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Abstract

applied SPINGO also on cpn60 amplicon sequences.

generation sequencing technologies.

Background: Taxonomic classification is a corner stone for the characterisation and comparison of microbial
communities. Currently, most existing methods are either slow, restricted to specific communities, highly sensitive
to taxonomic inconsistencies, or limited to genus level classification. As crucial microbiota information is hinging on
high-level resolution it is imperative to increase taxonomic resolution to species level wherever possible.

Results: In response to this need we developed SPINGO, a flexible and stand-alone software dedicated to high-
resolution assignment of sequences to species level using partial 16S rRNA gene sequences from any environment.
SPINGO compares favourably to other methods in terms of classification accuracy, and is as fast or faster than those
that have higher error rates. As a demonstration of its flexibility for other types of target genes we successfully

Conclusions: SPINGO is an accurate, flexible and fast method for low-level taxonomic assignment. This combination is
becoming increasingly important for rapid and accurate processing of amplicon data generated by newer next
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Background

Analysis of microbial communities (microbiota) sampled
directly from their natural environment, without clonal
culturing, is a rapidly evolving field with wide-ranging
applications within ecology, agriculture and medicine. A
relatively straight-forward approach for characterizing and
comparing microbiota is to sequence variable regions of
the ubiquitous 16S rRNA gene following amplification
using universal primer pairs. The resulting sequence reads
can either be analysed as groups of similar sequences
(operational taxonomic units: OTUs), or as raw reads. In
either case, taxonomic classification of the resulting
sequence reads is a crucial component for characterising
microbiota composition. The most common tool for this
is the RDP-Classifier which generally assigns partial 16S
rRNA gene sequences down to genus level [1]. There is,
however, a need among investigators to increase the taxo-
nomic resolution to include species assignments wherever
possible. For example, a genus like Streptococcus has
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species that are either considered beneficial (S. thermophi-
lus) or pathogenic (S. pneumoniae), thus it is crucial to be
able to identify species with good accuracy whenever se-
quence specificity allows it. In addition, a subset of the
Gram-positive and endospore-forming bacterial species
have traditionally been structured into Clostridium clus-
ters, primarily based on 16S rRNA gene similarities [2].
Many of the species in these clusters often belong to gen-
era other than Clostridium, often due to discrepancies
between their traditionally characterised phenotypes and
molecular phylogeny. As there are established primer
combinations for many of these clusters, which are
frequently used by microbiologists to elucidate micro-
biota community structure, there is a need to link
high-throughput data derived from culture-independent
methods to these more targeted and traditional methods.
So far, the few existing methods that can be used for
species classification “out-of-the-box” are rather limited
and not designed for such purposes: they are either ap-
plied on a very restricted set of species [3, 4], or are only
suitable on reads from soon-obsolete technologies like
the 454 Pyrosequencing due to the low computational
classification speed [5]. Even though broad taxonomic
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assignment of representative OTU sequences is the main
objective for UCLUST as implemented by the assign_
taxonomy.py script within the QIIME software suite [6],
it does have the capacity for species-level assignment
when Greengenes is used as a reference database [7].
However, this is just for a minor subset of OTUs as
Greengenes only have 627 unique species (version 13.5)
compared to 12,394 species in the RDP database (ver-
sion 11.2) compliant with the NCBI Taxonomy. While
both databases have uneven representation of taxa, this
is more prominent for Greengenes where the most
abundant species is Faecalibacterium prausnitzii (15 %
of sequences with species classification) compare to the
RDP database where the most abundant species is
Bacillus subtilis (2 %). Both the Java and mothur imple-
mentations of the RDP-classifier can also be used for
species classifications, however these methods were
designed for broader taxonomic classification [1] and
require re-training using non-default databases. A ver-
satile species-classifier should be able to classify se-
quenced from very diverse environments, and also be
capable of efficiently processing millions of amplicon
sequences generated by more contemporary and low-
cost high-throughput technologies, e.g. Illumina MiSeq,
within a reasonable time-frame. This sequencing tech-
nology now routinely generates 300 bp long paired-end
reads, thereby facilitating coverage of several adjacent
variable regions of the 16S rRNA gene when overlap-
ping paired-end reads are merged.

Here, we present SPINGO (Species-level IdentificatioN
of metaGenOmic amplicons), a stand-alone software
application capable of classifying assignable species sampled
from any environment. Its flexible design, accuracy and
speed allows for frequent taxonomy updates facilitating
even more precise high-resolution classifications without
becoming a computational bottleneck for downstream
analysis.

Implementation

Construction of a species reference database

Full-length (=1200 bp) bacterial and archaeal 16S rRNA
gene sequences were obtained from the Ribosomal Data-
base Project version 11.2 (http://rdp.cme.msu.edu/). All
sequences were labelled to species names according to
the NCBI (http://www.ncbi.nlm.nih.gov/guide/taxonomy/),
which is readily available and distributes the original
nomenclature as deposited with the submitted sequence
(http://www.ncbinlm.nih.gov/WebSub/html/requirements.
html). Only sequences with complete binomial (genus +
species) names were retained, and identical sequences
from the same species were removed in order to reduce
the training dataset. Sequences that were identical, but as-
sociated to multiple species were on the other hand
retained, as such sequences represent species that are not
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assignable using our algorithm outlined below. Thus, the
resulting SPINGO reference database only contained full-
length, species-specific 16S rRNA gene sequences, which
were non-redundant for each species. For example, if Spe-
cies A has sequences ACG/ACC/ACC/CCC before this
operation, it will afterwards only have sequences ACG/
ACC/CCC. From this SPINGO database of 95,210 se-
quences and 12,394 unique species, a taxonomy mapping
file was created linking the original sequence identifiers
with a two-level hierarchy comprising both genus and spe-
cies names, as well as Clostridium clusters where applic-
able. For the latter, a lookup table linking species
names with these clusters had previously been com-
piled [2, 8]. Albeit not the main aim of SPINGO, genus-
level classification is also enabled by default to broaden its
application for high taxonomic resolution. The taxonomy
mapping file can be re-used by the make_database.py
script to facilitate future updates or reconstruction based
on other types of taxonomic hierarchies.

Algorithm

Assignment of amplicons to the closest known species
is based on the reference database described above.
This database is loaded into memory and indexed by
k-mers using an inverted index structure, a

NR
SQR _ |Q1< I<|

1 |QK‘

commonly used index data structure for storing words
(k-mers), which allows for rapid retrieval of all sequences
which contain a given word (k-mer). Query sequences
are then compared to the reference database using the fol-
lowing similarity score: given a query sequence Q and a
reference sequence R, Qy is the set of overlapping and
fixed length k-mers present in Q, and R is the set of over-
lapping k-mers in R. A similarity score Sqr is calculated
as the number of k-mers shared between the reference
and query sequence, normalized by the number of unique
k-mers in the query sequence thus giving a number in the
range [0, 1].

For each query sequence, the database is searched
using both the forward and reverse complement of the
query and a list of the reference sequence(s) giving the
highest score is retrieved. For each of the taxonomic
levels in the two-level hierarchy, genus and species level,
as well as clostridium cluster, an assignment is made at
that level if the annotations of the reference sequences
are in agreement, otherwise the assignment is consid-
ered to be ambiguous. If an assignment is made at any
taxonomic level, a bootstrapping process, similar to that
of the RDP-classifier [1], is performed to provide a confi-
dence estimate of the taxonomic assignment. Briefly, for
each bootstrap trial at a given k-mer size K., a subset
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qi of Qg is sampled at random, where |qi| = |Qu|/Ksize-
The taxonomic annotations at each level for the refer-
ence sequences giving the highest S;r are obtained. The
confidence estimate is then calculated as the proportion
of retrieved sequences with a taxonomic assignment
matching that of Q at the same level. A low confidence
estimate indicates that many reference sequences have a
similar (but not identical) set of k-mers (low distinctive-
ness), while a high confidence estimate indicates that
there are few reference sequences with a similar com-
position (high distinctiveness).

Creation of validation datasets

To evaluate SPINGO and demonstrate its utility for spe-
cies classification we used two different approaches. First,
we used a 10-fold cross validation [9] with the SPINGO
database on four different methods for species classifica-
tion: SPINGO, the mothur-implementation of the RDP-
classifier (v1.34.1), UCLUST (v1.2.22q; default method in
QIIME’s assign_taxonomy.py) and BLASTn (v.2.2.28),
while keeping database, k-mer size (8-mer) and number of
bootstrap runs (100) constant across compared methods.
All these methods use enumeration of k-mers at an early
stage, but differ significantly in how these counts are proc-
essed in the downstream analysis. A key difference be-
tween SPINGO and the other algorithms is that SPINGO
identifies sequences for indistinguishable species and
discards them as ambiguous candidates, whereas the other
methods will always classify the query sequence even if
there are multiple conflicting hits. Even so, by specifying a
non-default option it is also possible to list all ambiguous
species hits. SPINGO is thus designed to classify relatively
short sequences where the percentage deviation from a
reference sequence is relatively small. One can view k-mer
counting as a proxy for standard pairwise sequence align-
ment based on sequence similarity, but as there still are
some important differences it can be useful to briefly out-
line situations where false positive and negatives will
occur. For example, if a sequence is made of two regions
A = ATATTAAATT and B=GCCGGGCGGC the k-mers
would be ATAT TATT ATTA TTAA TAAA AAAT AATT
ATTG TTGC TGCC GCCG CCGG CGGG GGGC
GGCG GCGG CGGC, while if A and B where switched
the k-mers would be GCCG CCGG CGGG GGGC GGCG
GCGG CGGC GGCA GCAT CATA ATAT TATT ATTA
TTAA TAAA AAAT AATT, with the k-mers unique to ei-
ther A or B underscored. Thus, the k-mer similarity score
would be high (14/17), but an alignment score would be
low resulting in a false positive. A similar situation could
occur at the start or end of a sequence: For example, if
there is a substitution at the start of sequence 5'-
ATTTGCG, which has k-mers ATTT TTTG TTGC
TGCG, to 5'-GTTTGCG the new k-mers are GTTT
TTTG TTGC TGCG, resulting in a k-mer similarity score
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of 3/4 against the original sequence. However, if there
instead is a substitution in the middle to 5'-ATTCGCG
the new k-mers are ATTC TTCG TCGC CGCG, resulting
in k-mer similarity score of 0, much lower than an align-
ment score (false negative). False negatives will also occur
if a query sequence contains a large number of errors
equally spread along the sequence, as the k-mer score
will be lower than what a global alignment score would
be. Nevertheless, a sequence that is not classified due to
a large number of mutations or sequencing errors
should not be classified, even if there is a high global
similarity. This makes sense in a situation where differ-
ent species may differ in only a small number of bases.
So while these issues are worth considering, our empir-
ical data shows that they do not adversely affect the
classifier performance. False positive rate will be more
greatly affected by mislabelled sequences in the data-
base. As for false-negatives, SPINGO does not try to
predict which species are not in a sample - absence of
evidence is not evidence of absence - so that discussion
is purely academic.

For each 10" of the SPINGO database, 12 different vari-
able 16S rRNA gene regions were extracted using the V-
ripper script (Additional file 1 and GitHub distribution)
and classified. Second, we obtained three different data-
sets, based on a simulation, a mock community and a
real-life environmental sample. For the simulation, we
created a dataset of 10,067 full-length 16S rRNA gene
sequences, each representing one type strain, from the
SILVA Living Tree Project version 11.5 [10] using the
NCBI Taxonomy nomenclature, This facilitated a like-
for-like comparison with the SPINGO database which
contains sequences from the RDP database, but with
species names labelled according to the NCBI Taxonomy.
A hold-out evaluation database was created by removing
9,607 sequences from the SPINGO database that were
present in the SILVA database. Variable regions V1-V3
(6,046 sequences), V3-V5 (5,860) and V6-V9 (5,241) were
extracted from the SILVA database using previously
described primers [11] with the V-ripper script and subse-
quently classified using the evaluation database not con-
taining the 9,607 test sequences. In addition, we classified
sequences derived from a mock community of 21 known
bacterial species in even composition [12]. The 454
Pyrosequencing reads covering the hyper-variable re-
gions V1-V3, V3-V5 and V6-V9 were chimera filtered
using UCHIME [13] with the “Gold” database (http://
microbiomeutil.sourceforge.net) as reference to remove
chimeric sequences. Sequences were considered to be cor-
rectly classified if the unambiguously assigned species was
a known component of the mock community. To also
explore a real biological environment we analyzed amplicon
sequences based on the three primer combinations referred
to above for a stool sample originating from a healthy male
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subject (sample SRS019089 from the Human Microbiome
Project http://hmpdacc.org/HM16STR/healthy).

SPINGO’s accuracy and target versatility was finally dem-
onstrated and evaluated on amplicon sequences derived
from the universal house-keeping gene cpn60. Here, a 10-
fold cross validation was performed on 6,690 amplicon
sequences of the cpn60 Universal Target region (~500 bp)
for which there was a full species name, which were
downloaded from cpnDB [14] on March 4™ 2015 (http://
www.cpndb.ca/search.php). The scripts and syntax
used for evaluation are available in the Additional file 1.

Results and discussion

Performance evaluation

The 10-fold cross validation found SPINGO to consist-
ently have the highest classification accuracy regardless
of 16S rRNA gene region (Fig. 1), when keeping k-mer
sizes, database and number of bootstraps constant. Across
all 16S rRNA gene regions tested, SPINGO provided an
increase of on average 15 % to 17 % percentage points in
classification accuracy over the two RDP-classifiers, 21
percentage points over UCLUST, and 30 % percentage
points over BLASTn. Interestingly, while both implemen-
tations of the RDP-classifier give comparable accuracies
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for most regions, the Java implementation performs better
than the mothur implementation for the V1V2 and V6V8
regions. The 10-fold cross validation also demonstrates
that SPINGO’s classification accuracy is less impacted by
sequence length than the other classifiers, as can be ob-
served for the shorter regions. We also investigated
whether the accuracy of SPINGO varied much for the
various combinations of k-mer sizes and number of boot-
straps. There were only marginal differences where the
average accuracy for 8-mers was 0.5 % higher with 10
times more bootstrap runs, whereas it was 1.9 % higher
for 12-mers for the corresponding bootstrap increase
(Additional file 2: Figure S1).

The second evaluation approach involved the simulated,
mock and real-life samples, using the four different
methods, all applied on SPINGO’s database: SPINGO
(Fig. 2a-c); the RDP-classifier (Fig. 2d-f); UCLUST
(Fig. 2g-i); and BLASTn (Fig. 2j-1). Unsurprisingly, the
proportion of incorrect assignments decreased with higher
confidence estimate cut-offs. The higher proportion of
incorrect assignments in the SILVA dataset can be attrib-
uted to its greater species diversity. For this dataset,
SPINGO provided the highest True Positive Rate of any of
the classifiers across the three regions tested, and while

OSPINGO ERDP-classifier (Java implentation) B RDP-Classifier (mothur implementation) O UCLUST M BLASTn |
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Fig. 1 Comparison of species level classification accuracy for 12 different 16S rRNA gene regions by SPINGO, RDP-Classifier, UCLUST and BLASTn,
using 10 fold cross validation. All classifiers were trained on the SPINGO 16S species level database, used k-mer size 8 and 100 bootstraps
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(See figure on previous page.)

Fig. 2 Performance of SPINGO across three different datasets and three amplicon regions (8-mers with 100 sub-samples; confidence estimate cut-offs at
the X axis). a Species classification of the SILVA sequences, and b 21 bacterial species from a mock community. Proportion of correctly TPR =TP/(TP + FP),
and incorrectly FPR = FP/(TP + FP) assigned sequences. ¢ Stacked relative species abundance and un-stacked proportions of the most abundant Clostridium
clusters in a single stool sample. Species from the Clostridiales order as red gradient and Bacteroidales order as blue gradient. Corresponding comparisons

for the mother implementation of the RDP-Classifier (d-f), UCLUST (g-i; X axis shows UCLUST similarity cut-offs), and BLASTn (j-I; X axis shows Percent
identity). All classifiers were trained on the SPINGO database, using k-mer size 8 and 100 bootstraps

other classifiers such as BLASTn may classify a higher
proportion of sequences SPINGO makes far fewer mis-
takes, in agreement with the results from the 10-fold cross
validation. Similarly for the 21-strain mock community,
SPINGO provides the best True Positive Rate across the
regions and confidence estimates, albeit the difference
between SPINGO and the RDP-classifier here is smaller.
Both BLASTn and UCLUST classified more sequences
than SPINGO and the RDP-classifier, but at a severe cost
to accuracy, except for the V1V3 region where UCLUST
and BLASTn were comparable to SPINGO for the lower
similarity cut-offs and percent identities, respectively. For
the real-life HMP sample there was relatively little vari-
ation of microbiota composition for the 10 most prevalent
species, with SPINGO classifying marginally fewer species
than the other methods. Depending on the variable region,

roughly half of the reads were assigned to a species,
whereof the 10 most abundant species have been associated
to the human gastrointestinal tract (Fig. 2c). Given
SPINGO’s higher classification accuracy from the 10-fold
cross validation and consistently higher True Positive Rate
over the simulated and mock datasets tested, much due to
not accepting ambiguous hits, it is quite conceivable that
the SPINGO assignments are more often correct. Interest-
ingly, the V1V3 region consistently shows the greatest
accuracy of all three 16S regions. The by SPINGO
assigned Clostridium clusters are an additional and useful
feature for researchers interested in the gut microbiome.
Note that while a sequence can be unassigned at species
level due to ambiguity it may still be unambiguously
assigned to a Clostridium cluster, which explains the lar-
ger proportions at this level.
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Fig. 3 Species level classification accuracy for SPINGO (k-mer sizes 8,10 and 12, and 100 sub-samples) and RDP-Classifier (only k-mer size 8 and
100 sub-samples due to RAM exhaustion for higher k-mer sizes) as assessed by 10-fold cross validation on a database of 6,690 cpn60 sequences,
using the Universal Target region of each sequence for classification
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Species classification of non-16S rRNA gene sequences
To finally illustrate how SPINGO can be applied for
species-classification using other types of sequences than
16S rRNA genes, we trained both SPINGO and the
mothur-implementation of the RDP-classifier on cpnDB
data (see Implementation), which the latter method has
been used for previously [14]. This single-copy gene has
been used as an alternative target for amplicon sequences
due to its high resolution at species level. The accuracy of
SPINGO and the RDP-classifier for assigning sequences
from the cpn60 Universal Target region, an alternative to
the 16S rRNA gene hyper-variable regions, was also here
assessed by performing a 10-fold cross validation. As with
the results from the 16S validation, SPINGO once again
shows higher classification accuracy than the RDP-classifier
(Fig. 3) for three different k-mer sizes, although the increase
is less pronounced with 4.6 percentage points.
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Computational performance

SPINGO is a command-line, stand-alone and multi-
threaded software package written in C++ with pre-and
post-processing scripts written in Python. It can be run on
a modest laptop requiring only 2 GB of RAM to accom-
modate the in-memory database for the default k-mer size.
Processing time is inversely proportional to both the k-
mer and database size, and is proportional to the sequence
length. One million ~440 bp long V3V5 amplicons from
the HMP sample analysed above were classified in ~1.7 h
on a 64-bit server, utilizing 4 CPU threads and a k-mer
size of 12. We compared SPINGO’s computational per-
formance using three different k-mer sizes, with the other
tested methods for species classification of HMP sample
reads using their default settings. When only utilising one
CPU for all methods we concluded that SPINGO using k-
mer size 12was faster than all other methods (Fig. 4).

4000
X-~SPINGO 8mer 10 bootstraps
A-SPINGO 10mer 10 bootstraps
=®=SPINGO 12mer 10 bootstraps
3500 +—| =@=SPINGO 12mer 100 bootstraps
=@=—RDP-classifier(mothur implementation)
—x—RDP-classifier(java implementation)
[@-BLASTh
O~ UCLUST
3000
s /
=
()
£
'_
2000
1500
1000
X
500
X
0 - . . . . : . :
0 10,000 20,000 30,000 40,000 50,000 60,000 70,000
Number of sequences
Fig. 4 Comparison of time required to classify 165 rRNA gene V3V5 amplicon reads when trained on the SPINGO database. SPINGO run times
using three different k-mer sizes and two different bootstrap values (8-mer with 10 bootraps by default) compared to the other methods all using
k-mer 8. Only one CPU was used in all cases
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While SPINGO with the default 8-mer and 10 bootstrap
settings is slower than UCLUST and Java-implementation
of the RDP-classifier, it still outperforms the Ilatter
methods in terms of accuracy as outlined above. As
expected, the 100 bootstrap setting does significantly slow
SPINGO down, however only with a marginal improve-
ment in accuracy (Additional file 2: Figure S1), thereby
warranting the use of only 10 bootstraps when classifying
large number of sequences.

Conclusion

Here we present and demonstrate the utility and perform-
ance of SPINGO, a rapid, accurate and flexible classifier
that improves the taxonomic resolution of 16S rRNA gene
amplicons down to species level. While its primary target
is species from any type of environmental sample, it can
also be adapted to arbitrary classification hierarchies, like
Clostridium clusters which are commonly used for char-
acterising mammalian gut microbiota. SPINGO was
consistently the most accurate species-classifier when
compared to the other methods. To end with, the ef-
ficient algorithm provides a significant speed-up com-
pared to existing classifiers which, when combined
with its high accuracy, makes SPINGO a particularly
valuable tool as amplicons more now than ever are
sequenced in the hundreds of millions.

Availability and requirements

The source code, executables and documentation are
available at https://github.com/GuyAllard/SPINGO.
Project name: SPINGO

Operating system(s): Linux

Programming language: C++ / Python

Other requirements: To compile from source the follow-
ing development libraries are required - Boost.program_
options, Boost.serialization and Boost.thread

License: GNU GPL version 3

Restrictions for use by non-academics: None
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Additional file 1: Additional information on how the 10-fold cross
validation was performed, and how the reference databases were
re-formated for use with compared methodologies. (PDF 7 kb)

Additional file 2: Figure S1. The impact of k-mer size 8 and 12, as well
as the impact of bootstrap values 10 and 100 on species level
classification accuracy for SPINGO as shown by 10 fold cross validation.
(PDF 312 kb)
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