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Abstract
Image processing plays a crucial role in maximising diagnostic quality of positron emission tomography (PET) images. 
Recently, deep learning methods developed across many fields have shown tremendous potential when applied to medical 
image enhancement, resulting in a rich and rapidly advancing literature surrounding this subject. This review encapsu-
lates methods for integrating deep learning into PET image reconstruction and post-processing for low-dose imaging and 
resolution enhancement.  A brief introduction to conventional image processing techniques in PET is firstly presented. We 
then review methods which integrate deep learning into the image reconstruction framework as either  deep learning-based 
regularisation or as a fully data-driven mapping from measured signal to images. Deep learning-based post-processing 
methods for low-dose imaging, temporal resolution enhancement and spatial resolution enhancement are also reviewed. 
Finally, the challenges associated with applying deep learning to enhance PET images in the clinical setting are discussed 
and future research directions to address these challenges are presented.
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Introduction

Positron emission tomography (PET) is a highly versatile 
means of measuring physiological processes in vivo as an 
investigative tool for scientific discovery and a diagnostic 
tool for clinical patient care. Advancements in PET stem 
from a diverse range of fields including physics, radio- and 
biochemistry, materials science, modelling and data science 

and many medical disciplines, all of which act to coopera-
tively improve the efficacy of PET. From a data processing 
standpoint, advancements in PET imaging come from the 
development of optimal methods for extracting information 
from measured signals that are pertinent to clinical diagnosis 
and quantitative accuracy.

Since the first implementation of PET imaging [1], 
methods for reconstructing and processing images have 
been developed to maximise its clinical utility. Conven-
tional image reconstruction and post-processing meth-
ods rely on either a physical model of the data acqui-
sition or empirically derived functions in combination 
with methods of incorporating prior information into 
the image processing framework. More recently, devel-
opments in deep learning have motivated research into 
methods for incorporating learned prior information 
into medical image processing. Cornerstone works in CT 
and MRI have shown deep learning can produce state-
of-the-art performance in areas such as low-dose imag-
ing [2], super resolution [3], image-to-image translation 
[4], motion correction [5] and image segmentation [6]. 
Deep learning methods in PET have subsequently dem-
onstrated exceptional performance in the same tasks. 
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The work will review the literature on deep learning in 
PET image reconstruction, low-dose to full-dose map-
ping, temporal resolution improvement and spatial reso-
lution enhancement. These methods optimise the utility 
of acquired data rather than apply physical corrections 
such as scatter removal, motion correction or attenuation 
correction which correct the measured signal as described 
in recently published reviews [7–9]. 

Recent reviews of deep learning-based methods in 
PET have covered both denoising and attenuation cor-
rection methods [10], broad scope analysis of diagnostic 
prediction, segmentation and processing in both PET and 
CT [11] and a focused introduction and review of deep 
learning in PET reconstruction [12]. This review aims 
to encapsulate the current forefront of research in deep 
learning-based image reconstruction and post-processing 
for data enhancement as an integral image processing 
step (Fig. 1). We present a brief introduction on conven-
tional PET image reconstruction and post-processing 
techniques, followed by an overview of deep learning-
based image reconstruction, low-dose to full-dose post-
processing, temporal resolution improvement and spatial 
resolution enhancement. This review summarises the cur-
rent state-of-the-art artificial intelligence methods in PET 
image reconstruction and post-processing, and discusses 
future research directions.

Search criteria

The works reviewed in the sections “Review of deep learn-
ing-based image reconstruction”, “Review of deep learning-
based low-dose to full-dose post-processing” and “Review of 
deep learning-based resolution enhancement” were primarily 
searched for using the PubMed and Scopus databases with 
the search terms (“PET” or “PET-MRI” or “PET-CT”) and 
(“deep learning” or “neural network”) and (“reconstruction” 
or “low dose” or “low count” or “denoise” or “resolution” or 
“dynamic” or “temporal”) in the title, abstract or keywords. 
Additional searches were performed using the same keywords 
in IEEE journals and nature journals. Lastly, google scholar 
was used to identify any possible omissions. Several non-peer 
reviewed archived papers were included due to their relevance 
to this review. Papers which included the terms “segmentation”, 
“attenuation correction” and “scatter correction” in the title, 
abstract or keywords were excluded from the search results. A 
total of 183 research articles were gathered from the search cri-
teria between January 2016 and December 2021. Finally, works 
which focused on coregistration, motion correction, hardware 
level improvements and deep learning-based diagnostic predic-
tion without explicit focus on image enhancement were manu-
ally excluded. A total of 80 research articles focused on deep 
learning-based image processing which fell within the scope 
of this review were included and 31 works focused on conven-
tional image processing techniques were included.

Fig. 1   Image processing in the context of PET as a whole. Advancements in various fields contribute holistically to improvements in PET as a 
modality. This review considers data-driven deep learning-based techniques in the image processing pipeline
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Background

In general, PET image reconstruction and enhancement 
is an ill-posed inverse problem which can be usefully for-
mulated in the following way: Given an observation y ∈ Y 
obtained from the desired latent image x ∈ X by some for-
ward model f: X → Y derive the estimate x̂  such that:

where L is a data consistency term which evaluates the dif-
ference between observation y and modelled observation 
f (x) and R(x) incorporates prior knowledge regarding the 
nature of x . The formulation of Eq. (1) generally describes 
the steps which constitute the PET image processing pipe-
line (Fig. 1).

Maximum a posteriori image reconstruction

PET image reconstruction is defined as the method by 
which an image of the positron annihilation distribution 
is recovered from the acquired gamma ray coincidence 
detection signals. Modern state-of-the-art clinical PET 
image reconstruction is based on a framework first pro-
posed by Shepp and Vardy [13] which estimates the activ-
ity distribution that maximises the a posteriori probability 
of observing the measured PET signal with respect to a 
model of the PET system. The data acquisition process is 
modelled as the linear equation:

where the system matrix element aij is the probability of an 
annihilation event in voxel �j being detected in randoms and 
scatter corrected sinogram voxel si . The system matrix is 
determined by the scanner geometry and incorporates physi-
cal models of the system performance [14–16]. Each voxel 
of the reconstructed annihilation distribution is treated as an 
independent Poisson distributed random variable based on 
the nature of radioactive decay. From the conditional prob-
ability of measuring sinogram s given annihilation distribu-
tion λ, the negative Poisson log likelihood function defined 
as:

is derived and used as a convex data consistency term for 
image reconstruction. Using these formulations of data con-
sistency and a forward model, maximum a posteriori PET 
image reconstruction in the form of Eq. (1) is defined as:

(1)x̂ = argmin
x

L(y, f (x)) + R(x)

(2)si =
∑

j

aij�j

(3)−logP(s|�) =
∑

ij

aij�j − silogaij�j

where �̂  is the reconstructed image and no prior constraints 
on the choices of � are applied.

Regularisation for image reconstruction

PET images suffer from low signal-to-noise ratio and low 
spatial resolution relative to anatomical imaging modalities 
such as MR and CT, due to the intrinsic physical limita-
tions of the PET system design and data acquisition process. 
The severity of such effects can be mitigated by including 
prior knowledge of the solution when solving the objective 
function of Eq. (4). Analytical regularisers are hand-crafted 
functions used to augment the objective function of Eq. (4)

where the prior model, R(�) , introduces constraints on the 
solution based on prior knowledge of the desired solution, 
which in the context of PET imaging, commonly involves 
minimising noise whilst preserving sharp edges [17].

Considerations to make when choosing a prior are the 
degree to which they improve image quality and the effect 
they have on the numerical methods used to solve Eq. (5). 
Priors which constrain pixel values according to a pre-
defined probability distribution with a pre-defined expecta-
tion value often result in computationally efficient closed 
form solutions for iteratively solving Eq. (5), however can 
introduce significant bias into the solution depending on the 
choice of parameters. Levitan et al. [18] and Lange et al. [19] 
demonstrated means of constraining voxel values accord-
ing to Gaussian and Gamma distributions, respectively, 
and solving Eq. (5) efficiently with faster convergence than 
unconstrained reconstructions.

A more comprehensive yet computationally expensive 
choice of R(�) considers spatial dependence of neighbour-
ing voxels such that:

where some potential function Vij(�i, �j) is designed to penal-
ise a voxel value �i as a function of surrounding voxel values 
�j in some neighbourhood Ni centred on the ith voxel. In 
practice, a number of potential functions have been investi-
gated [20–22], all of which generally aim to penalise large 
variations in adjacent pixels to minimise noise. Priors which 
consider intervoxel dependence often require a significantly 
longer computational time in comparison to spatially inde-
pendent priors, yet do not require pre-defined choices of 
mean pixel values.

(4)�̂ = argmin
�≥0

∑

ij

aij�j − silogaij�j

(5)�̂ = argmin
�

− logP(s|�) + R(�)

(6)R(�) =

N∑

i

∑

j∈Ni

Vij(�i, �j)

3100 European Journal of Nuclear Medicine and Molecular Imaging  (2022) 49:3098–3118

1 3



Synthesis regularisation methods such as kernel-based 
reconstruction [23, 24] and dictionary matching [25–27] 
constrain the solution to the reconstruction problem to be 
synthesised from a predefined basis as follows:

where the pre-defined basis vectors defined by the matrix 
K are derived from prior knowledge of the solution and the 
optimal combination is determined by ẑ  . Defining a gener-
ally applicable function or dictionary is difficult in practice 
due to the varying image features from different anatomy, 
different tracers, and the variance in biological and anatomi-
cal characteristics across patients. Simultaneously acquired 
MR or CT images provide high-resolution anatomical infor-
mation that is inaccessible by stand-alone PET and can be 
used to determine the regularisation. Anatomically guided 
reconstruction can be integrated into analytical priors of the 
form shown in Eq. (6) where PET voxels can be weighted 
against simultaneously acquired or coregistered MR images 
at each iteration of the reconstruction [28–31], to encour-
age uniformity and edges in the PET image which corre-
spond to those in the MR image. Similarly, simultaneously 
acquired MR images can be utilised in synthesis regularisa-
tion [24, 32] where the matrix K as shown in Eqs. (7) and 
(8) is derived or dependent on MR information. The quality 
of the anatomically guided PET reconstruction is therefore 
determined according to a posteriori knowledge regarding 
the relationship between the spatial distribution of the PET 
tracer and the anatomical image contrast.

Conventional post‑processing techniques

A common and often more practical approach to enhanc-
ing PET images is to apply additional constraints to images 
post-reconstruction. Such methods can be applied without 
any adjustments to existing stages in the image process-
ing pipeline, which are often inaccessible on commercially 
available software, and provide more a computationally effi-
cient means of iteratively adjusting the parameters of the 
additional processing step. Post-processing techniques are 
typically implemented to either control noise or to improve 
image contrast.

Clinical protocols often control noise by convolving 
reconstructed images with a simple Gaussian blurring ker-
nel. Although strong noise control is required for applica-
tions like dynamic PET or low-dose imaging, heavy Gauss-
ian blurring indiscriminately attenuates both noise and high 
spatial frequency details in the image. More intricate meth-
ods utilise functions of the form in Eq. (6) where spatially 

(7)ẑ = argmin
z

− logP(s|Kz)

(8)�̂ = Kẑ

dependent relationships between pixels are utilised. Non-
local means smoothing which performs a weighted aver-
age dependent on both the similarity of coupled pixel val-
ues and their distance [33, 34] are often more beneficial in 
such situations. Block matching methods [35] which define 
pixel-wise weightings from a set of spatially similar blocks 
extracted from the same image have also been investigated 
for PET denoising [36]. Methods more specific to PET imag-
ing such as spatially dependent smoothing with non-negativ-
ity constraints have also been developed for applications in 
low-count PET [37].

The limited spatial resolution of PET imaging systems 
also leads to significant partial volume effects for high spa-
tial frequency details in PET images resulting in an under-
estimation of peak uptake for small features with large 
contrast and blurring sharp boundaries. Post-processing for 
reducing partial volume effects is typically implemented 
using iterative deconvolution methods. Such methods model 
the point-spread function of the PET imaging system and 
numerically estimate a high-resolution image consistent with 
the associated blurring by minimising a function of the form 
[38–40]:

where � is the initial reconstructed image, �PVC is the esti-
mated image with partial volume correction and h is the esti-
mated point-spread function of the imaging system. Iterative 
deconvolution methods amplify the high-spatial frequencies 
in the image which includes amplifying noise [41] and can 
also potentially generate edge artefacts [42]. MR-guided 
post-processing may simultaneously denoise and perform 
partial volume correction by leveraging the comparatively 
low-noise and high-resolution quality of MR images. Recon-
structed PET image voxels are weighted based on neigh-
bouring MR image voxels in a pre-defined manner using 
a function of the form in Eq. (6) [43, 44]. Such methods 
produce perceptually appealing images with excellent noise 
control and partial volume correction; however, the quality 
is strongly dependent on the coregistration between images 
and the empirically derived way in which the MR contrast 
relates to PET contrast.

A deep learning approach to PET image processing

Often it is the case that excellent PET image quality can be 
produced with long acquisition times and relatively large 
radiation doses. However, in practice, achieving optimal 
image quality is infeasible due to the demand for patient 
throughput and to limit the risks of radiation exposure. Deep 
learning provides a framework to learn data-driven map-
pings from low-quality to high-quality images with the aim 

(9)�̂PVC = argmin
��� �

‖� − h ∗ �PVC‖2
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of using the most logistically beneficial imaging protocols 
while achieving optimal image quality.

Using a set of high-quality images Y  reconstructed with 
an optimal imaging protocol and a corresponding set of low-
quality images X reconstructed with a truncated imaging 
protocol (faster and lower dose), deep learning-based meth-
ods, based on a neural network N ∶ X → Y  , aim to generate 
an estimate of a high-quality output image yi ∈ Y  from the 
corresponding low-quality input xi ∈ X as:

where ŷi is the estimate of yi and Θ is the set of neural net-
work parameters. The parameters of the neural network are 
iteratively optimised to minimise the loss between the esti-
mated high-quality images and the true high-quality images 
such that:

where Θ̂ are the optimal network parameters and L is a loss 
function that quantifies the difference between predicted out-
put and the ground truth in a supervised learning setup. This 
can further be extended to unsupervised learning setting 

(10)ŷi = N(xi;Θ)

(11)Θ̂ = argmin
Θ

∑

i

L(yi,N(xi;Θ))

where the target outputs are unknown, and learning relies on 
pattern recognition across the set of input data. Information 
regarding the nature of the high-quality images is encoded 
into the optimal parameters of the neural network which can 
be integrated into the maximum a posteriori (MAP) image 
reconstruction framework or the post-processing pipeline to 
impose prior knowledge into the final solution.

Review of deep learning‑based image 
reconstruction

Deep learning-based PET reconstruction methods utilise 
deep neural networks in mapping raw data to diagnos-
tic images. A neural network can trained to learn a map-
ping from raw data directly to the desired output image 
in an end-to-end manner,  providing a purely data-driven 
alternative to conventional image reconstruction methods. 
Alternatively, existing iterative reconstruction frameworks 
can be modified to incorporate a neural network as regu-
larisation in combination with data consistency. Figure 2 
overviews and compares different deep learning-based 
image reconstruction methods.

Fig. 2   Description of deep learning-based PET image reconstruc-
tion methods. A End-to-end methods are fully data-driven and do not 
require an instrument-based system matrix. B Regularisation-based 
methods utilise a neural network in combination with data consist-

ency, retaining the system matrix. C Unrolling iterative algorithms 
into a sequence of processing steps makes it feasible to train iteration-
specific regularisation terms
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End‑to‑end

End-to-end deep learning-based PET reconstruction meth-
ods (Fig. 2a) attempt to map sinogram data directly to the 
corresponding image space data with a neural network:

where parameters ΘN of network N are trained to optimally 
map sinogram s to their corresponding positron annihila-
tion distribution � . In contrast to iterative reconstruction 
techniques which require an accurate model of the forward 
process, end-to-end deep learning-based approaches can 
be considered analogous to analytical reconstruction meth-
ods such as filtered back projection (FBP) in so far as they 
attempt to fully characterise the inverse process in a single 
step, without an explicit model of the forward process. The 
data-driven nature of such an approach provides a means of 
overcoming the limitations and potential errors in a well-
defined system model, but at the cost of discarding any use-
ful information it provides.

Several works utilise fully convolutional networks for 
performing the domain transform. For approaches which 
utilise a fully connected domain transform layer, the network 
architecture can be generally described as a composition of 
three modules:

where zs = S(s;Θs) is a sinogram processing module, 
zd = D(zs;Θd) is a learned transform from sinogram space 
to image space and � = I(zd;ΘI) is an image processing mod-
ule. Haggstrom et al. [45] presented an end-to-end mapping 
of PET sinograms to images termed DeepPET using a modi-
fied Unet trained on synthetic XCAT digital phantom data. 
The peak signal-to-noise ratio (PSNR), root mean squared 
error (RMSE) and structural similarity index (SSIM) outper-
formed ordered subset expectation maximisation (OSEM) 
and filtered back projection (FBP) reconstruction for the 
synthetic evaluation data providing a strong proof of con-
cept. Huang et al. [46] used a fully convolutional network 
for reconstruction and incorporated a pre-processing neural 
network for filling crystal spacing gaps in sinogram data. 
Fully convolutional generative adversarial networks (GAN) 
were investigated by Liu et al. [47] using a conditional GAN 
and Hu et al. [48] using a cycle consistent GAN [49] with a 
VGG19 network [50] trained with clinical data for percep-
tual loss. Results demonstrated reduced bias and variance 
relative to FBP and maximum likelihood expectation maxi-
misation (MLEM) reconstruction and the cycleGAN imple-
mentation outperformed an instance of the DeepPET archi-
tecture in PSNR and SSIM. Kandarpa et al. [51] proposed an 
architecture consisting of serial models for denoising, image 
reconstruction and super resolution trained on whole body 

(12)� = N(s;ΘN)

(13)� = I(D
(
S
(
s;ΘS

)
;ΘD

)
;ΘI)

18F-FLT images. The authors compared the performance 
to the DeepPET network and showed improved RMSE and 
SSIM. Although fully convolutional neural networks are 
readily available for direct image reconstruction in an end-
to-end manner, their overall performance may be limited 
due to the underlying signal differences between measured 
sinogram space and reconstructed image space.

Zhu et  al. [52] presented a neural network termed 
AUTOMAP for mapping general sensor space data to image 
space. The AUTOMAP architecture performs a domain 
transformation to using three feed forward fully connected 
layers followed by serial convolutional operations. In the 
context of PET, fully connected layers define a learned 
inverse system matrix which can model the non-local rela-
tionship between pixels in sinogram and image space. While 
the authors present only limited examples of application to 
PET, the concept of learning a fully connected domain trans-
form was subsequently adopted by work specifically aimed at 
reconstructing PET sinogram data [53–56]. Wang et al. [53] 
presented a neural network termed FBP-Net which learns 
a frequency domain filter for sinograms, a fully connected 
layer for learning a back projection and finally a denois-
ing convolutional neural network (CNN). The network was 
trained on data derived from a digital phantom augmented 
with rotations, translations, and scaling. Comparisons were 
made with DeepPET and a Unet for evaluation, with the 
FBP-Net being more robust to overfitting and previously 
unseen anatomy. Other works incorporated unfiltered back 
projections as a domain transform with no sinogram space 
filtering [54, 55]. Zhang et al. [54] presented the bpNET 
which used an unfiltered back projection as a pre-processing 
step followed by a residual encoder decoder network trained 
on synthetic data. Xue et al. [55] also use an unfiltered back 
projection as pre-processing with a cycle consistent GAN 
network [cycleGAN] trained on clinical data. Whiteley et al. 
[56] presented a network termed Direct-PET which learned 
an optimal sinogram compression and performed a more 
efficient domain transform by masking the sinograms and 
mapping to a patch in image space. Neural network architec-
tures which incorporate either learned or pre-defined domain 
transforms can better account for the non-local relationship 
between voxels in sinogram and image domains and may 
present a more viable alternative to fully convolutional neu-
ral networks.

Other works [57, 58] which focused on real-time recon-
struction have investigated analytically histogramming list-
mode data directly to image space,providing a raw data rep-
resentation with a spatially local relationship to a high-fidelity 
reconstructed image in an attempt to avoid implementing a 
data-intensive learned domain transform matrix. Whitely et al. 
[57] presented a network termed Fast-PET which used a mod-
ified Unet to map histogrammed image data to a high-quality 
reconstructed image for real-time PET image reconstruction. 
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They demonstrated reconstructed images comparable to 
standard OSEM reconstructions with a 67 × reduction in com-
putational time. Methods similar to those presented in [57, 
58] are likely to be of considerable interest in applications in 
which near real-time image reconstruction is required.

Regularisation based

Regularisation-based deep learning image reconstruction 
integrates a neural network into the iterative reconstruction 
framework to constrain the solution with a combination 
of data consistency and prior information. Retaining the 
explicit system model helps strengthen the generalisability 
of the reconstruction algorithm. Recurrent neural networks 
(RNN) [59] integrate learned parameters into a recurrence 
relation to model sequential data. The sequential nature of 
iterative image reconstruction lends itself well as an appli-
cation of RNNs which unrolls the iterative algorithm into 
a set of sequential blocks. Gong et al. [60] incorporated a 
pre-trained neural network into an iterative reconstruction 
framework which mapped low-count PET images to full-
count PET images where the reconstructed image was con-
strained to be synthesised from a network output (as shown 
in Fig. 2b). The regularised image reconstruction is given as:

where �̂  is the final reconstructed image, s is the sinogram 
input, ẑ  is the optimal network input, N is the pre-trained 
low-dose to full-dose neural network and L is the Poisson 
log-likelihood. The constraints of Eqs. (14) and (15) are 
reformulated as a constrained optimisation problem, writ-
ten as an augmented Lagrange function, and solved using 
the alternating direction method of multipliers (ADMM) 
algorithm. An example of Unets trained with clinical brain, 
heart and lung data was presented demonstrating better con-
trast recovery and denoising properties than a Unet for post-
processing. Subsequent work extended the framework from 
[60] to a Patlak parametric reconstruction [61]. The same 
formulation as [60] was also used for implementing unsu-
pervised image reconstruction [62]. Other works [63, 64] 
subsequently investigated variations of this method includ-
ing using a GAN for improved perceptual quality and using 
PET CT data with a modified Unet with separate encoders 
and a shared decoder.

An additive regularisation term which minimises the dif-
ference between a neural network synthesised image and 
the reconstructed image provides a more lenient constraint 
compared to that used in [60]. Kim et al. [65] utilised a 

(14)ẑ = argmin
z≥0

L(s,N(z;Θ))

(15)�̂ = N
(
ẑ;Θ

)

pre-trained neural network in an additive regularisation term 
with a patch-wise linear mapping of the form:

where �n is the current estimate of the image at iteration 
n , N is a neural network trained with parameters Θ to map 
low-dose to full dose images, ⨀ is pixel-wise multiplica-
tion and qn

�
 and bn

�
 are matrices of local linear fitting param-

eters derived from the input � . The linear fit reduces bias by 
ensuring mean pixel values within small regions are consist-
ent with the original input. Similar work by Wang et al. [66] 
used a relative difference in the regularisation with no local 
linear fitting. Lv et al. [67] developed a formulation which 
integrated two neural networks into the MAP framework: an 
initial denoising network trained to map low count images 
to full count images and a subsequent image enhancement 
network trained to map reconstructions with low iterations 
to high iterations. Denoising network outputs are combined 
with inputs using an edge preserving step and enhance-
ment network outputs were combined with inputs using a 
weighted sum, providing a regularisation like Gong et al. 
[60] which can be fined tuned with a hyperparameter like 
the regularisation used by Kim et al. [65]. Mehranian and 
Reader [68] unrolled a forward–backward splitting expecta-
tion maximisation (FBSEM) algorithm into a recurrent neu-
ral network (FBSEM-Net) using the same residual block at 
each iteration. Separate instances were trained with synthetic 
data and clinical 18F-FDG brain data reconstructed with MR-
guided MAP expectation maximisation as ground truth and 
compared against conventional reconstruction methods and 
a 3D Unet as post-processing. FBSEM-Net demonstrated 
comparable performance in enhancing contrast-to-noise 
ratio, lesion uptake error and normalised RMSE (NRMSE), 
when trained on synthetic data. Results from FBSEM-Net 
trained on clinical data (Fig. 3) demonstrated optimal per-
formance in replicating regional activity measures for a 
30-min scan when applied to data from the first 2 min of 
the acquisition despite that deep learning-based processing 
biased the biodistribution of tracer after 2 min of acquisition 
towards that of the full 30-min acquisition. Incorporating 
deep learning-based regularisation as an additive constraint 
or in the manner of Eqs. (14) and (15) allows for relatively 
easy integration with model-based iterative reconstruction 
methods. By retaining the robust performance of the system 
model, regularisation methods such as these are likely to be 
a more feasible option than end-to-end reconstruction for 
clinical application in the near future.

While RNNs conventionally share parameters across all 
blocks of the network, training parameters unique to each 
block provides more flexibility in learning an optimal con-
vergence (Fig. 2c). The first application of an RNN with 
unique parameters at each block was by Lim et al. [69] who 

(16)R(𝜆n) =
‖‖‖𝜆 −

(
qn
𝜆
⊙ N(𝜆n;Θ) + bn

𝜆

)‖‖‖
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applied a modified version of the block coordinate descent 
network [70] to low-count PET image reconstruction. Con-
volutional filters unique to each iteration of the reconstruc-
tion were trained using synthetic 90Y liver images to mini-
mise the L2 norm between the current iteration estimate and 
ground truth images, demonstrating better performance than 
total variation regularisation and non-local means. MAPEM-
Net from Gong et al. [71] performs a regularised MAP 
expectation maximisation image reconstruction using an 
unrolled ADMM algorithm with a 3D Unet as the regulari-
sation term. The algorithm was trained end-to-end on digital 
18F-FDG PET brain phantoms, producing images with sig-
nificantly better contrast recovery and noise properties com-
pared to the 3D Unet used for post-processing and standard 
EM reconstruction with Gaussian blurring. Follow-up work 
from the original FBSEM-Net [72] implemented iteration-
specific convolutional kernels and unrolled more iterations 
with sequential training. Iteration-specific FBSEM-Net was 
trained on simulated 18F-FDG PET brains and compared 
with deep learning-based post-processing, Tikhonov regu-
larisation, the original FBSEM-Net, and an instance of the 
block coordinate descent algorithm from Lim et al. [69] and 
demonstrated superior performance in NRMSE and bias-
standard deviation trade off. Iteration-specific parameters 
demonstrated improved robustness to varying noise inputs 
and tissue contrasts. Sequentially training parameters of each 
iteration showed equivalent performance for end-to-end 
training but with a significant decrease in memory require-
ments for training networks with many unrolled blocks.

Review of deep learning‑based low‑dose 
to full‑dose post‑processing

Deep learning-based low-dose to full-dose image post-process-
ing refers to methods which utilise neural networks to synthe-
sise full-dose images from reconstructed low-dose images as:

where N is the neural network trained with an optimal set of 
parameters Θ , �ld is the low-dose input, �fd is the synthesised 
full dose image and z is a potential additional input which 
contributes information regarding the nature of �fd . Deep 
learning-based post-processing techniques are typically 
more easily implemented than regularised image recon-
struction and offer more flexibility than end-to-end recon-
struction, and thus present an efficient means to utilise deep 
learning in practice. The dose reduction factor achievable 
varies depending on several factors including the informa-
tion provided to the network, regularisation of the network 
loss function and the generality of the evaluation dataset. 
Table 1 provides a summary of deep learning models, data-
sets and evaluation metrics for the low-dose to full-dose 
post-processing applications reviewed in this work.

Single modality PET input data

Deep learning models which require only PET images as 
an input provide a versatile means to implement low-dose 
PET post-processing on hybrid or stand-alone PET systems.

(17)�fd = N(�ld;z,Θ)

Fig. 3   Images from Mehranian 
et al. comparing reference thirty 
minute maximum a poste-
riori expectation maximisation 
reconstruction with a 2-min 
reconstruction with FBSEM-
Net using PET and MR inputs 
(FBSEM-pm), standard data 
consistency-based reconstruc-
tions (MAPEM) and deep 
learning-based post-processing 
with PET and MR inputs (Unet-
pm) (images from [68])
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Table 1   Summary of deep learning based low-dose to full-dose post-
processing implementations reviewed in this work. Details from each  
source are: the neural network architecture, dimensions of the input 

data, additional input information, tracer, anatomical region, activity 
and acquisition time, the dose or time reduction factor, and the evalu-
ation metrics used to convey performance

Network archi-
tecture

PET input 
dimensions

Additional 
input data

Tracers Anatomy Activity/Acq, 
time (MBq, 
min)

Dose/time 
reduction factor

Evaluation 
metrics

[73] CNN 2D Patch T1 18F-FDG Brain (203,12) 4 PSNR, nMSE
[74] Unet 2.5D None 18F-FDG Brain (370,40) 200 SSIM, PSNR, 

NRMSE
[75] Residual Unet 2D T1, T2, FLAIR 18F-FBB Brain (330, 20) 100 PSNR, RMSE, 

SSIM, QCS, 
rSUV, CD

[76] Unet 3D CT 18F-FDG Cardiac (300,10) 10, 100 LVEF, ESV, 
EDV

[77] Modified Unet 2.5D LAVA 18F-FDG Whole body Site 1: (3 kg−1, 
3.5 bed−1)

Site 2: (3 kg−1, 
4 bed−1)

16 PSNR, NRMSE, 
SSIM, rSUV, 
CTD

[78] Unet 3D Patch None 18F-FDG Brain (5.18 kg−1, 5 
bed−1)

7.5, 30 SNR, SSIM

[79] CNN (Dilating 
convolutional 
kernels)

2D None 18F-FDG Brain (166.5, 10) 10 MAE, PSNR, 
SSIM, rMAE

[80] Unet 3D None 18F-FDG Brain (205, 20) 20 PSNR, RMSE, 
SSIM, rSUV, 
QCS

[81] FFNN 2D Patch None Sim 82Rb, 82Rb Cardiac (N/A, 7) 7, 3.5, 1.5 NMSE, ROI 
Contrast

[82] Unet 3D Patch None 18F-FDG Whole body (225.3, 10) 6.7, 9.1, 13.3, 
17.5, 26.3, 
66.7, 125, 
250, 500

Lesion SUV, 
QCS, CTD

[83] Modified Unet 2D Sim T1 Sim 18F-FDG Brain (N/A, N/A) N/A MSE, Lesion CR
[84] CNN 3D T1 18F-FDG Brain (N/A, N/A) 10, 100 NRMSE, SUV 

bias
[85] cycleGAN 2D Patch None 18F-FDG Brain (218.3, 20) 125 PSNR, NRMSE, 

SSIM, SUV 
bias

[86] GAN 2D None 18F-FBB Brain (300, 20) 10 PSNR, NRMSE, 
SSIM, rSUV, 
QCS, CD

[87] GAN 3D Patch None 18F-FDG Whole body (5.55 kg−1, 20) 2 SSIM, PSNR
[88] cycleGAN 3D Patch None 18F-FDG Whole body BMI ≤ 18.5: 

(370, 1.5 
bed−1)

18.5 ≤ BMI ≤ 
25: (370, 2 
bed−1)

25 ≤ BMI ≤ 
30: (370, 2.5 
bed−1)

30 ≤ BMI: 
(444, 2.5 
bed−1)

8 MAE, NRMSE, 
rPSNR

[89] cycleGAN 2D Patch None 18F-FDG Whole Body (370, 5) 3.3, 10 PSNR, NRMSE 
SUV bias

[90] GAN 2D Patch None 18F-FDG Whole body (N/A, N/A) 10 PSNR, RMSE, 
SSIM Lesion 
SUV
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The first report that demonstrated orders of magnitude 
of dose reduction with PET only input data by Xu et al. 
[74] used a 2.5D Unet with supervised residual learning 
to map low-dose 18F-FDG PET brains to full-dose. They 
achieved a 200 × dose reduction factor that demonstrated 
superior PSNR, NRMSE and SSIM as compared to non-
local means and 3D block matching. Several subsequent 
papers further developed the application of neural networks 
for PET only data. Sanaat et al. [80] compared low-dose 
to full-dose mappings with a 3D Unet in image space and 
sinogram space and demonstrated that sinogram space pro-
cessing produced improved results with significantly higher 

PSNR and significantly lower SUV bias. Spuhler et al. [79] 
used a CNN formulation with dilation of the convolutional 
kernels in place of down-sampling operations, with PSNR, 
SSIM and NRMSE results comparable to a Unet. Wang et al. 
[81] trained a feed-forward fully connected network with 
synthetic data to denoise low-dose 4 × 4 × 4 pixel patches 
and directly applied the network to 82Rb cardiac PET images. 
Schaefferkoetter et al. [82] trained a 3D patch-based Unet 
to map low-dose to full-dose images of patients with small-
cell lung cancer and evaluated SUV bias in lesions. Fully 
supervised methods such as these have demonstrated the 
ability to reproduce quantitative image metrics consistent 

DT diffusion tensor, PSNR peak signal-to-noise ratio, RMSE root mean square error, NRMSE normalised root mean square error, MSE mean 
square error, MAE mean absolute error, rSUV regional SUV, CR contrast recovery, SSIM structural similarity index, QCS qualitative clinical 
score, CD clinical diagnosis, CTD clinical tumour detectability, LVEF left ventricular ejection fraction, EDV end diastolic volume, ESV end sys-
tolic volume, LAVA liver acquisition volume acceleration, RFSIM Riesz-transform based feature similarity, VIF visual information fidelity, Sim 
simulated data

Table 1   (continued)

Network archi-
tecture

PET input 
dimensions

Additional 
input data

Tracers Anatomy Activity/Acq, 
time (MBq, 
min)

Dose/time 
reduction factor

Evaluation 
metrics

[91] GAN 2.5D None 18F-FBB Brain (330, 20) 100 PSNR, RMSE, 
SSIM, FBM, 
EBM, CD

[92] GAN 3D Patch None 18F-FDG Brain (203, 12) 4 PSNR, nMSE, 
rSUV

[93] GAN 3D Patch T1, DT 18F-FDG Brain (203, 12) 4 PSNR, SSIM, 
rCR

[94] GAN 3D Patch None 18F-FDG Whole body (5.55 kg−1, 20) 5 NRMSE, PSNR, 
RFSIM, VIF

[95] CAE, Unet, 
GAN

2D, 2.5D, 3D None 18F-FDG Thoracic (370, 20) 10 PSNR, nMSE, 
Lesion SUV 
bias

[96] Residual Unet 2D T1, T2, FLAIR 18F-FBB Brain LD: (8, 30)
FD: (334, 20)

42 PSNR, RMSE, 
SSIM rSUV, 
QCS, CD

[97] Residual Unet 2D T1, T2, FLAIR 18F-FBB Brain Site 1: (330, 
20)

Site 2: (283, 
20)

Site 1: 100
Site 2: 20

PSNR, RMSE, 
SSIM rSUV, 
QCS, CD

[98] Unet 3D Patch None 18F-FDG, 
18F-FMISO, 
68Ga-Dotatate

Whole body FDG: (340, 20)
FMISO: (181, 

50)
DOTATATE: 

(130, 21.6)

10 PSNR, NRMSE, 
Lesion SUV 
bias

[99] Residual Unet 2.5D None Sim 18F-FDG, 
18F-FDG

Brain (185, 70) 4 CR

[100] Unet 2.5D None 18F-FDG Whole body Site 1: (481, 3 
bed−1)

Site 2: (400, 3 
bed−1)

Site 3: (429, 3 
bed−1)

4 QCS, CTD, 
rSUV

[101] Residual Unet 3D None 18F-FDG Whole body (391, 2.45 
bed−1)

1.33, 2, 4 CTD, rSUV

[102] Modified Unet 2.5D T1, T2 18F-FDG Brain (230, 30) 180 PSNR, SSIM
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with standard-dose PET images from relatively large dose 
reduction factors; however, implementation requires a com-
prehensive set of training data to help ensure performance 
translates generally to a clinical environment.

Unsupervised learning and methods which reduce the 
required number of high-quality training pairs are of interest 
in data scarce applications and situations where high-quality 
data is unattainable. The deep image prior (DIP) formulated 
by Ulyanov et al. [103] that parameterised a single noisy 
image with a neural network based on self-supervised train-
ing was used by Cui et al. [104] as a post-processing tech-
nique for noisy whole body PET images. DIP-based meth-
ods produced better contrast-to-noise ratio compared to the 
deep decoder method from Heckel et al. [105], Gaussian 
smoothing, non-local means and 4D block matching. Work 
from Cui et al. [106] extended this concept by implementing 
the DIP method with a neural network initially trained on 
population level information, demonstrating better results 
than a randomly initialised DIP. Furthermore, Yie et al. [78] 
investigated the quality of supervised learning approaches 
with noisy target images. Transferred learning across imag-
ing protocols and tracers was investigated by Liu et al. [98] 
for implementing deep learning-based low-dose processing 
with limited training data. Transferred learning from 18F-
FDG to 68 Ga-DOTATATE and 18F-FMISO demonstrated 
a reduction in training data required to achieve consistent 
performance with 68 Ga-DOTATATE and 18F-FMISO net-
works trained from scratch. Directly applying neural net-
works trained with FDG images to 18F-Florbetapir images, 
18F-FET images and across scanner manufacturers has 
also demonstrated statistically significant improvements 
in image quality for dose reduction factors ranging from 
2 to 100 [107]. Unsupervised learning methods generalise 
well across various clinical situations; however, they do 
not incorporate population level information to the extent 
of supervised learning which limits their ability to achieve 
comparable levels of dose reduction. The continued develop-
ment of learning methods which reduce the required amount 
of training data and that generalise well to unseen data will 
be crucial to expanding the clinical impact of deep learning.

Studies have also investigated the performance of deep 
learning across sites with varying imaging protocols. 
Mehranian et al. [101] evaluated the performance of a 
3D residual Unet for mapping short duration whole body 
18F-FDG scans to full duration scans using data from six 
sites. Results demonstrated improved lesion quantitation 
and detectability with radiation dose reductions of 50%. 
Chaudhari et al. [100] evaluated the performance of a 2.5D 
Unet on whole body 18F-FDG scans collected across three 
sites with a dose reduction factor of 4 × (Fig. 4). Training 
data was sourced entirely from outside the three evalua-
tion sites to provide an unbiased evaluation of deep learn-
ing techniques across sites. Synthesised full-dose scans 

demonstrated comparable lesion detectability, qualitative 
clinical scores and SUV accuracy to standard full dose 
scans which indicated neural networks may be sufficiently 
generalisable to realise significant dose reduction across 
centres without additional fine tuning. Future  studies 
which demonstrate the extent to which deep learning-
based methods can generalise across sites will be neces-
sary for identifying the feasibility of clinical implementa-
tion beyond those facilities with the means for in-house 
development. Such studies will also help to guide the 
development of commercially viable products to help 
make deep learning-based methods widely available.

Fig. 4   Examples of deep learning-based low-dose to full-dose post-
processing using PET only inputs and evaluated across multiple sites 
using different acquisition protocols and scanners. The neural net-
work used in this case was trained using data sourced independently 
from the three evaluation sites to provide an unbiased evaluation 
(Image from [100])
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Multi‑modality input data

While deep learning has demonstrated feasibility in low-
dose post-processing with only PET inputs, the relatively 
poor image quality intrinsic in low-dose PET limits the 
information available for learning. Hybrid systems including 
PET/MR and PET/CT can simultaneously or sequentially 
acquire MR and CT images, which can be used as additional 
inputs to the neural network to leverage the high-quality ana-
tomical information inherent in these modalities [108].

Early work by Xiang et al. [73] showed good performance 
with mapping low-dose PET images with a coregistered 
T1-weighted MR image to diagnostic quality PET images 
with a dose reduction factor of 4 × using a 2D patch-based 
CNN. Their methods showed improved NMSE and PSNR 
and demonstrated the feasibility of relatively small patch-
based networks. Chen et al. [75] used a residual Unet with 
a 2D input consisting of multi-contrast T1, T2, FLAIR and 
a 100-fold low-dose PET dataset for mapping to full-dose 
18F-Florbetaben images. The predicted full-dose images 
produced amyloid positive–negative diagnostic accuracy 
comparable with the actual full-dose acquisition. As shown 
in Fig. 5, a comparison between models trained separately 
with PET data and multimodal PET/MR data showed that 
the amyloid status, PSNR, SSIM, RMSE and regional SUV 
accuracy improved considerably when using multimodal 
input because of the superior anatomical contrast in MRI.

Several groups have further investigated other model 
architectures and the inclusion of additional MR contrasts. 
Liu et al. [83] modified a Unet to include feature extractors 
for low-dose PET and T1-weighted MR inputs prior to con-
catenation of input data. Costa-Luis et al. [84] used a fully 
3D input dataset with differing noise levels for full global 
contextual information and improved robustness to varia-
tions in noise compared to early works. Ladefoged et al. [76] 
investigated low-dose cardiac imaging, mapping low-dose 
18F-FDG cardiac images and CT to full-dose images with 

a dose reduction factor of ×100  using a 3D Unet and the 
Huber loss function. The team further evaluated the accu-
racy of their method for evaluating the left ventricular ejec-
tion fraction, end diastolic volume and end systolic volume 
and inter-subject variation. Wang et al. [77] used water and 
fat MR images as additional inputs to generate full-dose PET 
images with a spatially weighted loss function and dem-
onstrated reduction in SUVmean and SUVmax quantification 
errors. Transferred learning was investigated in [97] as an 
alternative to transferring data between sites with different 
acquisition protocols. The results demonstrated sharing neu-
ral network parameters rather than data can produce better 
results for given site after fine tuning with site-specific data. 
An effective means of incorporating MR information into 
the unsupervised DIP framework was investigated by Onishi 
et al. [109] by extracting deep features from simultaneously 
acquired MR images and incorporating them into the feature 
space of the DIP. Including relevant MR contrast images into 
deep learning-based image processing has shown to improve 
performance over PET-only implementations.

The applicability of Poisson resampled data to accurately 
replicate true low-dose images was investigated by Chen 
et al. who used a two-stage training processes in [96], in 
which a residual Unet model was first trained with low-dose 
PET-MR images generated from full-dose images and then 
fine-tuned using true low-dose PET-MR images acquired 
from patients administered approximately 6.6  MBq of 
18F-Florbetaben. The results were promising and demon-
strated that simulating low-dose PET images by resampling 
can provide adequate training for optimising deep learning 
models. However, further validation work is still required 
to test the applicability of this approach under various 
conditions.

Sudarshan et  al. [102] trained a modified Unet to 
map × 180 low-dose 18F-FDG PET brain images with coreg-
istered T1 and T2 MRI to full-dose PET images and uncer-
tainty maps using an uncertainty aware loss functions in 

Fig. 5   Demonstration of low-
dose to full-dose mapping and 
the benefits of including multi-
contrast MRI (PET + MR) as an 
input to the deep learning-based 
algorithm as compared to using 
only PET inputs (PET Only) 
(Images from [75])

3109European Journal of Nuclear Medicine and Molecular Imaging  (2022) 49:3098–3118

1 3



both image space and sinogram space. Training the uncer-
tainty estimator using a Bayesian framework did not require 
ground truth uncertainty maps. The proposed method was 
evaluated on varying levels of radioactivity counts, using 
18F-FDG brain data from the ADNI database [110] for 
external evaluation and showed robust performance in the 
presence of motion artefacts. The further development of 
uncertainty estimation methods and their application to other 
imaging situations is likely to be of interest in future for 
developing generalisable deep learning methods with the 
ability to estimate the networks performance at inference.

Perceptual and adversarial loss

Generative adversarial networks [111] are powerful in 
learning the underlying distribution of datasets and can 
improve performance over neural networks trained with 
commonly used analytical loss functions such as the L1 and 
L2 norm. Similarly, incorporating perceptual loss into neural 
network training using a pretrained feature extractor can help 
improve the perceptual quality of output images.

Kaplan et al. [90] trained 2D patch-based GANs to map 
×100  low-dose 18F-FDG images of different anatomi-
cal regions to full-dose images, demonstrating promising 
proof-of-concept preliminary results. Similarly, Wang et al. 
[92, 93] trained a 3D patch-based GAN to map low-dose 
18F-FDG PET brain images to their corresponding full-
dose images. The results demonstrated that the 3D GAN 
outperformed both 3D Unet and 2D GAN implementa-
tions in PSNR, NMSE and hippocampal SUV bias [92] 
with subsequent work incorporating T1-weighted and dif-
fusion-weighted MR images as multi-contrast input [93]. 
Separately, Xue et al. [87] used a patch-based mapping 
from low-count to standard-count whole body PET images, 
which  improved performance relative to their experimental 
results from a 3D CNN. In [94], a comprehensive ablation 
study was performed to compare network architectures, gen-
erator initialisations and loss functions and demonstrated 
superior performance of a GAN that was initialised with 
weights trained to minimise MSE, followed by training with 
perceptual, adversarial and MSE loss. The cycle consistent 
GAN has also been applied to low-dose PET image post-
processing. In [88], Lei and colleagues implemented a 3D 
patch-based cycle GAN to map low-dose whole body PET 
images to full-dose images which demonstrated superior 
performance in NMSE, PSNR and SUV bias compared to a 
standard GAN and a Unet. Subsequent work utilised a cycle 
GAN with the Wasserstein distance term in the loss func-
tion to perform low-dose to full-dose mapping of 18F-FDG 
brain images with simulated lesions [89] and whole body 
18F-FDG images [85]. The results showed the cycle GAN 
reduced SUV bias relative to a residual Unet and condi-
tional GAN, and improved image sharpness compared to the 

residual Unet. These works [85, 87–90, 92–94] collectively 
demonstrate the ability for adversarial loss to outperform 
pre-defined loss functions in specific circumstances; how-
ever, further investigations into the generalisability beyond 
small cohort studies will determine their clinical feasibil-
ity. More clinically relevant image quality metrics were 
considered in the studies by Lu et al. [95] and Jeong et al. 
[86]. The quantitative accuracy of 18F-FDG lesion uptake 
after deep learning-based low-dose processing with vari-
ous neural network architectures was investigated in [95]. 
The findings demonstrated bias in SUVmax and SUVmean 
in 18F-FDG lesions for a convolutional auto-encoder, Unet 
and GAN architectures with bias minimised for fully 3D 
networks. Jeong et al. [86] trained a GAN to map 2-min 
18F-Florbetaben brain scans to corresponding 20-min acqui-
sitions and showed the synthesised full duration images 
maintained diagnostic accuracy comparable to the ground 
truth. Future studies which include clinically relevant met-
rics such as diagnostic accuracy and SUV bias will become 
more important in demonstrating clinical feasibility of deep 
learning-based methods.

Perceptual loss utilises a pre-trained feature extractor to 
require consistency between network outputs and ground-
truth images in the learned feature space. In [99], Gong et al. 
used a VGG19 network architecture pre-trained with the 
ImageNet database of natural images as a feature extractor 
for perceptual loss training of a residual Unet. In a simi-
lar direction, Ouyang et al. [91] used a 2.5D GAN to map 
low-dose PET images to standard-dose PET trained with 
task-specific perceptual loss using a feature extractor pre-
trained to evaluate amyloid positive or negative status. The 
authors demonstrated in an amyloid PET study that the fea-
ture extractor-based perceptual loss can produce diagnostic 
results that are comparable with multimodality MR images 
as input [75] (Fig. 6). It is likely that task-specific perceptual 
loss such as that utilised in [91] may be extended to other 
tracers and clinical outcomes to help preserve image features 
crucial for correct diagnosis.

Review of deep learning‑based resolution 
enhancement

The physical principles and engineering of PET systems 
limits their resolution. Spatial resolution is degraded pri-
marily by the accuracy with which gamma ray interactions 
can be localised in the detector system as well as positron 
range effects which vary based on the characteristics of the 
radioisotope used. Temporal resolution is limited in practice 
by the low signal-to-noise ratio in short acquisitions due to 
limitations of system sensitivity and the low levels of radio-
activity that can be safely administered to patients. Deep 
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learning-based resolution enhancement in PET therefore 
presents a challenging task as standard supervised learning 
methods are often less feasible and rigorous evaluation of 
developed methods is limited.

Temporal resolution

The biodistribution of a PET tracer varies temporally, with 
the acquired PET image indicative of the time integrated 
activity distribution. Investigations which consider the tem-
poral change in tracer distribution are referred to as dynamic 
PET or functional PET [43] and involve temporal binning 
of the measured spatiotemporal signal into serial acquisi-
tions that are reconstructed independently. Deep learning 
approaches to enhancing dynamic PET can be implemented 
either (i) in the spatial domain in which each frame is recon-
structed and processed independent of the other frames, (ii) 
in the temporal domain in which each pixel is considered as 
a one-dimensional time series or (iii) spatiotemporally by 
the combination of both temporal and spatial information.

For spatial domain processing, the deep image prior 
formulation was implemented by Hashimoto et al. [112] 
to denoise temporally binned PET brain images using the 
summed image as the network input. The results showed 
good ability to replicate the temporal characteristics of 
simulated data. A spatiotemporal deep image prior which 
consisted of a modified Unet which simultaneously denoised 
all the temporal frames with a shared encoder and frame-
specific decoders was then used by Hashimoto et al. [113]. 
Results indicated superior performance compared to Gauss-
ian smoothing, image-guided filtering and the 3D deep 
image prior [112]. Adding denoising regularisation to the 
standard DIP formulation was also investigated [114]. Other 
variations on spatial domain processing techniques include 
work from He et al. [115] that trained a neural network 
to map dynamic PET and MR inputs to a downsampled 

composite of all frames with edge preserving regularisation 
and a combination of L1 and L2 loss. Finally, Cui et al. [116] 
used a patch-based fully connected encoder-decoder trained 
with simulated data to map noisy dynamic images to fully 
sampled dynamic images, with each temporal frame defined 
by a Gaussian weighted sum over all frames. The results 
showed improved denoising properties compared to stand-
ard MLEM reconstruction and MLEM reconstruction with 
TV regularisation. Processing dynamic PET data in the spa-
tial domain allows each time point measurement to remain 
independent from one another which may help to prevent 
high-frequency temporal signal from being indiscriminately 
attenuated with noise, at the expense of neglecting informa-
tion provided by the temporal domain. Additionally, simul-
taneously acquired MR contrasts are likely to be of more use 
when incorporated into spatial domain processing.

An alternative approach to self-supervised learning 
in image space is pixel-wise dictionary matching. In this 
approach, noisy voxel-wise time-activity curves are com-
pared to a comprehensive library of analytical functions with 
specified biokinetic parameters to find the best fitting time-
activity curve. The time-consuming nature of the diction-
ary matching process motivated the development of deep 
learning-based methods which encode a comprehensive 
simulated dictionary into a neural network [117–119]. This 
approach was taken by Klyuzhin et al. [120], where a library 
of simulated time activity curves was used to train a feed 
forward multi-layer perceptron for voxel-wise denoising of 
time activity curves. Follow-up work [121] used a patient-
specific neural network trained with a simulated dictionary 
using parameters in the neighbourhood of parameter esti-
mates derived from the first pass temporal data. Similarly, 
Wang et al. [122] used a neural network trained with simu-
lated data to directly estimate biokinetic parameters from 
voxel-wise time-activity curves. Finally, Angelis et al. [123] 
incorporated stimulus-induced neural activations using the 

Fig. 6   Including task-specific 
perceptual loss in the form of 
a pre-trained amyloid classifier 
improves diagnostic quality of 
synthesised full-dose images 
(images from [91])
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neurotransmitter PET model by Morris et al. [124] into a 
simulated dictionary and evaluated the ability of a neural 
network to reproduce the activation signals. The approaches 
taken by [120–122] produce denoised dynamic PET images 
which may improve the quality of dynamic information 
available for clinical decision-making and the approach 
taken in [123] extends this to include dynamic changes in 
tracer kinetics due to an external stimulus. However, consid-
erations must also be made to ensure the simulated diction-
ary of time-activity curves includes all possibilities which 
may occur in practice. Implementing deep learning methods 
trained on simulated data may limit the utility of PET for 
measuring phenomena beyond the pre-determined bounds 
of the simulated data.

Spatial resolution

While deep learning models are state-of-the-art for super 
resolution in computer vision and MRI [3, 125, 126], 
the system limitations of PET make supervised training 
approaches difficult due to the lack of high-resolution train-
ing data. Hong et al. [127] used digital phantoms and Monte 
Carlo simulations of PET systems with various crystal sizes 
to generate supervised learning datasets with super reso-
lution performance evaluated in both sinogram space and 
image space. In [128, 129], Song and colleagues compared 
the performance of shallow  and deep network architectures 
for PET super-resolution. They used images acquired from 
high-resolution dedicated brain imaging systems as a super-
vised training target with post smoothing applied to simulate 
low-resolution scans. Further work incorporated an initial 
super resolution network trained on synthetic data into a 
GAN to map standard resolution PET images and multi-con-
trast MR images to high-resolution images. The method used 
unpaired high-resolution PET brains acquired on a dedicated 
brain PET scanner as ground truth (Fig. 7). Methods which 
use deep neural networks to parameterise computationally 
expensive analytical resolution enhancement techniques 

have been developed including performing point-spread 
function-deconvolution operation as post-processing using 
a Unet [130] and also suppressing Gibbs artefacts gener-
ated from point-spread function modelling [131]. Similarly, 
Schramm et al. [132] used a CNN to map T1-weighted MR 
images and OSEM reconstructed PET brain images to MR-
guided OSEM reconstructions which use the asymmetric 
Bowsher prior [28] as regularisation. The inability to gener-
ate high-resolution ground-truth images limits the applica-
tion of deep learning-based super-resolution; however, the 
methods of unpaired training [128] and simulating high-
resolution data [127] may provide feasible alternatives to 
supervised training. Evaluating the performance of such 
techniques in the absence of ground truth data presents an 
additional challenge.

Discussion

The last 5 years have shown artificial intelligence and deep 
learning models to be highly versatile tools for application 
to PET image processing. Many techniques developed in 
computer vision have been successfully applied to CT and 
MR imaging and translated to PET. While most of the results 
to date have been obtained using small cohort studies with 
relatively narrow demographics, studies which focus on reli-
able clinical implementation will become of more relevance 
in the near future. However, the ultimate impact that deep 
learning models will have on PET image reconstruction and 
post-processing in the future will depend on whether several 
key obstacles can be successfully addressed.

The generalisability of a neural network to data outside of 
the training set, referred to as out of distribution (OOD) data, 
is a critical limiting factor for deep learning-based image 
processing. In the context of diagnostic imaging, OOD has 
the potential to produce false readings with potentially dire 
consequences for patient outcome. Furthermore, as neural 
networks are often poorly conditioned [133], it is challenging 

Fig. 7   Deep learning-based 
spatial resolution enhancement 
using unpaired training with 
high-resolution images acquired 
on a dedicated brain scanner as 
targets. Optimal results were 
obtained from pre-training with 
synthetic data (images from 
[128])
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to define the limits of their applicability with confidence. 
Consequently, the validity in extrapolating the performance 
of neural networks from small cohort studies to the clinical 
setting is currently uncertain. This is especially the case for 
application to broad patient diagnostic categories with vari-
able pathological characteristics. Furthermore, the temporal 
variation in imaging systems may progressively degrade the 
performance of a neural network in an unknown manner. 
Routine clinical implementation of deep learning methods 
requires the image enhancement algorithm to be demonstra-
bly robust to OOD data to provide clinicians with confidence 
when making diagnostic decisions using the enhanced PET 
images. New methods are needed to characterise, validate, 
and improve the application of neural network models to 
out of distribution data. A comprehensive standard for the 
evaluation of deep learning-based PET image processing 
algorithms is needed to provide a quantitative and compa-
rable evaluation of the performance of models. The standard 
should include an evaluation of the model generalisability 
under varying conditions, as was shown in some of the stud-
ies reviewed in this work [89, 102].

Novel methods to improve the generalisability of deep 
learning models will help facilitate their clinical use. The 
task-specific nature of deep learning-based methods typi-
cally limits their applicability to specific tracers and ana-
tomical regions. Physically justifiable regularisation terms 
in training, derived from the nature of radiation transport 
and incorporated into a model of the PET system, may help 
to ensure physically consistent results for OOD data, with-
out the need for prior assumptions regarding the physiology 
of a tracer. This approach could lead to the development 
of deep learning algorithms which generalise beyond a sin-
gle tracer or anatomical region that would make training 
and implementation more logistically feasible. Uncertainty 
estimation methods [134, 135] can quantify the quality of 
predictions for OOD data. Integration of these approaches 
in deep learning-enhanced PET image reconstruction and 
post-processing will be crucial to provide quantitative met-
rics to assist physicians in their assessment of the diagnostic 
confidence of features in PET images. Future studies are 
required to investigate the clinical utility of uncertainty maps 
for accurately characterising anomalous outputs from neural 
networks. Studies of this nature would help boost diagnostic 
confidence in the clinical setting.

The availability of high-quality training data is a major 
limitation in the development of deep learning-based 
methods. Supervised learning of deep neural networks 
requires high-quality training data to comprehensively 
describe the variations in the image features for images 
drawn from the population to which the network will be 
applied. In practice, there are several logistical and ethical 
issues associated with accessing the necessary imaging 

data and related information. The sensitive nature of 
medical information poses a problem for collecting com-
prehensive datasets from many sources for research and 
commercial development purposes. Anonymised open 
access medical imaging datasets can help make research 
feasible for groups without the capabilities to produce 
data. Researchers are encouraged to make new datasets 
open access when possible. The risks of shared DICOM 
metadata being incorrectly anonymised are manageable; 
however, providing adequate protection against facial rec-
ognition software [136] is more complex and may involve 
altering the image data itself. Methods such as federated 
learning [137] can provide a more robust means for anony-
mous use of medical data without the need for explicit data 
transfer between parties. Federated learning approaches 
are likely to become essential for large-scale validation 
and commercial development of deep learning-based med-
ical imaging software.

The issue of adequate data availability is more funda-
mental for applications such as resolution enhancement 
where the production of high-quality ground truth data 
is limited by the PET system performance and radiation 
risks. Unsupervised learning methods may provide a 
means to utilise deep learning models in such applica-
tions. Alternatively, supervised learning with synthetic 
data may prove useful, with Monte Carlo-based methods 
capable of accurately modelling the PET acquisition pro-
cess including physical effects such as scatter and attenu-
ation. Computational power is usually a limiting factor for 
generating volumetric PET images with Monte Carlo mod-
elling. However, recent work in this field has demonstrated 
significant gains in computational efficiency [138, 139] 
that make it feasible to generate a volumetric PET image 
in tens of hours. While this may prove useful in generating 
otherwise unattainable ground truth data, its utility will 
depend fundamentally on the ability to accurately model 
physically realistic data. It is the case that using simulated 
data may compromise the utility of PET as an investiga-
tive tool for measuring phenomena beyond the scope of a 
pre-defined library of simulated data.

Additional studies to evaluate the performance of 
deep learning-based methods across multiple sites will 
be crucial to demonstrate the performance of commer-
cially viable deep learning-based methods. While those 
works which evaluated performance across sites [100, 101] 
showed promising results, large-scale validation on a range 
of tracers and anatomical regions will be required to iden-
tify the shortcomings of deep learning-based methods in a 
clinical setting. Such studies will inform the development 
of commercially available deep learning-based software 
which should perform consistently across sites. Future 
studies should also focus on evaluating clinically relevant 
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metrics in addition to quantitative image quality measures 
to identify the net benefits of clinical implementation.

Conclusion

Positron emission tomography offers a means of measur-
ing physiological processes in vivo and plays an essen-
tial and unique role in clinical patient care and scientific 
research. This review provides an overview of the current 
state-of-the-art deep learning methods and future research 
directions in image reconstruction and post-processing for 
PET image enhancement. The integration of newly devel-
oped methods from the field of artificial intelligence into 
conventional PET image processing will further enhance 
the breadth of capabilities of PET imaging. Deep learning 
can be incorporated into image reconstruction as a purely 
data-driven mapping from raw data to images, or as a reg-
ularisation term in combination with conventional data 
consistency. Post-processing techniques offer a multitude 
of practical ways to integrate deep learning into image 
processing frameworks.

The ultimate impact of deep learning models on PET 
image reconstruction and post-processing will depend 
on whether several key obstacles can be successfully 
addressed. The generalisability of a neural network to out 
of distribution data is a critical limiting factor for deep 
learning-based image processing. Emerging uncertainty 
estimation methods have the potential to quantify the qual-
ity of predictions for OOD data. The lack of high-quality 
training data is a further major limitation for the devel-
opment of deep learning-based methods with supervised 
learning. Unsupervised learning techniques and high-
quality synthetic data may help to mitigate this issue. 
Federated learning offers a means of utilising data across 
multiple sites without explicit transfer of medical images 
and the associated risk of loss of patient confidentiality. 
Although several key challenges exist, it is apparent that 
deep learning will play a pivotal role in the future of PET 
imaging.
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