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As antidepressant usage by the global population continues to increase, their persistent
detection in aquatic habitats from municipal wastewater effluent release has led to
concerns of possible impacts on non-target organisms, including fish. These
pharmaceuticals have been marketed as mood-altering drugs, specifically targeting the
monoaminergic signaling in the brain of humans. However, the monoaminergic systems
are highly conserved and involved in the modulation of a multitude of endocrine functions
in vertebrates. While most studies exploring possible impact of antidepressants on fish
have focused on behavioural perturbations, a smaller spotlight has been placed on the
endocrine functions, especially related to reproduction, growth, and the stress response.
The purpose of this review is to highlight the possible role of antidepressants as endocrine
disruptors in fish. While studies linking the effects of environmentally relevant levels of
antidepressant on the endocrine system in fish are sparse, the emerging evidence
suggests that early-life exposure to these compounds have the potential to alter the
developmental programming of the endocrine system, which could persist as long-term
and multigenerational effects in teleosts.

Keywords: hormones, reproduction, growth, stress response, monoamines, steroids, pharmaceutical, municipal
wastewater effluent
INTRODUCTION

Antidepressants in aquatic environments have persisted for decades and are continually introduced
into our waterways through municipal wastewater effluent (MWWE) release (1). Aquatic
organisms, including fish, inhabiting these waterways are persistently exposed to these
compounds, but effects on non-target organisms are only beginning to emerge (2, 3). Over the
last few decades, studies have examined the effects of antidepressants on teleosts, but the majority of
work have focused on behavioural alterations (4–6). Monoamines, including serotonin,
noradrenaline, and dopamine, are the main targets by which the antidepressants elicit a
behavioural response (7). However, monoamines play significant roles in modulating other
endocrine functions, including steroid hormone synthesis and action (8–13), suggesting wider
impact on the physiology offishes due to antidepressant exposures. As recent reviews have discussed
the impact of antidepressants on behavioral consequences (5, 6), this minireview will be limited to
the endocrine-related perturbations in fish. Here, we highlight the emerging evidence of
antidepressants as endocrine disrupting compounds in fish.
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ANTIDEPRESSANTS IN THE
AQUATIC ENVIRONMENT

Since the use of anti-histaminergic compounds in the early
1950’s, the practice of neuroactive compounds to treat
behavioural deficits associated with major depressive disorder
has grown (14–16). The advent of selective serotonin reuptake
inhibitors (SSRI) reshaped the antidepressant market, and
prescriptions increased rapidly in the early 1990s, especially
with the release of fluoxetine (Prozac), citalopram (Celexa),
fluvoxamine (Luvox), paroxetine (Paxil), and sertraline (Zoloft;
17). To diminish the side-effects associated with the SSRI class of
compounds, additional antidepressants targeting the inhibition
of reuptake of either noradrenaline (NRI), such as reboxetine
(Edronax), or both serotonin and noradrenaline (SNRI), such as
venlafaxine (Effexor) and duloxetine (Cymbalta), emerged (17).
In humans, antidepressants typically undergo first-pass
metabolism in the liver (18), and in many cases their
metabolites, including norfluoxetine (fluoxetine), O-
desmethylvenlafaxine (venlafaxine), and desmethylcitalopram
(citalopram), remain equipotent to the parent compound (19).
Consequently, excretion of these drugs, and the incomplete
removal by wastewater treatment processes, has led to the
antidepressants, including citalopram, sertraline, venlafaxine,
fluoxetine, and other neuroactive compounds, being prevalent
in MWWE at concentrations greater than parts per billion (20–
27). Also, given their continued release into the environment and
their slower breakdown, antidepressants are being touted as
persistent contaminants in the aquatic environment (28).
Given that antidepressants consumption has gone up in the
last 20 years and is only expected to increase (29, 30),
environmental levels will also increase in our waterways
receiving MWWE outfalls. Consequently, understanding the
impact of these drugs on non-target animals, such as fishes,
and deciphering their mode of action leading to the adverse
effects, will allow for developing environmental risk assessment
models for antidepressants in our waterways.
ANTIDEPRESSANT EFFECTS ON
MONOAMINE CONTENT IN FISH

In humans, antidepressants primarily target the transporters of
monoamines, including serotonin, noradrenaline, and
dopamine, inhibiting the reuptake of monoamines from the
synaptic cleft into the presynaptic cell (6, 31). This increases
the duration of exposure, as well as the concentration of
monoamines in the synapse, leading to increased interaction
with receptors on the postsynaptic terminal for therapeutic
benefits (31, 32). In teleosts, studies have demonstrated that
antidepressants interact with the monoamine transporters, and
disrupt brain monoamines content (33–41). For instance, both
fluoxetine and venlafaxine reduced brain serotonin levels in adult
hybrid striped bass (Morone saxatilis; 33, 37, 38) and Siamese
fighting fish (Betta splendens; 35). Also, exposures to venlafaxine
elevated serotonin, noradrenaline, and dopamine contents in a
Frontiers in Endocrinology | www.frontiersin.org 2
region-specific manner in the midbrain of juvenile rainbow trout
(Oncorhynchus mykiss; 36). Early developmental exposure to
venlafaxine depleted serotonin immunoreactivity in the larval
zebrafish (Danio rerio) brain and reduced catecholamine cell
populations (39). These results suggest that antidepressants
impact on brain monoamine content in fishes may be species-
and/or life-stage-specific (6, 13), but a clear cause and effect
relationship has not been established.
ANTIDEPRESSANTS EFFECT ON THE
ENDOCRINE SYSTEMS IN FISH

The monoaminergic system is highly conserved in vertebrates,
and the central and peripheral monoamines play an important
role in modulating endocrine functions (3, 8–10, 12, 42–49).
Consequently, disruptions in the monoaminergic pathway is a
potential target for antidepressants effect on the endocrine
system (6, 13). Very little is known about the mode of action
of antidepressants in disrupting the endocrine axes in teleosts.
Here we will outline some of the studies that suggest that the
antidepressants are endocrine disruptors, especially pertaining to
reproduction, growth, and the stress response in fish.

Reproduction
Reproduction is primarily under the control of the
hypothalamic-pituitary-gonadal (HPG) axis in fish (9, 50). The
hypothalamus releases gonadotropin releasing hormone
(GnRH), the primary endocrine signal for the release of the
pituitary gonadotropins, including the follicular stimulating
hormone (FSH) and luteinizing hormone (LH), into the
circulation (50, 51). The actions of LH and FSH stimulates the
secretion of the sex steroids, including androgens and estrogens/
progestins, essential for spermatogenesis and oogenesis,
respectively (52). There is evidence that antidepressants, both
SSRI’s and the SNRI’s, affect reproductive performance in fish
(see Table 1 for specific experimental information). For instance,
fluoxetine exposure for 100 d delayed the onset of sexual
maturation in the male mosquitofish (Gambusia affinis; 53).
Also, fluoxetine exposure for over 7 d increased estrogen level,
while reducing testosterone level and the milt volume in the male
goldfish (Carassius auratus; 55). Citalopram exposure reduced
whole-brain GnRH transcripts and disrupted spermatogenesis in
male zebrafish (60). In females, fluoxetine exposure reduced
estradiol levels in the ovary, and this correlated with a drop in
egg production in zebrafish (56). A similar result was also seen in
goldfish, with fluoxetine injection leading to significant
reductions in circulating estradiol levels (54). Venlafaxine
exposure also reduced egg production in adult zebrafish (78).
Although these studies suggest that both the SSRI and the SNRI
class of antidepressants have the potential to affect fish
reproduction, the concentrations utilized in these studies were
high and not environmentally realistic. Few studies have assessed
reproduct ive parameters in fish upon exposure to
environmentally relevant concentrations. For instance,
fluoxetine (0.1 ug/L) exposure for 4 weeks perturbed estradiol
June 2022 | Volume 13 | Article 895064
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TABLE 1 | Evidence of endocrine impacts of antidepressants in fish.

Drug Species (sex) Treatment Effects Reference

Reproduction
Fluoxetine Mosquitofish

(Gambusia affinis;
both sexes)

59 to 159 days post fertilization
(juvenile to adult) to 71 µg/L [W.E]

Delayed maturation of sexual morphology (53)

Goldfish (Carassius
auratus; females)

14-day adult exposure to 5 µg/g
body weight [I.P]

Reduced circulating estradiol, and transcript levels of ERb1 in the
telencephalon and hypothalamus, and ERa, in the telencephalon

(54)

Goldfish (males) 7-or 14- day adult exposure to
0.54 or 54 µg/L [W.E]

Reduced milt volume, increased plasma estradiol, and increased transcript
abundance of testicular lhr, fshr, and cyp19a at 54 µg/L

(55)

Zebrafish (Danio
rerio; females)

Adult exposure to 32 µg/L for 7-
days [W.E]

Reduced ovary Aromatase-A transcript abundance, reduced ovary estradiol
and overall egg production

(56)

Killifish
(Nothobranchius
fuzeri; females)

Life-long to 5 µg/L [W.E] Increased fecundity (57)

Mosquitofish (males) Adult exposure to 30 and 380 ng/
L [W.E] for 30 days

Increased sperm production (58)

Japanese medaka
(Oryzias latipes;
females)

Adult 28-day exposure to 0.1 and
0.5 µg/L [W.E]

Increased estradiol levels in the plasma (59)

Citalopram Zebrafish (males) 1. Adult 14-day exposure to 4,
10, or 100 µg/L [W.E]

2. Adult 30-day exposure to 40 or
100 µg/L [W.E]

1. Reduced transcript levels of gnrh3 in the brain, fshb in the pituitary, and
lowered density of GnRH3 and serotonin fibers in the brain

2. Reduced transcript abundance of gnrh3 in the brain and fshb in the pituitary
and reduced spermatozoa, spermatogonium, and secondary spermatocytes

(60)

Venlafaxine Fathead minnows
(Pimephales
promelas; both
sexes)

Lifelong exposure to 1. 0.88 µg/L
or 2. 88 µg/L [W.E]

1. Increased genital papillae and ovipositor area. 2. Increased egg production (61)

Zebrafish (females) Adult 6-week exposure to 10 µg/L
[W.E]

Reduction in total fecundity and alterations in kidney tubule morphology (62)

Zebrafish (females) Adult 21-day exposure to 1 µg/L
[W.E]

Changes in miR-22b, miR-301a miRNA in gonad (63)

Growth
Fluoxetine Goldfish (female) Adult 14-day adult exposure to 5

µg/g body weight [I.P]
Reduced growth rate (64)

Meagre
(Argyrosomus
regius)

Exposed to 3 µg/L for 15 days as
juveniles

Reduced length, weight, and specific growth rate, and observed DNA damage
in the liver

(65)

Zebrafish Exposed to 100 µg/L for 30 days
as adults

Reduced pseudo specific weight gain and feeding (66)

Killifish (males and
females)

Lifelong exposure to 5 µg/L Reduced body length (57)

Sertraline Fathead minnow
larvae

Exposed to 30, 60, 120, 250 µg/L
for 48 h from ~48 hpf at pH 1.
6.5, 2. 7.5, and 3. 8.5

Growth retardation and reduced feeing responses (67)

Yellow catfish
(Pylodictis olivaris)

Exposed to 1, 10 or 100 µg/L for
either 7 or 14 d at the juvenile
stage

All concentrations reduced weight gain and specific growth rate. Higher
concentrations (10 and 100) reduced brain transcript abundances of sst, gh,
and igf1, with all concentrations reducing npy

(68)

Venlafaxine Fathead minnows Life-long exposure to 88 µg/L 31 dpf juveniles exhibit a significant reduction in body weight (69)

Zebrafish Exposed to 1 or 10 ng at the
zygotic stage [M.I]

Increases developmental rate and length in larvae (41)

Zebrafish Exposed to 1 or 10 ng at the
zygotic stage [M.I]

Growth retardations at the juvenile stage (60 dpf). Increased hepatic somatic
index, and decreased liver transcript abundances of GHrs, IGF2, and lepa,
and reduced whole-body insulin.

(70)

(Continued)
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levels, but did not affect the reproductive performance in the
female Japanese medaka (Oryzias latipes; 59). Also, exposures to
environmentally relevant concentrations of fluoxetine (30 or 380
ng/L) increased total sperm count (58), but did not affect sperm
characteristics (79) in the Eastern mosquitofish (Gambusia
holbrooki). These studies suggest that although exposure of
adult fish to environmentally relevant levels may cause
endocrine disruption, it did not appear to pose a negative risk
to the reproductive outcomes. Life stage of exposure must also be
considered, as growing evidence from recent studies reveal that
early-life stages may be particularly sensitive to antidepressants
exposure and may lead to longer-term reproductive impairment.
For instance, life-long exposure to fluoxetine (0.5 or 5 µg/L) in
turquoise killifish (Nothobranchius fuzeri) increased fecundity
(57). Also, venlafaxine over the entire life cycle at concentrations
as low as 0.88 µg/L reduced the length of the ovipositor in female
fathead minnows (Pimephales promelas), while at 88 µg/L there
was an increase in the total egg output of females (61). These
latter studies highlight two critical lessons from contaminant
studies: i) species residing in aquatic habitats receiving MWWE
may be sensitive to these compounds at environmentally relevant
levels, and ii) that early-life exposure windows may be more
sensitive to antidepressant impact, leading to long-term effects
on reproductive performance. One possible route for early
exposure may be through maternal transfer of the compounds
to the oocytes, especially given the bioaccumulation potential of
the antidepressants in tissues including gonads (6, 59, 78, 80, 81).
The mechanism(s) by which antidepressants may lead to changes
Frontiers in Endocrinology | www.frontiersin.org 4
in the developmental programming of the reproductive axis
remains to be examined.

Although the mode of action of antidepressants in affecting
reproductive endocrine disruption is unclear, one possible route
may be through the modulation of the monoaminergic system.
Indeed, the functioning of the hypothalamic-pituitary-gonadal
(HPG) axis in fish (9, 50, 82, 83) is modulated by monoamines,
including serotonin, norepinephrine, and dopamine (46, 47, 52).
For example, dopamine plays an inhibitory role in fish
reproduction by inhibiting gonadotropin releasing hormone
(GnRH) from the hypothalamus and gonadotropins from the
pituitary (48). Similarly, serotonin stimulation also regulates
HPG axis (12), including stimulation of GnRH at the
hypothalamus (84), and stimulation of oocyte maturation
locally in the gonads by increased synthesis of estrogen and
maturation-inducing steroids (85). The monoamines may also
play differing roles at specific developmental stages or across
species. For instance, injections of tyrosine and tryptophan
(precursors of dopamine and serotonin, respectively) for 10
days in Gulf ki l l ifish (Fundulus grandis) increases
gonadosomatic index in males (86). Conversely, in
mummichog (Fundulus heteroclitus), serotonin exposure
inhibits oocyte maturation during the follicular development
stage via activation of the cAMPK-PKA transduction pathway
(87, 88). Taken together, alterations in monoamine levels may be
a possible mechanism by which antidepressants impact
reproductive endocrine disruption, but these effects may be
species-, life stage- and sex-dependent. Studies are clearly
TABLE 1 | Continued

Drug Species (sex) Treatment Effects Reference

Zebrafish Exposed to 1 or 10 ng at the
zygotic stage [M.I]

Reduced serotonin in the gut of 48 hpf fish. (39)

Zebrafish Exposed to 1 µg/L [W.E] from 2
hpf

Increased length, head area, and eye size at 72 hpf. (71)

Fathead minnows Exposed to 0.06, 0.33, or 3 µg/L
[W.E] from 2 hpf to 7 dpf

Reduced growth (72)

Stress
response
Fluoxetine Gulf Toadfish

(Opsanus beta)
24 h exposure to 50 ug/g [I.P] Increase in plasma cortisol levels (73)

Zebrafish larvae Exposure to 0.54 and 54 µg/L
[W.E] from 3 hpf to 144 hpf

Decreased unstressed and stressed cortisol levels at 96, 120, and 144 hpf (74)

Zebrafish males and
females

Exposure to 0.54 and 54 µg/L
[W.E] from 3 hpf to 144 hpf

Reduced whole-body cortisol in males, reduced cortisol in stressed females at
the higher concentration. Disrupts genes associated with cortisol-related
biological pathways in the head kidney of males.

(75)

Zebrafish males and
females

Exposure to 0.54 and 54 µg/L
[W.E] from 1. 0 to 15 dpf, or 2. 15
to 42 dpf.

1. 0.54 µg/L reduces stressed cortisol levels in females, with both levels
reducing cortisol production in stressed males. 2. 54 µg/L reduces cortisol in
both stressed males and females.

(76)

Venlafaxine Rainbow trout
(Oncorhynchus
mykiss)

Exposed to 1.0 µg/L for 7 days at
the adult stage

Increased transcript abundance of CRF in the hypothalamus, and pomcb in
the hindbrain

(36)

Adult zebrafish
females

Exposed to 1 or 10 ng at the
zygotic stage [M.I]

Reduced cortisol levels in female following a stressor. (77)
June 2022 | Volume 13 | Art
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warranted with environmentally relevant species using
environmentally relevant concentrations to understand the
risks posed on the reproductive performance of fish.

Growth
Growth in fish is regulated through a variety of physiological
pathways mediating energy acquisition and balance (89, 90). The
drive to feed is regulated by the neuropeptides (reviewed by 91),
with the somatotropic axis playing a key role in modulating growth
and metabolism of skeletal muscle, which comprises >50% of the
fish mass (89). Environmental exposures to antidepressants have
been shown to restrict growth in fishes, including goldfish (64),
zebrafish (66, 70, 71), meager (Argyrosomus ostregius; 65), yellow
catfish (Tachysurus fulvidraco; 68), short-lived killifish (57), and
fathead minnows (67, 69, 72; See Table 1 for specific experimental
information). This is an important consideration, as restriction on
growth is true of exposures to both the SSRI (fluoxetine, sertraline)
and the SNRI class (venlafaxine), and has been noted even at
environmentally relevant concentrations (68, 71, 72). Exposure
during critical developmental windows appears to be more
sensitive, as early-life (72) and zygotic (70) exposures led to
growth retardations at later life-stages. These growth effects may
be related to possible endocrine disruptions. A key aspect of growth
is the endocrine control of feeding and metabolism (89, 90).
Antidepressants exposure have been shown to reduce feeding
responses in fish (92), including goldfish (64), stickleback
(Gasterosteus aculeatus; 93), fathead minnows (94, 95), rainbow
trout (36), hybrid striped bass (37, 38, 96), mosquito fish (79), and
European perch (Perca fluviatlis; 92). As the drive to feed is
regulated by the expression of neuropeptides (reviewed by 91), it
is possible that these peptides are targets for the impact of the drug.
For instance, antidepressants have been shown to influence several
key genes involved in feeding activity in fish, including
proopiomelanocortin b, corticotropin releasing hormone (CRH),
and neuropeptide Y, and these changes correlated with reduced
food intake (36, 64, 68), which may be reflected in reduced growth
rates. The growth hormone (GH) and the insulin-like growth
factors (IGFs), and their receptors and binding proteins are all
key components of the somatotropic axis, orchestrating growth and
metabolism in fish (97–99). The functioning of the somatotropic
axis is regulated bymonoaminergic stimulation in fish (10, 100). For
instance, serotonin stimulation increases GH secretion (101), while
catecholamines, including norepinephrine reduce GH secretion
(102). Dopamine also pays a role in modulating GH release in
fish (reviewed by 8). For instance, exposure to L-DOPA (precursor
of dopamine), dopamine, or D1/D2 receptor agonists
(apomorphine) by intraperitoneal injection increased the serum
levels of GH in goldfish (102). This increase in GH appears to be
driven primarily by the activation of the D1 receptor (103), and
involves the cAMP-PKA pathway (104). We have also previously
shown that venlafaxine reduced the transcript abundances of
growth hormone receptors, IGF2, leptin a, the leptin receptor,
and myostatin, in the liver of zebrafish, possibly signaling a
disruption in the growth axis functioning, and also leading to
metabolic disruption (70). A similar effect was also seen following
sertraline exposure in the yellow catfish, experiencing reductions in
Frontiers in Endocrinology | www.frontiersin.org 5
somatostatin, growth hormone, igf, and neuropeptide y transcript
abundance in the brain (68). Together, given the modulatory role of
monoamines on the growth axis, it is likely that alterations to their
levels due to antidepressant exposure has the potential to impact the
feeding and growth performance of fish. Importantly, our study
demonstrated that an early-life exposure to venlafaxine can lead to
long-term perturbations in the programming of the growth axis
(70), but whether this occurs at environmental levels of the
antidepressant remain unexplored.

Corticosteroid Stress Response
The endocrine stress response is highly conserved in vertebrates
and is essential to allow animals to cope with stress (105–109).
The primary stress response includes the sympathetic nervous
system activation leading to the release of catecholamines, and
this is followed by the release of the corticosteroids from the
adrenal glands in mammals and the interrenal tissue in teleosts
(105, 110–112). In fish, cortisol is the major corticosteroid
released in response to stress and its release is mediated by the
activation of the hypothalamus-pituitary-interrenal (HPI) axis
(106, 107, 111, 113). Once released into the circulation, cortisol
action in target tissues is mediated by the activation of either the
glucocorticoid receptor (GR) and/or the mineralocorticoid
receptor (MR; 114–116). Monoamines play an important role
in the regulation of the corticosteroid stress axis (117, 118). In
fish, studies have demonstrated that serotonin influences
downstream cortisol production (119, 120). For example,
intraperitoneal injection of 8-OH-DPAT, a 5HT1A receptor
agonist, elevates basal levels of cortisol, and inhibits the
attendant rise in cortisol following an acute stressor in juvenile
Arctic charr (Salvelinus alpinus; 121). This was also mimicked by
increased intake of tryptophan, which counteracted the stress-
induced elevations in plasma cortisol in rainbow trout (122).
Chromaffin cells of the head kidney have been shown to contain
serotonin, and this monoamine is capable of stimulating the
release of cortisol from interrenal tissues in vitro (123).
Catecholamines can also exert influence on the stress axis
function, with noradrenaline capable of stimulating CRH
secretion in tilapia in vitro (124), and the injection of
noradrenaline and adrenaline stimulating the release of cortisol
in sea bass (Dicentrarchus labrax; 125). Dopamine, in contrast
has been shown to inhibit cortisol release (121), and this may
occur even at the level of the pituitary (126). Consequently, the
monoaminergic system exerts control over the activity of the HPI
axis and may be a target for the antidepressant impact on the
stress axis in fish.

Investigations of possible impacts to the stress axis in fish by
antidepressants have primarily been carried out using fluoxetine
and venlafaxine, with recent evidence suggesting impacts may be
sex-specific (See Table 1 for specific experimental information).
The responses seen in the activity of the stress axis appears to be life
stage-specific in fish. For instance, the circulating cortisol levels
increase following an intraperitoneal administration of 50 µg/g of
fluoxetine in the adult Gulf toadfish (Opsanus beta) (73). Also,
juvenile rainbow trout exposed to environmental levels of
venlafaxine (0.1 and 1 ug/L) display amplified cortisol responses
June 2022 | Volume 13 | Article 895064
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following a social stressor, and this correlated with increases in the
transcript abundance of crh and pomcb in the brain. Conversely,
antidepressants exposure to early-life stages suppressed the stress-
induced cortisol production, and also led to long-term impacts on
cortisol response, suggesting alterations in the developmental
programming of the stress axis (74, 75, 77). For instance, early
life exposure to fluoxetine (either 0.54 µg/L or 54 µg/L) reduces
basal and stressed levels of cortisol in zebrafish (75). When these
fish grew to adults, the attenuated stressor-induced cortisol
response was sexually dimorphic with the males more sensitive
than females (75, 127). In contrast, zygotic deposition of
venlafaxine did not influence cortisol levels at the larval stage,
but the stressor-induced cortisol production was attenuated in the
female and not male fish as adults (77). Vera-Chang and colleagues
(75) suggested that disruptions at the level of the head kidney
limited cortisol production in response to fluoxetine, while
venlafaxine exposure revealed that the head kidney was still
responsive to ACTH (75), suggesting that the disruption in
cortisol production was at the level of the hypothalamus and/or
pituitary. Although the route of exposure and duration of exposure
were different between the two antidepressants (75, 77, 127), the
results suggest that the mode of action in affecting the stress axis
functioning may be distinct. At least in zebrafish, sex-specific
differences in adrenoreceptors are seen in females relative to
males, particularly in the hypothalamus and pre-optic areas, with
female fish exhibiting higher levels of a2 adrenoreceptors (128). It
remains to be seen if the difference in sex-specific effect seen due to
early life exposure to either fluoxetine or venlafaxine may be related
to their effect on the reuptake of serotonin or serotonin and
norepinephrine, respectively. Taken together, these studies
demonstrate that the class of antidepressants and duration of
exposure may influence the outcome of the endocrine disruption
Frontiers in Endocrinology | www.frontiersin.org 6
of the stress axis in a sex-specific manner. Regardless, disruptions
in cortisol levels may compromise their stress coping capability, as
cortisol and the concomitant activation of GR and/or MR are
integral players in the energy substrate partitioning to cope with
stress (114–116, 129). The mechanisms leading to antidepressants
effect on the stress axis warrant further study, especially given that
some of these changes are even passed on to successive generations
(63, 74, 75, 77, 127). This leads to the proposal that epigenetic
changes due to early life exposure to the antidepressants may be
involved in the long-term programming of the stress axis
in teleosts.
CONCLUSIONS AND
FUTURE DIRECTIONS

Antidepressants alter central monoamine levels, and this may play a
role in the behavioural perturbations in fish (6, 39, 128). The
emerging evidence also points to antidepressants as endocrine
disrupting compounds in fish (Table 1). Specifically, studies
reveal that the antidepressants impact the endocrine control of
growth, stress, and reproductive axes in fish (Figure 1). As the
monoaminergic system modulates endocrine function, a possible
mode of action of the antidepressants in affecting endocrine
disruption may be through alterations in the central and
peripheral monoamine content, but this remains to be established.
It is particularly important to note that early life exposures to
antidepressants impacts the developmental programming of the
endocrine system, and this may be reflected in long term and
multigenerational changes in hormone levels and function (75,
77).We recently showed that venlafaxine-mediated disruption in
embryonic serotonin content alters neurogenesis (39), and whether
FIGURE 1 | Overview of the tissue-specific impacts of antidepressants on the endocrine axes in fish. Depiction of the expected mode of action of antidepressants,
along with the specific tissues and the observed phenotypes associated with exposures to antidepressants.
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this alteration in brain development may play a role in the
developmental programming of the endocrine axes warrants
further study. For instance, the availability of knockout models in
fish, including tryptophan hydroxylase paralogs (92, 129), a rate
limiting enzyme in serotonin synthesis, will be an important step in
delineating the effects of antidepressants mediated by the
serotonergic pathway. While targeting the changes in the
monoamine content may be one possible mechanism leading to
endocrine disruption, the possibility that antidepressants may have
direct effect on hormone action by targeting receptor function
cannot be excluded (62). The sex of the animal is also another
key factor that may dictate the outcome of the antidepressants
impact (73, 75, 77, 127), and should be taken into account in future
studies on endocrine disruption. Elucidating the mechanism of
action of antidepressants in disrupting endocrine function in non-
target organisms would be an important future direction to assess
their impact on fitness consequences to the animal. A major
limitation of the current body of work is the scarcity of studies on
the endocrine effects related to environmentally relevant
concentrations of the antidepressants in species commonly found
in the aquatic habitats receiving MWWE. Environmental
disruptors, including antidepressants are persistent in the aquatic
habitats, suggestive of life-long exposures to these compounds (28).
However, the implications of such life long exposures on animal
fitness, and multigenerational consequences await further study.
Frontiers in Endocrinology | www.frontiersin.org 7
Such studies would be essential in developing markers for
environmental risk assessment and for establishing adverse
outcome pathways related to endocrine disruptive impacts of
antidepressants. From a mechanistic standpoint, future studies
should aim to identify the critical window during early
development that is most sensitive to antidepressants and
understand the mechanisms of action by which these
pharmaceuticals alter the developmental programming of the
endocrine system. This would allow for the development of novel
biomarkers that are indicative of the developmental origin of
endocrine dysfunction due to antidepressants exposure in fish.
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Transgenerational Hypocortisolism and Behavioral Disruption are
Induced by the Antidepressant Fluoxetine in Male Zebrafish Danio Rerio.
Proc Natl Acad Sci (2018) 115:1–8. doi: 10.1073/pnas.1811695115

76. Vera-Chang MN, St-jacques AD, Lu C, Moon TW, Trudeau VL, Carr JA.
Fluoxetine Exposure During Sexual Development Disrupts the Stress
Axisand Results in Sex- and Time- Dependent Effects on the Exploratory
Behavior in Adult Zebrafish Danio Rerio. Front Neurosci (2019) 13:1015.
doi: 10.3389/fnins.2019.01015

77. Thompson WA, Vijayan MM. Zygotic Exposure to Venlafaxine Disrupts
Cortisol Stress Axis Activity in Multiple Generations of Zebrafish. Environ
Pollut (2021) 274:116535. doi: 10.1016/j.envpol.2021.116535
Frontiers in Endocrinology | www.frontiersin.org 9
78. Galus M, Kirischian N, Higgins S, Purdy J, Chow J, Rangaranjan S, et al.
Chronic, Low Concentration Exposure to Pharmaceuticals Impacts Multiple
Organ Systems in Zebrafish. Aquat Toxicol (2013) 132–133:200–11.
doi: 10.1016/j.aquatox.2012.12.021

79. Martin JM, Bertram MG, Saaristo M, Ecker TE, Hannington SL, Tanner JL,
et al. Impact of the Widespread Pharmaceutical Pollutant Fluoxetine on
Behaviour and Sperm Traits in a Freshwater Fish. Sci Total Environ (2019)
650:1771–8. doi: 10.1016/j.scitotenv.2018.09.294

80. McCallum ES, Krutzelmann E, Brodin T, Fick J, Sundelin A, Balshine S.
Exposure to Wastewater Effluent Affects Fish Behaviour and Tissue-Specific
Uptake of Pharmaceuticals. Sci Total Environ (2017) 605–606:578–88. doi:
10.1016/j.scitotenv.2017.06.073

81. Arnnok P, Singh RR, Burakham R, Pérez-Fuentetaja A, Aga DS. Selective
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