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Numerical cognition is ubiquitous in the animal kingdom. Domestic chicks are a widely
used developmental model for studying numerical cognition. Soon after hatching,
chicks can perform sophisticated numerical tasks. Nevertheless, the neural basis of their
numerical abilities has remained unknown. Here, we describe number neurons in the
caudal nidopallium (functionally equivalent to the mammalian prefrontal cortex) of
young domestic chicks. Number neurons that we found in young chicks showed
remarkable similarities to those in the prefrontal cortex and caudal nidopallium of adult
animals. Thus, our results suggest that numerosity perception based on number neu-
rons might be an inborn feature of the vertebrate brain.
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Be it a number of conspecifics in a group (1), a number of food items (2), or a number
of motifs in a song (3), correct estimation of quantities is of vital importance for ani-
mals. Several behavioral studies have confirmed that numerical competence is not a
prerogative of human beings but is a widespread phenomenon in the animal kingdom
(reviewed by refs. 4 and 5). Mammals (6–8), birds (3, 9, 10), reptilians (11), amphib-
ians (12), fishes (13), and invertebrates (14), although evolutionarily distant, all can
spontaneously assess quantities using an approximate number system (15).
For the approximate number system, which is based on Weber’s law (16), the per-

ception of cardinal numbers resembles the perception of continuous physical stimuli,
and the just noticeable difference is proportionate to the quantity being estimated. As a
consequence, discrimination of quantities is imprecise and depends on the numerical
distance between stimuli. In other words, it is easier to tell apart 5 and 10 than 9
and 10. Moreover, discrimination of quantities becomes increasingly difficult with the
numerical size. For a given numerical distance (e.g., one), it is easier to discriminate
between numbers with low magnitudes (1 vs. 2) than with high magnitudes (9 vs. 10).
Recent research has uncovered that the approximate number system relies on the

activity of a specific neuronal population. Neurons that respond to abstract numerosity
irrespective of objects’ physical appearance (shape, color, size) have been found in the
forebrain of human and nonhuman primates (17, 18) and in crows (19). In mammals,
numerical responses were recorded in the parietal and the prefrontal cortices (PFCs)
(17). In birds, similar neurons have been described in the caudolateral nidopallium
(NCL) (19). The NCL is believed to be an analog of the PFC in the avian brain (20)
and is involved in a variety of cognitive processes, including memory formation
(21, 22), abstract rule learning (23), and action planning (24).
Both monkeys and crows are among the most evolutionarily advanced species of their

phylogenetic groups. They independently developed sophisticated intellectual capacities
(25), and both possess enlarged forebrains (26). The neural representations of numerosi-
ties described in these species also share remarkable similarities (19, 27–29). In both spe-
cies, the number neurons show the strongest response to a preferred numerosity, which
gradually decreases along with the numerical distance (numerical distance effect, but see
ref. 30). Their tuning curves are skewed toward larger numerosities and become progres-
sively broader (less selective) with increasing numerosities (numerical size effect). How-
ever, it is unclear whether the presence of similar number neurons in these two species
emerges as a consequence of their elaborate cognitive skills and enlarged forebrains. To
understand the evolution of the number sense, we need to explore its neural correlates in
distant bird species with more ancestral traits.
Moreover, until now, number neurons have been described only in adult animals

(e.g., refs. 19, 27–29, and 31). At the same time, behavioral data from human infants
(32) and young domestic chicks (10, 33) indicate that some core numerical abilities
might be an inborn or spontaneously emerging (34, 35) property of the vertebrate
brain. Testing the presence of number neurons in young and untrained organisms is
crucial to verify this hypothesis.
In our study, we aimed to describe the neural correlates of the number sense in

domestic chicks (Gallus gallus), which belong to a sister group of modern Neoaves
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(36). The domestic chick is a well-established developmental
model for studying numerical cognition. Soon after hatching,
these birds are already capable of discriminating quantities (33,
37) and even performing basic arithmetic operations (10). It
has also been shown that young chicks represent numbers across
the mental number line (38), a cognitive ability that had been
previously attributed only to humans.
We hypothesized that neural processing of numerical infor-

mation in young untrained chicks might be similar to that in
crows, despite them having evolved independently over the last
∼70 million years (36). In a domestic chicken, the NCL is
morphologically different from that of corvids (39), but it is
unclear whether this reflects any functional difference. There-
fore, we decided to search for neural responses to numerical
stimuli in the NCL of domestic chicks. For this purpose, we
habituated young chicks to a computer monitor, where numerical
stimuli were presented (Fig. 1A). We explored neural responses to
numerosities from one to five. To control for nonnumerical
parameters, we presented three different categories of stimuli:
“radius-fixed,” “area-fixed,” and “perimeter-fixed” (Fig. 1B).

Results

To test the neural responses to numerical stimuli in young
domestic chicks, we recorded the activity of 471 units in the
NCL and examined the mean firing rate of each unit during
stimulus presentation (Fig. 2 A and B). To identify how many
of these neurons would convey numerical information, we per-
formed a two-way ANOVA with the factors “numerosity” (five
levels: one to five) and “stimulus type” (three levels: “radius-
fixed,” “area-fixed,” and “perimeter-fixed”). A unit was consid-
ered as a number neuron only if the main effect of the factor
“numerosity” was highly significant (P < 0.01), but not the
effect of the “stimulus type” nor the interaction between the
two factors (19). Among these 471 units that we recorded, 53
(11%) responded to numerosity irrespective of the stimulus
type.
We then wanted to compare the tuning curves of neurons

that preferred different numerosities. The preferred numerosity
for every number neuron was defined as the numerosity that
elicited the strongest neural response (after ref. 19). Five exam-
ples of number neurons tuned to different numerosities are
shown in Fig. 2 C–G. The corresponding statistics of these five
neurons are summarized in Table 1. The responses of all 53
number neurons are summarized in Fig. 3A (for statistical
results, see SI Appendix, Table S1; for an example of trials with
numerical responses, see Movie S1). Most of the number

neurons were tuned to the numerosities one (30%, n = 16)
and five (32%, n = 17). However, we found neurons respon-
sive to other numerosities as well (two: 11%, n = 6; three: 9%,
n = 5; four: 17%, n = 9), covering the whole range of tested
numerosities (Fig. 2B).

To verify whether our number neurons would behave as
expected from the numerical magnitude effect, we grouped
neurons by their preferred numerosity. In accordance with the
magnitude effect, the tuning curves of number neurons were
asymmetric and increasingly wider toward larger numerosities
(Fig. 3B). To quantify this numerical magnitude effect, we
plotted neural filter functions of single neurons on four differ-
ent scales: a linear scale, a power function with an exponent of
0.5, a power function with an exponent of 0.33, and a logarith-
mic (log2) scale. The neural filter functions became signifi-
cantly more symmetric on a nonlinear scale (Friedman test:
X2(3) = 10.653; P = 0.014; Fig. 4A), with the linear scale sig-
nificantly different from the power 0.33 and logarithmic scales
(Nemenyi test: P = 0.022 and P = 0.028, respectively), but
not from the power 0.5 scale (Nemenyi test: P = 0.176). The
sigma of the Gaussian fit increased with numerosity only when
plotted on a linear scale (Fig. 4B, slope of the linear fit = 0.17)
but not with other nonlinear scales (Fig. 4B, power 0.5: slope =
�0.003; power 0.33: slope = �0.01; log2: slope = �0.03), as
expected based on traditional models of number coding.

We verified that the apparent numerosity responses that we
observed could not have emerged just by chance, and they rep-
resent a true feature of the networks from which we recorded.
Therefore, to evaluate the probability of finding false-positive
numerical responses in our dataset, we used the trial-shuffle
method. We shuffled trials of every recorded unit (n = 471)
1,000 times. After each shuffling, we selected false-positive
number neurons by the same statistical criteria described above.
The proportion of real number neurons (11%; 53 out of 471)
was significantly higher than the proportion of false-positive
units (0.95%; 4,488 out of 471,000) obtained by the analysis
of randomly shuffled trials (proportion test: X2(1) = 512,56,
P < 0.001). This result makes it extremely unlikely that described
numerical responses represent a statistical artifact.

We further compared the tuning curves between the false-
positive number neurons and the real number neurons. This
allowed us to show that these false positives created by shuffling
behave remarkably differently from the real number neurons
that we recorded. First, for each numerical category, we ran-
domly selected the same number of corresponding false-positive
neurons as the actually recorded number neurons in that cate-
gory, that is, 16, 6, 5, 9, and 17 false-positive neurons that

A B

radius

area

perimeter

Fig. 1. Experimental design. (A) Schematic drawing of the experimental setup. Young chicks were placed in a small wooden box in front of the screen,
where numerical stimuli appeared. They were trained to pay attention to the stimuli without any further discrimination between different numerosities. (B)
Examples of different types of numerosity stimuli that we presented in every neural recording: “radius-fixed,” “area-fixed,” and “perimeter-fixed.”
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were “tuned” to numerosities one to five, respectively (Fig. 2B).
Then, we compared the tuning curves of the real and false-
positive neurons (Fig. 4C), computing a two-way ANOVA
with the factors “absolute numerical distance” (five levels: zero
to four) and “data type” (two levels: real and false positive).
The response of real neurons decreased gradually with numeri-
cal distance, meaning that the closest numerosities were more
likely to trigger the number neurons. In contrast, the tuning
curve of the false-positive neurons, which, by chance, happened
to have higher firing rates for a random numerical stimulus,
was markedly different from real number neurons (interaction

for the factor “numerical distance * data type”: F(1,526) = 6.275;
P = 0.01).

We further wanted to quantify the degree of selectivity of
each number neuron for its preferred numerosity. This allowed
us also to test whether the neurons would behave according to
the expected numerical size effect, by which neurons tuned to
lower numerosities are generally more selective than neurons
coding for larger numerosities. This was done by performing a
post hoc analysis and comparing the response between the most
preferred numerosity and the other numerosities (Table 2). Nine
out of 53 number neurons showed statistically different firing
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Fig. 2. Neurons in the NCL of chicks responding to numerosity. (A) An exemplary coronal section of the chicken forebrain showing the recording site in the
NCL (electrolytic lesion is marked by an asterisk). Arc, arcopallium; Hp, hippocampus; Str, striatum. (B) Distribution of neurons that preferred each numeros-
ity stimulus. Examples of neurons that were tuned to numerosity one (C), two (D), three (E), four (F), or five (G). (Top) Raster plots representing neural activity,
where each line corresponds to one trial, and each dot corresponds to a spike. Trials are grouped by numerosity. The 500-ms duration of the stimulus is
marked by a transparent window. (Bottom) Averaged spike density functions (smoothed by a 100-ms Gaussian kernel; SEM is plotted as a shaded area along
the lines). (Insert) Average firing rate in response to numerosities of each stimulus type. Gray dotted line corresponds to “radius-fixed,” dashed line corre-
sponds to “perimeter-fixed,” dot-dashed line corresponds to “area-fixed” stimuli, and black solid line corresponds to an average. Error bars correspond to SEM.
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rates between the most-preferred and closest neighboring numer-
osities. In line with the numerical size effect, neurons tuned to
lower numerosities were generally more selective than neurons
coding for larger numerosities. For instance, 6 out of 16 neurons
with the preferred numerosity one significantly decreased their
firing rate in response to the numerosity two. At the same time,
out of 17 neurons that preferentially responded to the numeros-
ity five, only 1 neuron showed significantly lower response to
the numerosity four.
As the next step, we wanted to verify whether our number

neurons would behave according to the expected numerical
distance effect. The number neurons generally better differenti-
ated between numerosities with increasing numerical distance
(Generalized Linear Model (GLM) for absolute numerical dis-
tance: X2(18) = 3.935, P = 0.047; GLM for the log of the
numerical distance: X2(18) = 6.544, P = 0.011). This effect
was more prominent when the numerical distance was calcu-
lated on the logarithmic scale: The GLM for the log of the
numerical distance had a better fit than the GLM for absolute
numerical distance (difference in the Bayesian information cri-
terion [ΔBIC] = 6.36). For a summary of all post hoc results,
see SI Appendix, Table S2.

Discussion

We recorded number neurons in 8- to 12-d-old chicks, the youn-
gest animals in which number neurons have been described so
far. In the NCL of young domestic chicks, 11% of neurons
showed a strong selective response to numerical stimuli, confirm-
ing the role of this structure in avian numerical cognition. More-
over, our chicks were not trained in any numerical discrimination
task. Instead, they were simply paying attention to the screen,
where the numerical stimuli were presented [passive fixation

(40)]. Thus, our young chicks can be considered numerically
naïve (see ref. 28).

This result is in line with previous studies on numerically
naïve adult animals of distant lineages: 14% of neurons in the
PFC of adult monkeys (28) and 12% of neurons in the NCL
of adult crows (29) have shown numerical response. It is
important to note that, in any of these studies, including our
own, we cannot completely exclude a potential unsupervised
learning effect due to repeated exposure to numerical stimuli.
Indeed, recent studies have found that, in a deep neural net-
work designed to analyze images, a similar amount of number
detectors can emerge spontaneously (35), even without pre-
training (34, 41). However, the hypothesis that number neu-
rons can spontaneously emerge in the biological visual system
has not been directly tested so far.

Our data, together with behavioral evidence from newly
hatched domestic chicks (10, 33) and newborn infants (32),
suggest that numerosity detection might be an inborn or spon-
taneously emerging feature of the brain. Our results certainly
should not be automatically extrapolated to other newborn
organisms, since the domestic chicken is a precocial species
with a very rapid development after hatching. Nevertheless,
even in 2-wk-old chicks, the functional organization of the
brain still remains immature and flexible (42). Thus, the pres-
ence of number neurons in young chicks, which were not
trained to discriminate any specific numerosity, supports the
idea of an inborn number sense. Moreover, since behavioral
studies (10, 37) show that newly hatched chicks perceive
numerical information, we might expect to find number neu-
rons already at the first day after hatching.

The number neurons in domestic chicks showed very similar
features to those observed in primates and crows (19, 28, 43).
First, the number neurons we observed were tuned to specific
numerosities, in accordance with the labeled-line code shown

Table 1. Results of the two-way ANOVA for five example number neurons shown in Fig. 2 C–G

Preferred numerosity

ANOVA (Firing rate ≈ stimulus type * numerosity)

Numerosity Stimulus type Interaction

num1 F(4,251) = 5.7273, P < 0.001 F(2,251) = 0.9275, P = 0.396 F(8,251) = 1.2411, P = 0.273
num2 F(4,253) = 3.5881, P = 0.007 F(2,253) = 0.2355, P = 0.79 F(8,253) = 0.454, P = 0.887
num3 F(4,496) = 5.8789, P < 0.001 F(2,496) = 0.1179, P = 0.889 F(8,496) = 1.4538, P = 0.173
num4 F(4,308) = 4.2385, P = 0.002 F(2,308) = 0.1141, P = 0.892 F(8,308) = 0.9124, P = 0.506
num5 F(4,355) = 13.4938, P < 0.001 F(2,355) = 1.832, P = 0.162 F(8,355) = 0.3219, P = 0.958

Preferred numerosity: numerosity eliciting the strongest response. ANOVA results (F statistics and P value) for the factor “stimulus type” (“radius-fixed,” “area-fixed,” or “perimeter-
fixed”), “numerosity” (numerosity one to five), or interaction between them.
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Fig. 3. Neural responses and tuning curves of number neurons. (A) Neural response of all recorded number neurons to numerosity stimuli. Heatmap val-
ues represent the mean firing rate during the stimulus presentation (binned by 50 ms), normalized [0, 1] for the corresponding neuron in each row. Values
are further grouped by the numerosity stimuli from one to five (vertical white lines), and by the numerical preference of recorded neurons (horizontal white
lines) from neurons that preferred numerosity one (Top) to neurons that preferred numerosity five (Bottom). (B) Average tuning curves of numerosity selec-
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for the number neurons in the NCL of crows (19, 43). Second,
chicks’ number neurons showed a specific decay in response to
nonpreferred numerosities, which was similar to number

neurons in other species and could not have been obtained by
chance (see false-positive neurons in Fig. 4C). Third, we
observed the numerical magnitude effect: The tuning curves of
number neurons became wider with increased numerosity and
became more symmetrical when plotted on the nonlinear scale
(Fig. 3B), although this feature might be not exclusive for
labeled-line coding (41, 44). Also, the selectivity of the neural
response to nonpreferred numerosities increased with the loga-
rithm of the numerical distance, rather than with the absolute
numerical distance (for similar results in monkeys, see, e.g.,
ref. 45).

Here we have followed the approach that is most commonly
used in the literature to identify the presence of number neu-
rons and to describe their response properties in accordance
with the labeled-line hypothesis (e.g., refs. 18, 19, 45, and 46).
One should, however, mention an alternative hypothesis for
coding of numerical information, that is, a summation coding
scheme (30, 47). Summation coding predicts that a neuron,
instead of being tuned to a specific cardinal numerosity, mono-
tonically increases/decreases its firing rate with the numerical
magnitude (SI Appendix, Fig. S2). Cardinal numerosity might
then be decoded from the pooled activity of this cell. To distin-
guish between labeled-line and summation coding, one can test
whether tuning curves of neurons preferring the numerosities
in the middle of the tested range (in our case, numerosities two
and three) are better described with the linear or with the
Gaussian fit. We tackled this problem and performed addi-
tional analyses reported in SI Appendix, Fig. S2. The majority
of our neurons did not show the linear increase/decrease of
their firing rate with numerosity, and their tuning curves were
bell shaped rather than linear. This, however, does not account
for all of our number neurons. Therefore, to unequivocally tell
apart summation vs. labeled-line coding schemes, future studies
would need to test a wider range of numerosities. However,
regardless of the underlying coding mechanism, our data still
represent direct evidence of neural representation of numerical
information in the brains of young naïve chicks.

The overall low selectivity to specific numerosity at a single-
cell level, as revealed by the post hoc analysis (Table 2), appears
to be similar to what was observed in other species (19, 28,
43). How brains can depict precise numerosities with such a
noisy system may be explained by a population rate code (16).
Single cells respond to every trial in a probabilistic way and
only, on average, show increased firing rates to a given numer-
osity. Smooth tuning curves only emerge after the neural filter
functions of many single cells tuned to the same numerosity are
pooled together (Fig. 3B). For an animal to immediately assess
numerosity, independent responses of several number neurons
should be averaged simultaneously over a large population.
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Fig. 4. Response properties of number neurons. (A and B) Comparison of
different scaling schemes for the tuning curves. (A) R-squared, a measure of
goodness of fit reflects symmetry of the tuning curves plotted on the four dif-
ferent scales. The tuning curves of number neurons become more symmetric
when plotted on the nonlinear scale. (B) Sigma of the Gaussian fit for neurons
preferring different numerosities. When plotted on the linear scale, the tuning
curves become wider with increased numerosity. Error bars correspond to
SEM. (C) Averaged normalized activity of all numerosity selective neurons
compared to the random tuning curve (see Materials and Methods for details).
The neural activity was normalized (0 = response to the least preferred
numerosity, 1 = response to the most preferred numerosity) and then plotted
as a function of absolute numerical distance from the most preferred numer-
osity. Neural response of numerosity selective neurons (black line) gradually
decreased with the numerical distance. The slope of this tuning curve is nota-
bly different from the random tuning curve (gray line) of false-positive neu-
rons obtained by random shuffling of trials. Error bars correspond to SEM.

Table 2. The summary of the post hoc analysis

Summary Number of neurons

Sum Group num1 num2 num3 num4 num5

16 num1 6 9 12 14
6 num2 4 2 1 3
5 num3 5 1 0 0
9 num4 6 2 1 1
17 num5 15 12 6 1

For each group, based on their preferred numerosity, we calculated the number of
neurons that showed significant difference between the most preferred and the given
numerosity.
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Thus, at the neural population level, stimulation by a specific
numerosity would result in a distinct activation pattern. Alter-
natively, the response to specific numerosities might be a result
of summation coding (30, 47). These two hypotheses can be
further tested only by implementing methods that allow record-
ing of single-cell activity over a large neural population.
Given these striking similarities between number neurons in

the NCL of crows and chicks, it seems a reasonable guess that
they share the same evolutionary origin. This, in turn, would
mean that the neural mechanism of the number sense is not an
advanced evolutionary adaptation of a few highly intelligent spe-
cies. Number neurons in the NCL are likely an ancestral feature
in avian species, since domestic chicks belong to the sister group
of modern Neoaves (36). Cladogenesis in Galloanseres and Neo-
aves occurred just before the Cretaceous–Paleogene transition
(48). The last common ancestor of modern domestic chicks and
crows lived ca. 70 million to 85 million years ago (36, 48) in the
jungle of West Gondwana (48), where radiation of all modern
avian groups started.
While it is very tempting to go one step further and discuss

the idea of the common evolutionary origin of number neurons
for all vertebrates, this would be too speculative. The NCL in
birds and the PFC in mammals do share similar functions, but
they are not homologous structures (49, 50). Birds indepen-
dently developed cortical brain regions, including the NCL,
that enabled their high cognitive functions (20, 51). The same
is likely true also for the Dc (dorsal central) region in the telen-
cephalon of zebrafish, which has been recently shown to process
numerical information (52). The possibility of a direct homol-
ogy between the Dc and either the PFC or the NCL can only
be addressed at a macroscopic level. These three regions likely
belong to larger neocortex homologs in the respective species
(53) (but see ref. 54). However, given the developmental and
morphological differences between these areas, new cortical
subregions with similar functions must have appeared multiple
times during independent evolution of these structures.
Two hypotheses can be put forward on the evolution of num-

ber sense in vertebrates. The first one is that number perception
evolved independently several times in different phylogenetic
groups (55), although our data strongly suggest that number
neurons in the nidopallium are an ancestral trait of birds. This
mechanism, however, still can be an adaptation that evolved in
parallel to mammalian number neurons. In this case, the identi-
cal labeled-line coding scheme for numerosities adopted by birds
and mammals might be computationally advantageous and,
therefore, evolved independently in both groups (19). The sec-
ond hypothesis is that numerosity processing can be based upon
an ancient core neural circuit shared among all vertebrates. In
this case, we would expect to find numerosity responses in other,
evolutionarily conserved brain regions homologically shared among
vertebrates (5). Indeed, some indirect evidence suggests that at least
a coarse estimation of quantity, that is, more vs. less, might be pre-
sent already at the subcortical level in humans (56) and in the mid-
brain of birds (57) and zebrafish (58).
These hypotheses are, however, not mutually exclusive. The

putative ancestral neural circuit might be dedicated to assess con-
tinuous physical parameters normally associated with numeros-
ity, like total area of the stimulus. Conversely, higher-order brain
processing leading to estimation of cardinal numerosities at a
more abstract level may have developed several times, together
with the independent evolution of new cortex homolog brain
areas in distant phylogenetic groups (59).
Summing up, our study provides a step in addressing a com-

plex evolutionary and developmental aspect of numerical

cognition. We demonstrate the existence of number neurons in
young numerically naïve domestic chicks. In the future, this
method might be easily adopted for studying the neural corre-
lates of numerical cognition in other brain regions, as well as in
other species.

Materials and Methods

Subjects. Twelve domestic chicks (G. gallus domesticus) of both sexes from the
Aviagen ROSS 308 strain were used. Fertilized eggs were obtained from a local
commercial hatchery (CRESCENTI Societ�a Agricola S.r.l.–AllevamentoTrepola–cod.
Allevamento 127BS105/2). Eggs were incubated and hatched within incubators
(Marans P140TU-P210TU) at a temperature of 37.7 °C, with 60% humidity in a
dark room. After hatching in dark incubators, chicks were isolated and housed
individually in metal cages (28 cm wide× 32 cm high× 40 cm deep) with food
and water available ad libitum, at a constant room temperature of 30 °C to
32 °C and a constant light–dark regime of 14 h light and 10 h dark. All experi-
mental protocols were approved by the research ethics committee of the Univer-
sity of Trento and by the Italian Ministry of Health (Permit 745/2021-PR).

Experimental Setup. The setup consisted of a rectangular shaped arena (28 ×
40 × 32 cm; width [W] × length [L] × height [H]) with metal walls that were
grounded. In the center of one of the shorter walls, there was a circular opening
(diameter 12 cm). A computer screen (AOC AGON AG271QG4, 144 Hz) used for
stimuli presentation was positioned directly behind the circular opening. Within
the rectangular arena, was a small wooden box 14 × 13 × 22 cm (W × L × H)
whose frontal wall was made of a metal grid. The box was placed 25 cm in front
of the circular opening with the screen (Fig. 1A). During the experiments, chicks
remained inside the box, from where they could observe the stimuli. Stimulus
presentation was controlled by the PsychoPy toolbox (60).

Habituation Procedure. The habituation occurred between the third and the
sixth day after hatching. On the third day post hatching, chicks learned to peck
on mealworms. During day 4 after hatching, chicks were, first, habituated to the
experimental setup and then to the number stimuli appearing on the screen.
The birds received mealworms every time after the stimulus appeared on the
screen, which motivated them to pay attention to the moment when any stimu-
lus would appear. The stimuli were presented and rewarded randomly, so that
chicks would not associate any particular numerosity with the reward. During
days 5 and 6 post hatching, we gradually decreased the reward rate, so that birds
would still pay attention to the screen even without getting a mealworm. This pro-
cedure allowed us to minimize rewarding during actual recording sessions.

Surgery and Recordings. On the seventh day after hatching, chicks were fully
anesthetized using Isoflurane inhalation (1.5 to 2.0% gas volume, Vetflurane,
1,000 mg/g, Virbac) and placed in the stereotaxic apparatus with a bar fixed at
the beaks’ base and tilted 45° to ear bars. Local anesthesia (Emla cream, 2.5%
lidocaine + 2.5% prilocaine, AstraZeneka, S.p.A.) was applied to the ears and
skull skin before and after the surgery. Metal screws were placed into the skull
for grounding and stabilization of the implant. A small craniotomy was made in
the skull on the right hemisphere above the NCL (1.0 mm anterior to the
bregma, 4.5 mm lateral to the midline). For extracellular recordings, we used
self-wired tetrodes made out of formvar-insulated Nichrome wires (17.78 μm
diameter, A-M Systems), which were gold plated to reduce the impedance to
300 kOm to 400 kOm (controlled by nanoZ, Plexon Inc.). Then, a commercially
available Halo-5 microdrive (Neuralynx) was assembled according to the pro-
ducer instructions, where four single tetrodes were put into polymicro tubes
(inner diameter 0.1 mm) and glued to the plastic shuttles. The microdrive was
implanted and fixed first with quick adhesive silicone (Kwik-Sil, World Precision
Instruments) and then with dental cement (Henry Schein Krugg Srl). To increase
the probability of finding number-responsive units, we did not glue the elec-
trode tips within the tetrodes We, thus, considered each tetrode as a brush-like
arrangement of four single electrodes. Since, in this brush arrangement, the
positions of the electrode tips can vary, some of the electrodes may have
recorded signals from the same neurons. Hence, for sorting and subsequent
analyses, we chose only the best electrode from each tetrode at every recording
position to avoid double counting of the same neurons.
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After the surgery, the chicks were left to recover until the next day in their
home cages. Between the eighth and the twelfth day after hatching, we recorded
neural responses to numerical stimuli in the NCL of chicks. Before every recording
session, the microdrive was connected to the Plexon system (Plexon Inc.) via a
QuickClip connector and an omnetics headstage (Neuralynx). After every record-
ing session, the tetrodes were manually advanced by 60 μm to 100 μm.

Signals were preamplified with a 16-channel head-stage (20×, Plexon Model
PX.HST/16V-G20-LN) subsequently amplified 1,000×, digitalized and filtered
(300-Hz high-pass filter, 3-kHz low-pass filter, and 50-Hz noise removal). The com-
mon average referencing method (the averaged signal across channels) of the
PlexControl system was used for referencing. Spikes were detected with the Plex-
Control software with an automatic 4-sigma threshold from the average noise
level. Subsequently, spike sorting was performed manually in the Plexon Offline
Sorter (see SI Appendix, Fig. S1 for examples of the raw signal and spike sorting).

Stimuli. As numerical stimuli, we used red dots outlined with a thin black line
that appeared in the center of the screen in a white background circle 6 cm in
diameter. The size of stimuli ranged from 0.25 cm to 1.4 cm [0.6° to 3.2° (61)].
We explored neural responses to numerosities from one to five. To control for
visual parameters that might interfere with numerosity perception, during every
recording session, we presented three different types of stimuli (Fig. 1B).
“Radius-fixed” type of stimuli consisted of dots with a fixed radius, meaning that
area and perimeter increase with numerosity. “Area-fixed” stimuli have constant
total area over all numerosities, while the total perimeter of the dots increases
with numerosity. “Perimeter-fixed” stimuli have constant total perimeter over all
numerosities, while total area of these stimuli decreases with numerosity. To fur-
ther control that neurons do not respond to other visual parameters except for
quantity, the interdistance interval between dots varied randomly. Moreover, for
every day of recording, we created a new batch of stimuli consisting of 30
unique images for each numerosity/stimulus type combination. Numerosity
stimuli were created using GeNEsIS software (62).

During recording sessions, we randomly presented stimuli for 500 ms with
2,000 ms of interstimulus interval. Experiments were video recorded using Cine-
LAB system (Plexon Inc.). To enhance the motivation of birds to pay attention to
the screen, random trials were occasionally rewarded. These trials were subse-
quently discarded from the analysis.

Histological Analysis. After the last neural recording, birds were overdosed
with the ketamine/xylazine solution (1:1 ketamine 10 mg/mL+ xylazine 2 mg/mL).
Electrolytic lesions were made at the recording sites by applying a high-voltage cur-
rent to the tetrodes for 10 s to 15 s. Then, the birds were perfused intracardially
with the phosphate buffer (phosphate-buffered saline; 0.1 mol, pH= 7.4, 0.9%
sodium chloride, 5 °C) followed by 4% paraformaldehyde (PFA). Brains were incu-
bated for at least 2 d in PFA and a further 2 d in 30% sucrose solution in PFA. Coro-
nal 60-μm brain sections were cut at�20 °C using a cryostat (Leica CM1850 UV),
mounted on glass slides, stained with the Giemsa dye (MG500, Sigma-Aldrich),
and coverslipped with Eukitt (FLUKA). Brain sections were examined under the
stereomicroscope (Stemi 508, Carl Zeiss) to estimate the anatomical position of
recording sites.

Data Analysis. Based on the analysis of video recordings, we selected only
those trials when birds were not rewarded. Since, in birds, there is an almost
complete decussation of the optic fibers, we recorded from the right hemisphere,
and we selected only trials when birds looked at the stimulus with both eyes or
with the contralateral (left) eye. For each recorded unit, we excluded trials with a
firing rate of less than 1 Hz. For the final analysis, we considered only those units
that were recorded for at least seven trials for each numerosity and stimulus type
(on average, 23 trials per numerosity/stimulus type).

The neural activity of recorded units was analyzed as the mean firing rate over
500 ms of stimulus presentation. To find numerosity-responsive neurons, we per-
formed two-way ANOVA with the numerosity (one to five) and the stimulus type
(“radius-fixed,” “area-fixed,” or “perimeter-fixed”) as factors. We considered the
recorded neuron as numerosity responsive if only the effect of the “numerosity”
factor was highly significant (P < 0.01), but not of the stimulus type or the inter-
action between the two factors. The numerosity that elicited the strongest neural
response was defined as a preferred numerosity for this neuron.

For every number neuron, we performed a post hoc analysis (Tukey’s test) to
compare the neural response between the most preferred and other numerosities.

To test for the numerical distance effect, we applied a GLM for binomial data with
the logit-link function. In the model, the proportion of neurons that significantly
differentiate between given numerosities was taken as the response variable, and
either the absolute numerical distance or the logarithm of the numerical distance
was taken as a factor. We then compared the goodness of fit of these two models
based on theΔBIC, where the lower the BIC value, the better the model’s fit.

To validate the stability of our recordings, we performed a cross-validation
analysis. For each numerosity-responsive unit, we calculated the preferred
numerosity for the first and the second half of all trials separately. If the neural
response to number stimuli was stable across the recording, we expected the
Pearson’s correlation between the first and the second half of the trials to be
close to one for the whole population of number neurons. The cross-validation
analysis showed a strong correlation of 0.82 (P < 0.001) between the preferred
numerosity in the first and the second half of the trials, confirming the stability
of our recordings.

For every number neuron, we normalized neural activity by setting the firing
rate in response to the preferred numerosity at 100% and in response to the least
preferred numerosity at 0%. The resulting neural filter functions were averaged
by group based on the preferred numerosity, thus creating numerosity tuning
curves for, for example, neurons preferring numerosity one, numerosity two, etc.

To evaluate the chance level of finding false-positive numerical responses in
our dataset, for every recorded neuron, we shuffled all the trials 1,000 times and
performed an ANOVA each time to select false-positive number neurons. We
compared the proportion of false-positive and real number neurons with the pro-
portion test. We further compared the tuning curves between the false-positive
number neurons and the real number neurons. For this, we randomly sampled,
from the false-positive neurons, the same number of neurons as of actually
recorded number neurons. We compared the tuning curves of real and false-
positive neurons performing a two-factor ANOVA with the interaction of “numerical
distance” and “data type” (real/false positive).

According to Weber’s law, the perception of sensory stimuli (including quanti-
ties) is proportional to the quantity being estimated. The just noticeable differ-
ence was hypothesized to be constant on a logarithmic (63) or power (64) scale
of stimulus magnitude. Therefore, when plotted on a linear scale, one might
expect tuning curves to become increasingly asymmetric and wide with increas-
ing numerosity. These properties are usually referred to as a numerical distance
effect and a numerical magnitude effect, respectively. To evaluate the symmetry
and the width of the neural filter functions, we fitted the Gaussian function to
the curves (MATLAB Curve Fitting Toolbox) plotted on four different scales: linear,
a power function with an exponent of 0.5, a power function with an exponent of
0.33, and a logarithmic (log2) scale (43). The symmetry of the Gaussian fit was
estimated based on R-squared (r2) values; that is, the higher the r2, the better
and more symmetric the fit. The width of the Gaussian fit was reflected by its
sigma (σ). The four scaling methods were compared based on the r2 values by
the Friedman’s test for nonparametric data with repeated measures with the
post hoc pairwise comparison with the Nemenyi test. The relationship between
the numerosity and the sigma of the Gaussian was tested by an ANOVA for dif-
ferent scaling methods separately.

All statistical analyses and visualization of the data were performed in R (65)
with packages “tidyverse,” “ggplot2,” and “PMCMRplus” and in MATLAB using
custom-made scripts and the Curve Fitting Toolbox.

Availability of Data and Material. A summary table including the mean fir-
ing rates for all numerosity-responsive neurons for all trials is included as
Dataset S1. The raw spike train data and the custom code that was used for data
analysis and visualization are available at the GitHub repository https://github.
com/dmkobylkov/number_neurons.

All other study data are included in the article and/or supporting information.

ACKNOWLEDGMENTS. We are grateful to Anastasia Morandi-Raikova for her
help with handling the chicks. Orsola Rosa-Salva, Elena Lorenzi, Andrea Messina,
and Matilde Perrino provided very valuable comments to the current manuscript.
This work was supported by funding from the European Research Council
under the European Union’s Horizon 2020 research and innovation program
(Grant Agreement 833504 SPANUMBRA) and from the grant by Progetti di
Ricerca di Rilevante Interesse Nazionale (PRIN 2017 ERC-SH4–A (2017PSRHPZ))
to G.V.

PNAS 2022 Vol. 119 No. 32 e2201039119 https://doi.org/10.1073/pnas.2201039119 7 of 8

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201039119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2201039119/-/DCSupplemental
https://github.com/dmkobylkov/number_neurons
https://github.com/dmkobylkov/number_neurons


1. A. Balestrieri, A. Gazzola, D. Pellitteri-Rosa, G. Vallortigara, Discrimination of group numerousness
under predation risk in anuran tadpoles. Anim. Cogn. 22, 223–230 (2019).

2. S. Hunt, J. Low, K. C. Burns, Adaptive numerical competency in a food-hoarding songbird. Proc.
Biol. Sci. 275, 2373–2379 (2008).

3. C. N. Templeton, E. Greene, K. Davis, Allometry of alarm calls: Black-capped chickadees encode
information about predator size. Science 308, 1934–1937 (2005).

4. A. Nieder, A Brain for Numbers: The Biology of the Number Instinct (MIT Press, 2019).
5. E. Lorenzi, M. Perrino, G. Vallortigara, Numerosities and other magnitudes in the brains: A

comparative view. Front. Psychol. 12, 641994 (2021).
6. H. Davis, M. Albert, Numerical discrimination by rats using sequential auditory stimuli. Anim.

Learn. Behav. 14, 57–59 (1986).
7. C. Ward, B. B. Smuts, Quantity-based judgments in the domestic dog (Canis lupus familiaris).

Anim. Cogn. 10, 71–80 (2007).
8. M. J. Beran, T. A. Evans, E. H. Harris, Perception of food amounts by chimpanzees based on the

number, size, contour length and visibility of items. Anim. Behav. 75, 1793–1802 (2008).
9. B. E. Lyon, Egg recognition and counting reduce costs of avian conspecific brood parasitism. Nature

422, 495–499 (2003).
10. R. Rugani, L. Fontanari, E. Simoni, L. Regolin, G. Vallortigara, Arithmetic in newborn chicks.

Proc. R. Soc. B Biol. Sci. 276, 2451–2460 (2009).
11. A. Gazzola, G. Vallortigara, D. Pellitteri-Rosa, Continuous and discrete quantity discrimination in

tortoises. Biol. Lett. 14, 20180649 (2018).
12. G. Stancher, R. Rugani, L. Regolin, G. Vallortigara, Numerical discrimination by frogs (Bombina

orientalis). Anim. Cogn. 18, 219–229 (2015).
13. D. Potrich, V. A. Sovrano, G. Stancher, G. Vallortigara, Quantity discrimination by zebrafish

(Danio rerio). J. Comp. Psychol. 129, 388–393 (2015).
14. M. Bortot, L. Regolin, G. Vallortigara, A sense of number in invertebrates. Biochem. Biophys. Res.

Commun. 564, 37–42 (2021).
15. E. M. Brannon, D. J. Merritt, “Evolutionary foundations of the approximate number system”

in Space, Time and Number in the Brain, S. Dehaene, E. M. Brannon, Eds. (Academic, 2011),
pp. 207–224.

16. A. Nieder, The neuronal code for number. Nat. Rev. Neurosci. 17, 366–382 (2016).
17. A. Nieder, Supramodal numerosity selectivity of neurons in primate prefrontal and posterior

parietal cortices. Proc. Natl. Acad. Sci. U.S.A. 109, 11860–11865 (2012).
18. E. F. Kutter, J. Bostroem, C. E. Elger, F. Mormann, A. Nieder, Single neurons in the human brain

encode numbers. Neuron 100, 753–761.e4 (2018).
19. H. M. Ditz, A. Nieder, Neurons selective to the number of visual items in the corvid songbird

endbrain. Proc. Natl. Acad. Sci. U.S.A. 112, 7827–7832 (2015).
20. O. G€unt€urk€un, K. von Eugen, J. Packheiser, R. Pusch, Avian pallial circuits and cognition:

A comparison to mammals. Curr. Opin. Neurobiol. 71, 29–36 (2021).
21. B. Diekamp, T. Kalt, O. G€unt€urk€un, Working memory neurons in pigeons. J. Neurosci. 22, RC210

(2002).
22. L. A. Hahn, D. Balakhonov, E. Fongaro, A. Nieder, J. Rose, Working memory capacity of crows and

monkeys arises from similar neuronal computations. eLife 10, e72783 (2021).
23. L. Veit, A. Nieder, Abstract rule neurons in the endbrain support intelligent behaviour in corvid

songbirds. Nat. Commun. 4, 2878 (2013).
24. L. Veit, G. Pidpruzhnykova, A. Nieder, Associative learning rapidly establishes neuronal

representations of upcoming behavioral choices in crows. Proc. Natl. Acad. Sci. U.S.A. 112,
15208–15213 (2015).

25. A. Nieder, L. Wagener, P. Rinnert, A neural correlate of sensory consciousness in a corvid bird.
Science 369, 1626–1629 (2020).

26. S. Olkowicz et al., Birds have primate-like numbers of neurons in the forebrain. Proc. Natl. Acad.
Sci. U.S.A. 113, 7255–7260 (2016).

27. A. Nieder, D. J. Freedman, E. K. Miller, Representation of the quantity of visual items in the
primate prefrontal cortex. Science 297, 1708–1711 (2002).

28. P. Viswanathan, A. Nieder, Neuronal correlates of a visual “sense of number” in primate parietal
and prefrontal cortices. Proc. Natl. Acad. Sci. U.S.A. 110, 11187–11192 (2013).

29. L. Wagener, M. Loconsole, H. M. Ditz, A. Nieder, Neurons in the endbrain of numerically naive
crows spontaneously encode visual numerosity. Curr. Biol. 28, 1090–1094.e4 (2018).

30. J. D. Roitman, E. M. Brannon, M. L. Platt, Monotonic coding of numerosity in macaque lateral
intraparietal area. PLoS Biol. 5, e208 (2007).

31. H. Sawamura, K. Shima, J. Tanji, Numerical representation for action in the parietal cortex of the
monkey. Nature 415, 918–922 (2002).

32. V. Izard, C. Sann, E. S. Spelke, A. Streri, Newborn infants perceive abstract numbers. Proc. Natl.
Acad. Sci. U.S.A. 106, 10382–10385 (2009).

33. R. Rugani, L. Regolin, G. Vallortigara, Discrimination of small numerosities in young chicks. J. Exp.
Psychol. Anim. Behav. Process. 34, 388–399 (2008).

34. G. Kim, J. Jang, S. Baek, M. Song, S. B. Paik, Visual number sense in untrained deep neural
networks. Sci. Adv. 7, eabd6127 (2021).

35. K. Nasr, P. Viswanathan, A. Nieder, Number detectors spontaneously emerge in a deep neural
network designed for visual object recognition. Sci. Adv. 5, eaav7903 (2019).

36. R. O. Prum et al., A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA
sequencing. Nature 526, 569–573 (2015).

37. R. Rugani, A. Cavazzana, G. Vallortigara, L. Regolin, One, two, three, four, or is there something
more? Numerical discrimination in day-old domestic chicks. Anim. Cogn. 16, 557–564 (2013).

38. R. Rugani, G. Vallortigara, K. Priftis, L. Regolin, Animal cognition. Number-space mapping in the
newborn chick resembles humans’mental number line. Science 347, 534–536 (2015).

39. K. von Eugen, S. Tabrik, O. G€unt€urk€un, F. Str€ockens, A comparative analysis of the dopaminergic
innervation of the executive caudal nidopallium in pigeon, chicken, zebra finch, and carrion crow.
J. Comp. Neurol. 528, 2929–2955 (2020).

40. C. R. Hussar, T. Pasternak, Flexibility of sensory representations in prefrontal cortex depends on cell
type. Neuron 64, 730–743 (2009).

41. I. Stoianov, M. Zorzi, Emergence of a ‘visual number sense’ in hierarchical generative models.
Nat. Neurosci. 15, 194–196 (2012).

42. J. V. Zappia, L. J. Rogers, Sex differences and reversal of brain asymmetry by testosterone in
chickens. Behav. Brain Res. 23, 261–267 (1987).

43. H. M. Ditz, A. Nieder, Numerosity representations in crows obey the Weber–Fechner law.
Proc. R. Soc. B Biol. Sci. 283, 20160083 (2016).

44. J. Pearson, J. D. Roitman, E. M. Brannon, M. L. Platt, S. Raghavachari, A physiologically-inspired
model of numerical classification based on graded stimulus coding. Front. Behav. Neurosci. 4, 1 (2010).

45. A. Nieder, K. Merten, A labeled-line code for small and large numerosities in the monkey
prefrontal cortex. J. Neurosci. 27, 5986–5993 (2007).

46. S. Okuyama, T. Kuki, H. Mushiake, Representation of the numerosity ‘zero’ in the parietal cortex of
the monkey. Sci. Rep. 5, 10059 (2015).

47. Q. Chen, T. Verguts, Spontaneous summation or numerosity-selective coding? Front. Hum.
Neurosci. 7, 886 (2013).

48. S. Claramunt, J. Cracraft, A new time tree reveals Earth history’s imprint on the evolution of
modern birds. Sci. Adv. 1, e1501005 (2015).

49. O. G€unt€urk€un, T. Bugnyar, Cognition without cortex. Trends Cogn. Sci. 20, 291–303 (2016).
50. T. M. Preuss, S. P. Wise, Evolution of prefrontal cortex. Neuropsychopharmacology 47, 3–19 (2022).
51. M. Stacho et al., A cortex-like canonical circuit in the avian forebrain. Science 369, eabc5534

(2020).
52. A. Messina et al., Neurons in the dorso-central division of zebrafish pallium respond to change in

visual numerosity. Cereb. Cortex. 32, 418–428 (2021).
53. S. D. Briscoe, C. W. Ragsdale, Evolution of the chordate telencephalon. Curr. Biol. 29, R647–R662

(2019).
54. L. Puelles, Comments on the updated tetrapartite pallium model in the mouse and chick, featuring

a homologous claustro-insular complex. Brain Behav Evol 90, 171–189 (2017).
55. A. Nieder, The evolutionary history of brains for numbers. Trends Cogn. Sci. 25, 608–621 (2021).
56. E. Collins, J. Park, M. Behrmann, Numerosity representation is encoded in human subcortex. Proc.

Natl. Acad. Sci. U.S.A. 114, E2806–E2815 (2017).
57. V. I. Gusel’nikov, �E. D. Morenkov, I. P. Gutsu, Responses of neurons in the pigeon’s optic tectum to

visual stimuli. Neurophysiology 3, 78–83 (1971).
58. S. J. Preuss, C. A. Trivedi, C. M. vom Berg-Maurer, S. Ryu, J. H. Bollmann, Classification of object

size in retinotectal microcircuits. Curr. Biol. 24, 2376–2385 (2014).
59. G. F. Striedter, R. G. Northcutt, Brains through Time: A Natural History of Vertebrates (Oxford

University Press, 2019).
60. J. Peirce et al., PsychoPy2: Experiments in behavior made easy. Behav. Res. Methods 51, 195–203

(2019).
61. K. L. Schmid, C. F. Wildsoet, Assessment of visual acuity and contrast sensitivity in the chick using

an optokinetic nystagmus paradigm. Vision Res. 38, 2629–2634 (1998).
62. M. Zanon, D. Potrich, M. Bortot, G. Vallortigara, Towards a standardization of non-symbolic

numerical experiments: GeNEsIS, a flexible and user-friendly tool to generate controlled stimuli.
Behav. Res. Methods 54, 146–157 (2021).

63. G. T. Fechner, Elemente der psychophysik (Breitkopf & H€artel, 1860), vol. 2.
64. S. S. Stevens, To Honor Fechner and Repeal His Law: A power function, not a log function,

describes the operating characteristic of a sensory system. Science 133, 80–86 (1961).
65. R Core Team, R: A language and environment for statistical computing, R version 4.0.3. https://

www.R-project.org/. Accessed 10 October 2020.

8 of 8 https://doi.org/10.1073/pnas.2201039119 pnas.org

https://www.R-project.org/
https://www.R-project.org/

	TF1
	TF2

