10]. Tzeng et al. [18]

showed that a deletion of this region in rubella virus created a

mutant that was unable to replicate. However, Pudupakam et al.

[12,19] found that deletions in the PPR did not abolish infectivity

of HEV in vivo or in vitro, although near-complete deletion of the

PPR yielded evidence of attenuation. Moreover, Nguyen et al. [61]

isolated naturally occurring variants isolated in serum and feces

from a patient chronically infected with HEV that had deletions in

the PPR and macro domain. These observations suggest that the

PPR plays a regulatory role in HEV replication, which may be

related to proper positioning of structured protein domains

[15,16]. The folding of such hinges is known to regulate the self-

assembly of large multiprotein complexes [45] and the PPR may

interact with viral and host factors [19].

The recently observed association between deletions in the PPR

and variation in levels of viral RNA replication is consistent with

the PPR being able to modulate the rate of HEV replication [12].

Ropp et al. observed that after extended incubations of 24–

36 hours, the HEV ORF1 polyprotein, expressed as a vaccinia

recombinant, was cleaved to yield two products in vivo [62].

Mutagenesis of Cys in the active site of the putative HEV papain-

like protease failed to abolish cleavage, indicating that this protease

is not involved in the observed ORF1-protein processing.

However, Koonin et al. had noted earlier that the papain-like

protease motifs found in HEV were atypical [10], which may also

explain the result of the mutagenesis experiment. The location of

the potential cleavage site [62] appears to be situated near the two

putative LM protease cleavage sites identified here (Table 2). This

finding may explain, at least in part, the results reported by

Pudupakam et al. [12,19].

Sequence analyses of the ORF1 of all HEV genotypes identified

the PPR as an IDR (Fig. 4). The identified propensity of the HEV

PPR for the disorder-to-order transitions upon interaction with a

protein ligand (Fig. 8D) is an important IDR property. The PPR

region capable of such transitions is most negatively charged

(Fig. 8E) and most prone to protein-ligand binding. As an IDR, the

PPR may be involved in regulating viral transcription and

translation [45]. IDRs are known to affect protein folding and to

bind to large numbers of proteins due to the intrinsically

disordered nature of these regions [15,16]. An examination of

LMs found seven putative linear motifs located within the IDR.

These include two protease-cleavage sites, three ligand binding

sites and two kinase phosphorylation sites (Table 2).

Additionally, the PPR 3D-model was used to predict the

occurrence of molecular functional roles using GO annotations.

This analysis revealed several sites potentially involved in

interactions with many protein ligands (Tables 2 and 4). The

motifs include putative peptide cleavage sites, sites modified by

enzymes and sites that bind to proteins, nucleotides and metal

ions. Such interactions have been shown to contribute to

regulation of cellular signal transduction, protein phosphorylation

as well as transcription and translation [45]. Thus, these findings

suggest that the PPR is involved in protein-protein interactions

associated with the regulation of HEV replication. Of further

interest are recent reports of isolations of virus/host recombinants

found in patients chronically infected with HEV [61,63]. In both

instances a fragment from a human ribosomal protein was inserted

in-frame into the PPR, in the first case as a 174-nt (58-aa) insertion

from S17 [63] and in the second a 117-nt (39-aa) insertion from

S19 [61]. The finding of these insertions provides an additional

support to the hypothesis that the PPR has regulatory functions

essential for viral adaptation rather than functions critical for viral

replication.

In conclusion, the data shown here strongly suggest the role of

the PPR in HEV adaptation, including the host-specific adapta-

tion. Being an IDR, the PPR is likely involved in fine tuning of

viral replication through protein-protein interactions. Delineation

of these interactions will lead to a better understanding of the

HEV life cycle and to development of novel anti-viral drugs.

Supporting Information

Figure S1 Ramachandran plot. Backbone dihedral angles Q
against y for the residues in the polyproline peptide structure are

plotted on backbone conformational regions of the Ramachan-

dran plot as small black squares, except for Gly, which is shown as

black triangles. 98.1% of residues fell into either the most favored

regions ([A,B,L] 65.4%, n = 34) or the allowed regions ([a,b,l,p]

32.7%, n = 17). The angles for three residues fell into unfavorable

regions (P10, A54 and P67) and are shown as small red squares.

(TIF)

Figure S2 3D profile quality index. This figure shows the

index for assessment of local environment, packing and hydro-

phobic energy for the given structure. Values ,5 indicate possible

local structure or local fold problems. Sequence key: 9 = best,

0 = worst and * indicates a possible problem; PRBLM = problem

line markers

(TIF)

Figure S3 Three-state secondary prediction. Shown are

the probability scores (y-axis), based on PSIPRED, along an 81 aa-

long (x-axis) sequence of the HEV genotype 3 PPR (GenBank

accession number AB091394) for adopting a helix, strand or coil

conformations.

(TIF)

Table S1 Sequences used in this study. This table lists the

GenBank accession numbers for all sequences examined in this

study. A) rubivirus. B) betatetravirus. C) hepevirus. HEV isolated

from Chinese rabbits is tentatively classified as genotype 3, and

denoted as 3* in the table. HEV isolated from avians, Japanese

wild boars and rats is unclassified, and denoted with a, w or r,

respectively, in the type column. HQ731075 is the cutthroat trout

virus.

(DOC)
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33. Puigbò P, Garcia-Vallvé S, McInerney JO (2007) TOPD/FMTS: a new

software to compare phylogenetic trees. 23: 1556–1558.

34. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for
automated protein structure and function prediction. Nat Protoc 5: 725–738.

35. Wu S, Skolnick J, Zhang Y (2007) Ab initio modeling of small proteins by
iterative TASSER simulations. BMC Biol 5: 17.

36. Laskowski RA (2001) PDBsum: summaries and analyses of PDB structures.

Nucleic Acids Res 29: 221–222.
37. Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF, et al. (2003) VADAR: a

web server for quantitative evaluation of protein structure quality. Nucleic Acids
Res 31: 3316–3319.

38. Vriend G (1990) WHAT IF: a molecular modeling and drug design program.

J Mol Graph 8: 52–56.
39. Jones DT (1999) Protein secondary structure prediction based on position-

specific scoring matrices. J Mol Biol 292: 195–202.
40. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern

recognition of hydrogen-bonded and geometrical features. Biopolymers 22:
2577–2637.

41. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of

nanosystems: application to microtubules and the ribosome. Proc Natl Acad
Sci U S A 98: 10037–10041.

42. DeLano WL (2002) The PyMOL Molecular Graphics System User’s Manual.
San Carlos: DeLano Scientific, LLC.

43. Roy A, Xu D, Poisson J, Zhang Y (2011) A protocol for computer-based protein

structure and function prediction. J Vis Exp. e3259 p.
44. Roy A, Zhang Y (2011) Recognizing protein-ligand binding sites by global

structural alignment and local geometry refinement. Submitted.
45. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their

functions. Nature Reviews Molec Cell Biol 6: 197–208.
46. Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured

proteins. Curr Opin Struct Biol 12: 54–60.

47. Uversky VN (2002) Natively unfolded proteins: a point where biology waits for
physics. Protein Sci 11: 739–756.

48. Vucetic S, Brown CJ, Dunker AK, Obradovic Z (2003) Flavors of protein
disorder. Proteins 52: 573–584.

49. Schlessinger A, Punta M, Rost B (2007) Natively unstructured regions in

proteins identified from contact predictions. Bioinformatics 23: 2376–2384.
50. Mohan A, Oldfield CJ, Radivojac P, Vacic V, Cortese MS, et al. (2006) Analysis

of molecular recognition features (MoRFs). J Mol Biol 362: 1043–1059.
51. Vacic V, Oldfield CJ, Mohan A, Radivojac P, Cortese MS, et al. (2007)

Characterization of molecular recognition features, MoRFs, and their binding
partners. J Proteome Res 6: 2351–2366.

52. Meszaros B, Simon I, Dosztanyi Z (2009) Prediction of protein binding regions

in disordered proteins. PLoS Comput Biol 5: e1000376.
53. Dosztanyi Z, Meszaros B, Simon I (2009) ANCHOR: web server for predicting

protein binding regions in disordered proteins. Bioinformatics 25: 2745–2746.
54. Tompa P (2003) Intrinsically unstructured proteins evolve by repeat expansion.

BioEssays 25: 847–855.

55. NCBI (2011) pfam12526: DUF3729. Conserved Domains.
56. Arankalle VA, Paranjape S, Emerson SU, Purcell RH, Walimbe AM (1999)

Phylogenetic analysis of hepatitis E virus isolates from India (1976–1993).
Journal of General Virology 80: 1691–1700.

57. Arankalle VA, Chobe LP, Chadha MS (2006) Type-IV Indian swine HEV
infects rhesus monkeys. J Viral Hep 13: 742–745.

58. Chatterjee R, Tsarev SA, Pillot J, Coursaget P, Emerson SU, et al. (1997)

African Strains of Hepatitis E Virus That Are Distinct From Asian Strains.
59. Legrand-Abravanel F, Mansuy J-M, Dubois M, Kamar N, Peron J-M, et al. (2009)

Hepatitis E Virus Genotype 3 Diversity, France. Emerg Infect Dis 15: 110–114.
60. Tettamanzi MC, Yu C, Bogan JS, Hodsdon ME (2006) Solution structure and

backbone dynamics of an N-terminal ubiquitin-like domain in the GLUT4-

regulating protein, TUG. Protein Sci 15: 498–508.
61. Nguyen HT, Torian U, Faulk K, Mather K, Engle RE, et al. (2011) A naturally-

occurring human/hepatitis E recombinant virus predominates in serum but not
in feces of a chronic hepatitis E patient and has a growth advantage in cell

culture. J Gen Virol doi:10.1099/vir.1090.037259-037250.

62. Ropp SL, Tam AW, Beames B, Purdy M, Frey TK (2000) Expression of the
hepatitis E virus ORF1. Arch Virol 145: 1321–1337.

63. Shukla P, Nguyen HT, Torian U, Engle RE, Faulk K, et al. (2011) Cross-species
infections of cultured cells by hepatitis E virus and discovery of an infectious

virus–host recombinant. PNAS 108: 2438–2443.
64. Eisenberg D, Schwarz E, Komaromy M, Wall R (1984) Analysis of membrane

and surface protein sequences with the hydrophobic moment plot. J Mol Biol

179: 125–142.
65. Karplus PA, Schulz GE (1985) Prediction of chain flexibility in proteins: A tool

for the selection of peptide antigens. Naturwissenschaften 72: 212–213.
66. Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm

based on the TM-score. Nucleic Acids Res 33: 2302–2309.

The Hepatitis E Virus Polyproline Region

PLoS ONE | www.plosone.org 13 April 2012 | Volume 7 | Issue 4 | e35974


