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Abstract: Clinical studies demonstrated that the ovarian hormone 17β-estradiol (E2) is neuropro-
tective within a narrow window of time following menopause, suggesting that there is a biological
switch in E2 action that is temporally dependent. However, the molecular mechanisms mediating this
temporal switch have not been determined. Our previous studies focused on microRNAs (miRNA)
as one potential molecular mediator and showed that E2 differentially regulated a subset of mature
miRNAs which was dependent on age and the length of time following E2 deprivation. Notably, E2

significantly increased both strands of the miR-9 duplex (miR-9-5p and miR-9-3p) in the hypotha-
lamus, raising the possibility that E2 could regulate miRNA stability/degradation. We tested this
hypothesis using a biochemical approach to measure miRNA decay in a hypothalamic neuronal cell
line and in hypothalamic brain tissue from a rat model of surgical menopause. Notably, we found
that E2 treatment stabilized both miRNAs in neuronal cells and in the rat hypothalamus. We also
used polysome profiling as a proxy for miR-9-5p and miR-9-3p function and found that E2 was able
to shift polysome loading of the miRNAs, which repressed the translation of a predicted miR-9-3p
target. Moreover, miR-9-5p and miR-9-3p transcripts appeared to occupy different fractions of the
polysome profile, indicating differential subcellular. localization. Together, these studies reveal a
novel role for E2 in modulating mature miRNA behavior, independent of its effects at regulating the
primary and/or precursor form of miRNAs.

Keywords: miR-9-5p; miR-9-3p; brain; aging; menopause

1. Introduction

microRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate
up to 60% of all cellular proteins [1]. Consequently, miRNAs are poised to control dynamic
signaling cascades by adjusting the absolute amount of proteins available required to
accomplish multiple physiological processes, thereby allowing cells to rapidly adapt to
changing internal and external stimuli. Aging can be considered a chronic stimulus
that elicits a complex array of cellular changes, many of which are the direct result of
reduced levels of proteins that protect the cell against age-related damage [2]. The ovarian
hormone 17β-estradiol (E2) also regulates the amount of proteins that can contribute to
cellular protection in many tissues, especially in the brain; however, this E2-mediated
protection is lost following the menopausal transition and advanced age [3]. The “Timing
Hypothesis” speculates that E2 is neuroprotective within a critically narrow window of
time following menopause, suggesting that there is a biological switch in E2 action that
is temporally dependent [4]. Our previously published work raised the possibility that
miRNAs could underlie this temporal switch in E2 action in the aging female brain. For
instance, miR-9-5p and miR-9-3p were differentially regulated by E2 in the hypothalamus
and hippocampus of aged female rats [5,6]. This finding was particularly relevant due
to the extensively characterized roles of miR-9-5p and miR-9-3p in maintaining healthy
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neuronal function through their regulation of neuronal differentiation, dendritic branching,
and apoptosis [7–12]. Notably, our previous data demonstrated that the ability of E2
to regulate these miRNAs in aged rats was dependent on the length of time between
ovarian hormone depletion (via ovariectomy) and the subsequent timing of replacement
E2 treatment [6]. Those data further supported the notion that differential regulation of
miR-9-5p and miR-9-3p could, in part, explain the disparate functional outcomes of E2
treatment in women closer to the menopausal transition compared to those given E2 many
years past menopause.

Regulation of miRNAs by E2 can theoretically be achieved at multiple steps in the
miRNA biogenesis pathway. Briefly, miRNA biogenesis is initiated by the transcription
of a long primary transcript (pri-miRNA) which is subsequently cleaved by the RNase III
enzyme (DROSHA) to form the precursor (pre-miRNA); after nuclear export, pre-miRNA is
cleaved by another RNase III enzyme (DICER) to form the miRNA duplex which contains
the 20–23 nt mature miRNA products [13]. To date, the literature investigating the role of E2
in the regulation of miRNAs has primarily focused on regulation of miRNA transcription
(i.e., formation of the pri-miRNA). The ability for E2 to regulate miRNAs at the level of
transcription is conceptually reasonable, and somewhat expected, due to the canonical
E2 signaling pathways which are mediated primarily by nuclear estrogen receptors (ER)s
that act as transcription factors to initiate or inhibit gene expression. Indeed, there have
been multiple reports suggesting that E2 can have transcriptional effects on miRNAs. For
example, E2-bound ERβ inhibited the transcription of pri-miR-30a in a breast cancer cell
line (MCF7) by binding to two proximal sites near its transcription initiation start site [14].
Notably, E2 broadly decreased total miRNA expression in the MCF7 cell line, suggesting
that the ERβ-mediated inhibition of transcription could be a shared mechanism to globally
downregulate miRNA expression in ER positive cancer cells [15]. Contrary to data from
cancer cell models, E2 regulation of miRNAs in the brain exhibits distinct molecular
patterns; specifically, a global decrease in miRNA expression has not been observed. In
fact, our data showed that only a subset of miRNAs were altered by E2 treatment in the
rat brain, and some were increased while others decreased, raising the potential for E2 to
selectively target miRNAs in the brain.

In this study we focused on two of our previously identified E2-regulated miRNAs:
miR-9-5p and miR-9-3p. These miRNAs are both derived from the same primary transcript
(pri-miR-9) and share the same precursor (pre-miR-9), but the mature duplex is unwound
to form individual miRNAs with unique mRNA targets [13]. Our data showed that E2
treatment increased both miR-9-5p and miR-9-3p in the aged rat hypothalamus, but the pri-
and pre-miR-9 levels were unaffected, suggesting that E2 regulation of miR-9-5p and miR-
9-3p was not at the level of transcription (i.e., pri-) or DROSHA processing (i.e., pre-) [6].
Therefore, the objective of this study was to determine a mechanism for E2 regulation of
mature miR-9-5p and miR-9-3p and investigate the potential consequences of E2 on their
ability to effectively repress mRNA translation using polysome profiling. We hypothesized
that E2 regulates miR-9-5p and miR-9-3p through stabilization of the mature miRNA in
an age-dependent manner. We tested this hypothesis using a biochemical approach with
neuronal cell lines and hypothalamic tissue isolated from aged female rats. Collectively,
we show that E2 treatment stabilized miR-9-5p and miR-9-3p in the rat hypothalamus
and this stabilization was dependent on age of treatment. Moreover, our data suggest
that E2 might differentially modulate the ability of miR-9-5p and miR-9-3p to repress the
translation of their mRNA targets by shifting their association with polysomes. Together,
these data provide a putative mechanistic explanation underlying the “Timing Hypothesis”
by highlighting a novel role for E2 on mature miRNA degradation.

2. Results
2.1. E2 Stabilized miR-9-5p and miR-9-3p in Neuronal Cells and in the Aged Female Brain

We used a previously validated miRNA degradation assay to determine whether E2
altered the degradation rate of mature miR-9-5p and miR-9-3p using neuronal cell lines, as
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described previously [16]. First, we tested the effects of E2 using a rat neuronal cell line
derived from the paraventricular nucleus (PVN) of the hypothalamus. Our data showed a
significant main effect of Time on miR-9-5p half-life in neuronal cells [F (1, 12) = 7.53; p = 0.018]
(Figure 1A–C).
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Figure 1. E2 treatment increased miR-9-5p stability in hypothalamic-derived neuronal cells. (A) Scatterplot of normalized
densitometry values analyzed from microradiographs and fit with a one-phase exponential decay function in cells treated
with E2 for 2 or (B) 15 h (black line = vehicle; red line = E2; N = 4/group). (C) Mean half-life and (D) area under the
curve (AUC) of miR-9-5p calculated from best-fit exponential decay functions. Results are represented as mean ± SEM
(N = 4/group) and analyzed using two-factor ANOVA for Time and Treatment. Significance was noted when p < 0.05.
Significant main effects of factors are noted as Psubscript.

There was also a main effect of Time [F (1, 12) = 5.1; p = 0.043] and Treatment [F (1, 12) = 6.0; p = 0.031]
for miR-9-5p area under the curve (AUC; Figure 1D), but there was no statistically significant
interaction between the two factors. A post-hoc analysis of all pair-wise comparisons did not
reveal any significant differences between groups for miR-9-5p half-life or AUC. Similarly, E2
had robust effects on miR-9-3p stability in neuronal cells (Figure 2).

There was a near significant main effect on miR-9-3p half-life for Time [F (1, 12) = 4.67; p = 0.051]
and a significant effect of Treatment [F (1, 12) = 7.53; p = 0.018], but no significant interaction (Figure 2C).
On the other hand, there was a significant interaction [F (1, 12) = 17.88; p = 0.001] in miR-9-3p AUC,
demonstrating that the effects of E2 depended on the length of treatment time (Figure 2D). A post-
hoc analysis revealed a significant difference in miR-9-3p half-life between vehicle and E2-treated
groups after both 2 and 15 h of treatment (Figure 2C). Similarly, there was a significant difference
in the AUC between 2 and 15 h of E2 treatment, as well as between vehicle and E2-treated for
15 h (Figure 2D).
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Figure 2. E2 treatment increased miR-9-3p stability in hypothalamic-derived neuronal cells. (A) Scatterplot of normalized
densitometry values analyzed from microradiographs and fit with a one-phase exponential decay function in cells treated
with E2 for 2 or (B) 15 h (black line = vehicle; red line = E2; N = 4/group). (C) Mean half-life and (D) area under the
curve (AUC) of miR-9-3p calculated from best-fit exponential decay functions. Results are represented as mean ± SEM
(N = 4/group) and analyzed using two-factor ANOVA for Time and Treatment. Significance was noted when p < 0.05.
Significant main effects of factors or interactions are noted as Psubscript.

Next, we repeated the miRNA degradation assay using PVN tissue samples isolated
from a rat model of surgical menopause to further investigate the E2-mediated stabilization
of miR-9-5p and miR-9-3p in the context of the Timing Hypothesis. Notably, the degrada-
tion curves in vivo did not follow a one-phase exponential decay for either miR-9-5p or
miR-9-3p (Figures 3 and 4).

Rather, there appeared to be a single rapid cleavage followed by a plateau. How-
ever, like our in vitro results, E2 treatment in vivo stabilized miR-9-5p and there was a
statistically significant main effect on the AUC for Age [F (1, 24) = 6.44; p = 0.018] and Treat-
ment [F (1, 24) = 4.70; p = 0.040] (Figure 3). However, a post-hoc analysis did not reveal any
significant differences between groups and there were no significant differences in half-life,
suggesting that E2 did not affect the overall rate of degradation kinetics (Figure 3C,D). miR-
9-3p had a similar overall degradation profile in the brain and there was a significant main
effect of Treatment on the AUC [F (1, 28) = 4.39; p = 0.045], but no differences were observed in
half-life at either age (Figure 4C,D). Notably, both miR-9-5p and miR-9-3p exhibited rapid
degradation kinetics in brain tissue lysate relative to what was observed in the neuronal
cells, consistent with previous reports [17,18].
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Figure 3. E2 treatment increased miR-9-5p stability in the paraventricular nucleus of the hypothalamus in a rat model of
menopause. Aged female rats were ovariectomized at 18 months and treated with E2 at 1 or 12 weeks following OVX. miRNA
degradation assays were performed using brain tissue lysate isolated from the PVN of the hypothalamus. (A) Scatterplot of
normalized densitometry values were analyzed from microradiographs and fit with a non-linear exponential decay function
in 18-month or (B) 21-month-old animals (black line = vehicle; red line = E2; N = 8/group). (C) Mean half-life and (D)
area under the curve (AUC) of miR-9-5p calculated from best-fit exponential decay functions. Results are represented as
mean ± SEM (N = 8/group) and analyzed using two-factor ANOVA for Age and Treatment. Significance was noted when
p < 0.05. Significant main effects of factors are noted as Psubscript.

2.2. E2 Altered miR-9-5p and miR-9-3p Occupancy in Polysome Fractions and the Translation of
Downstream mRNA Targets

Increased miRNA stability could result in greater efficacy of miRNA-mediated transla-
tional repression of mRNA targets. Therefore, we used polysome profiling as a functional
proxy for miR-9-5p and miR-9-3p activity to test the effects of E2 on miRNA activity
in hypothalamic-derived neuronal cells. miRNAs have been shown to copurify with
polysomes, reflecting their inhibitory action during active mRNA translation. We first
determined that E2 treatment did not shift the overall pattern of polysome profiles or
significantly alter 18S ribosomal mRNA, demonstrating that E2 did not affect global mRNA
translation processes (Figure 5).
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Figure 4. E2 treatment increased miR-9-3p stability in the paraventricular nucleus of the hypothalamus in a rat model
of menopause. Aged female rats were ovariectomized at 18 months and treated with E2 at 1 or 12 weeks following
OVX. miRNA degradation assays were performed using brain tissue lysate isolated from the PVN of the hypothalamus.
(A) Scatterplot of normalized densitometry values analyzed from microradiographs and fit with a non-linear exponential
decay function in 18-month or (B) 21-month-old animals (black line = vehicle; red line = E2; N = 8/group). (C) Mean
half-life and (D) area under the curve (AUC) of miR-9-3p calculated from best-fit exponential decay functions. Results are
represented as mean ± SEM (N = 8/group) and analyzed using two-factor ANOVA for Age and Treatment. Significance
was noted when p < 0.05. Significant main effects of factors are noted as Psubscript.

We then measured the occupancy of miR-9-5p and miR-9-3p in the polysome fractions.
Our results demonstrated the novel finding that miR-9-5p and miR-9-3p were highly
abundant in distinct polysome fractions. Specifically, miR-9-5p was mainly detected in
polysome fractions (6–10), while miR-9-3p was most abundant in the 40S ribosomal complex
fraction (Figure 6A,B).

We also observed a significant shift following E2 treatment for both miR-9-5p and
miR-9-3p; E2 treatment shifted miR-9-5p towards a heavier polysome fraction, indicat-
ing significantly increased association with more actively translating mRNA transcripts,
while E2 significantly increased the amount of miR-9-3p in the 40S ribosomal fraction
(Figure 6A,B). Moreover, in our polysome factions we measured miR-29c-3p, a microRNA
that is not regulated by E2 in the hypothalamus. Our data showed that E2 treatment did
not alter polysome occupancy of miR-29c-3p, indicating that E2 regulates specific miRNAs
and selectively alters their polysome occupancy.
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Figure 6. E2 altered miR-9-5p and miR-9-3p polysome occupancy in hypothalamic-derived neuronal cells. Cells were
treated with E2 for 15 h and fractionated using sucrose gradient density sedimentation. Total RNA was isolated from
fractions 1–10 and analyzed for expression levels of (A) miR-9-5p, (B) miR-9-3p, and (C) miR-29c-3p. Data were analyzed
using unpaired two-sample T-test comparing treatments within each fraction. Data are represented as mean % total mRNA
± SEM (N = 3 independent experiments). Significance was noted when p < 0.05.
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Next, we performed RT-qPCR on pooled polysome fractions for putative miR-9-5p
and miR-9-3p target mRNA using the same total RNA isolated for polysome profiling.
These experiments tested the downstream consequences of E2-mediated miRNA stability
by assessing the translational repression of miR-9-5p and miR-9-3p targets: Serine and
arginine rich splicing factor 2 (Srsf2), RE1 silencing transcription factor (REST), Synapse
associated protein of 97 kDa (Sap97), Sirtuin 1 (Sirt1), Y-box binding protein 3 (YBX3),
and Insulin-like growth factor receptor 1 (Igf1R), an E2-regulated gene that is a putative,
albeit poorly conserved, miR-9-3p target (Table S1) [11,19]. We predicted that E2-mediated
miR-9-5p and miR-9-3p stability and relocation within polysome fractions would allow for
more effective downregulation of their respective mRNA targets. Our results showed that
E2 treatment significantly reduced the amount of the miR-9-3p mRNA target, Srsf2, in the
actively translating heavy polysome fraction indicating slow or stalled mRNA translation
(Figure 7A). However, other predicted miR-9-5p and miR-9-3p mRNA targets, Sap97, Rest,
Ybx3, Sirt1, Igf1R, did not show statistically significant changes in polysome association
(Figure 7B–F).

Our polysome profile results demonstrated that E2 slowed translation of Srsf2. There-
fore, we measured Srsf2 mRNA and protein in our animal model of menopause. Consistent
with the Timing Hypothesis, we demonstrated that there was an age-dependent effect of E2
on Srsf2 mRNA expression (Figure 8A). Specifically, there was a main effect of Treatment
[F (1, 24) = 16.36; p = 0.0008], but not Age, and there was no significant interaction between the fac-
tors. A post-hoc analysis revealed that E2 treatment at 12-weeks post-OVX (i.e., 21 months
old) significantly reduced Srsf2 mRNA expression in the PVN; however, E2 treatment at
just one-week post-OVX (18 months old) had no effect (Figure 8A). We also measured
protein levels of SRSF2 in the PVN of our animal model. Contrary to what we observed
with Srsf2 mRNA, the protein levels were unchanged with E2 treatment in both models
(Figure 8B).

2.3. E2 did Not Alter the Expression of Critical Components in the miRNA Biogenesis Pathway

We next quantified the mRNA expression of critical components in the biogenesis
pathway using RT-qPCR to determine if E2 regulated the transcription of genes important
for miRNA biogenesis and/or processing. Consistent with our previous reports, E2 did
not alter mRNA levels of Argonaute 2 (Ago2), 5′-3′exoribonuclease 2 (Xrn2), Di-George
syndrome critical region 8 (Dgcr8), Exportin 5 (Xpo5), or Dicer in the PVN of our aged
female rat model of menopause (Figure S1B–F) [5,6]. Conversely, there was a statistically
significant main effect of Treatment on Drosha mRNA levels across our two age groups
[F (1, 18) = 6.690; p = 0.018], but there was no main effect of Age and no interaction (Figure S1A).
Moreover, E2 treatment did not alter mRNA expression levels of Ago2, Xrn2, Dgcr8 Xpo5,
Drosha, or Dicer in our hypothalamic neuronal IVB cells (data not shown).
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derived neuronal cells. Cells were treated with E2 for 15 h and fractionated using sucrose gradient density sedimentation.
Total RNA was isolated from pooled from the monosome (fractions 1–4), light polysome (fractions 5–7), and heavy polysome
(fractions 8–10) fractions. mRNA expression levels were analyzed as fold change from vehicle treatment using ∆∆Ct method.
Data are represented as mean % total mRNA ± SEM (N = 3 independent experiments). Significance was noted when
p < 0.05.
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Figure 8. E2 treatment decreased Srsf2 mRNA, but not protein levels, in the paraventricular nucleus
of the hypothalamus in a rat model of menopause. (A) RT-qPCR results depicting fold change of
Srsf2 mRNA in the PVN of aged female rats with vehicle or E2 treatment at 18 or 21 mo. of age.
mRNA expression levels were analyzed as fold change from vehicle treatment using ∆∆Ct method.
(B) Representative western blot image of SRSF2 protein and control gene β-actin. (C) Quantification
of densitometry values from western blots (N = 6/group). Data for mRNA and protein quantification
were analyzed using two-factor ANOVA for age and treatment. Significance was noted when p < 0.05.
Significant main effects of factors are noted as psubscript.
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3. Discussion

The molecular mechanisms underlying the disparate effects of hormone replacement
therapy as postulated by the Timing Hypothesis are still being explored. In the present
study, we describe the novel finding that E2 treatment can regulate mature miRNAs in an
age-dependent manner independent of its effects on the pri- and precursor forms of miRNA.
The predominant view of how E2 regulates miRNAs tends to focus on E2-induced changes
in miRNA transcription, as mediated by the genomic actions of estrogen receptors (ER)s.
Here, we used a biochemical approach to reveal that E2 treatment can post-transcriptionally
regulate the stability of mature miRNAs in both hypothalamic-derived neuronal cell lines
and in the paraventricular nucleus (PVN), a hypothalamic subregion, of aged female rats.
Specifically, E2 stabilized both strands of the miR-9 duplex (-5p and -3p), which collectively
have been shown to be important for driving not only neuronal differentiation, but also for
regulating synaptic plasticity in post-mitotic neurons. We also demonstrated the ability of
E2 to affect mature miRNA activity using polysome profiling, revealing a novel mechanism
of miRNA regulation that could contribute to the molecular mechanisms underlying the
Timing Hypothesis.

Our data provide evidence that the E2-mediated regulation of miR-9-5p and miR-
9-3p is executed at the mature level and not at the level of transcription in the aged
brain. These results are novel, as other reports have shown that E2 regulates various
aspects of miRNA biogenesis in other tissue types. For instance, ERs have been shown
to bind directly to the promotors of miRNA genes to regulate the transcription of their
primary miRNAs [14,20]. Indirect regulation of miRNA transcription has also been reported
whereby steroid signaling mechanisms have been shown to recruit other transcription
factors to miRNA promoter sites; specifically, c-MYC was recruited to the promotor site
of miR-17-92 [21]. In general, E2 treatment has been associated with the transcriptional
repression of miRNAs, especially when the precursor strand harbors a G-rich terminal
loop [15,22]. However, it is important to consider that most of these studies were performed
using reproductive tissues, and E2 regulation of miRNAs in the central nervous system
is notably distinct from peripheral tissues. While E2 treatment upregulated levels of
mature miR-9-5p and miR-9-3p in the rat hypothalamus, the primary and precursor levels
remained unchanged [6], suggesting that this upregulation was not mediated by an increase
in transcription.

Moreover, we generally observed no effect of E2 treatment to the miRNA processing
machinery in both cell lines and in the PVN of aged female rats. One exception was a
significant reduction in Drosha mRNA levels in our aged animals. These results from brain
tissue contrast with the well-characterized effects of E2 on the various aspects of miRNA
processing in reproductive tissues. For instance, E2 and progesterone signaling concomi-
tantly increased Xpo5 mRNA expression in mouse uterine tissue, and Dicer expression was
observed to be increased with E2 treatment in MCF7 cells [23,24]. Furthermore, E2 positive
cell lines had increased Dicer and decreased Ago2 expression compared to ER negative cell
lines [25]. In our system, by contrast, we did not observe broad E2-mediated changes to the
miRNA processing machinery, suggesting that global miRNA processing was not altered
by E2 treatment. Therefore, E2 regulation of miR-9, at least in the aged rat hypothalamus,
likely exerts its actions directly at the level of mature miR-9 specific duplex strands.

The subcellular localization of mature miRNAs in the aged rat brain has not been
well studied and, to our knowledge, this is the first report showing that E2 shifts specific
miRNA polysome occupancy. Under cellular stress, active translation shifts towards the
formation of processing bodies or stress granules and mRNA translation is stalled [26,27].
On the other hand, miRNA association with cytosolic polysomes is indicative of active
translational repression. Therefore, we hypothesized that E2-mediated stabilization of
miRNAs could subsequently alter the activity and cellular location of miRNA in actively
translating polysomes. First, we found that miR-9-5p and miR-9-3p display very different
polysome profiles, which likely reflects their guide and passenger strand status, respectively.
While miR-9-5p primarily occupies the heavier polysome fractions (~60% total miR-9-5p),
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miR-9-3p occupies the lightest polysome fractions (~40% total miR-9-3p). Treatment with
E2 showed a trend, but was not statistically significant, towards decreasing miR-9-5p in
the 40S ribosomal complex (i.e., fraction 3), which may partly account for its significantly
increased shift in the heavier polysome fractions (i.e., fraction 10). This indicates that E2
increased the ability of miR-9-5p to translationally repress its target mRNAs. In contrast, E2
significantly shifted miR-9-3p towards the 40S ribosomal subunit (i.e., fraction 2), indicating
a role for translational stalling. Moreover, previous studies demonstrated that the 40S
ribosome is a marker of stress granules, a cellular compartment that functions to stall
translation of mRNAs under stress conditions [27,28].

Elongating the half-life of these rapidly degraded miRNAs, as demonstrated with E2
treatment, would theoretically afford it more time to repress their mRNA targets. Therefore,
we investigated the mRNA targets of both miR-9-5p and miR-9-3p with the expectation that
miR-9-5p and/or miR-9-3p targets would be significantly downregulated with E2 treatment
in polysome fractions. Indeed, Srsf2, a predicted target of miR-9-3p was translationally
stalled with E2 treatment. SRSF2 is a ubiquitous RNA binding protein and is part of the core
family of proteins in the spliceosome. Notably, SRSF2 is increased during physiological
stress and participates in the alternative splicing of acetylcholinesterase thereby altering
cholinergic synaptic transmission in the brain [29,30]. Our finding that E2 can inhibit
translation of SRSF2 in the aging brain points to a potential mechanism for the protective
effects of E2 on age-related cellular stress.

In sharp contrast to our data for Srsf2 mRNA in polysomes, other putative miR-9-
5p and miR-9-3p mRNA targets that we tested were not altered, despite the fact that
REST, SAP97, SIRT1, and YBX3 have all been experimentally validated and are highly
conserved targets of these miRNAs. These data underscore the importance of considering
other cellular factors that might contribute to their translational regulation. For instance,
prediction databases such as miRDB highlight several additional miRNAs that could
target these same genes, raising the possibility that several miRNAs could work in concert
with miR-9-5p and miR-9-3p to achieve full translational repression of these targets [31].
Alternatively, a limitation of our polysome data is that we typically obtain low overall
yields of total RNA from individual fractions. Therefore, it was necessary to pool several
fractions for the measurements of mRNA, which might have masked differences that might
have been otherwise observed in a single fraction. Previous studies in breast cancer cell
lines found that E2 was able to downregulate REST in polysomes more than total RNA [32].
While a direct relationship of E2-mediated miRNA repression of target mRNAs was not
established, our data is consistent with the aforementioned study. Our data herein showed
that there was a clear trend for E2 to decrease levels in the heavy polysome fractions, while
increasing it in the light polysome fractions, when comparing the statistical median for
REST, SIRT1, and IGF1R, similar to what we observed with SRSF2.

Estrogens initiate cellular signaling processes via their interaction with nuclear recep-
tors: ERα and ERβ [33]. The stabilizing effect of E2 that was observed for miR-9-5p and
miR-9-3p in our cell and tissue models was likely mediated primarily by the actions of
ERβ. In the hypothalamic-derived IVB cell lines, ERβ is dominantly expressed, though
ERβ expression can still be observed at very low levels [34,35]. Additionally, our previous
studies showed that an ERβ-, but not ERα-specific agonist, diarylpropionitrile: DPN, sig-
nificantly increased the expression of miR-9-3p in the rat hypothalamus [6]. Furthermore,
ERβ has recently been shown to indirectly interact with Argonaute 2 (Ago2) in breast
cancer cell lines, suggesting a role for ERβ in RISC loading [36]. Since miRNA loading to
Ago2 has been positively correlated with stabilization of the miRNA [37], it remains an
intriguing possibility that ERβ is facilitating the loading of miR-9-3p to the RNA-induced
silencing complex (RISC). Furthermore, distinct miRNA profiles were observed between
ERβ positive and negative breast cancer cell lines [14], consistent with our previous results
in various brain regions. Taken together, these data provide strong evidence that ERβ
signaling is critical in the regulation of a specific subset of miRNAs in multiple tissues.
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Our data are consistent with previous reports describing rapid miRNA degradation
in the central nervous system [17,18,38], which has been linked to neuronal activity. Here,
we demonstrated that miR-9-5p and miR-9-3p degrade on a seconds-to-minutes time scale
in hypothalamic-derived neuronal cell lines and in the PVN of aged female rats. Of note,
miR-9-5p and miR-9-3p degradation in the neuronal cells exhibited a clear one-phase
exponential decay that was not observed in the brain tissue, which instead appeared to
have a single-phase decay followed by a plateau. These results could be reflective of the
homogenous vs. heterogenous cell types in the brain tissue sample, which is a limitation of
this technique. For example, it is possible that miRNA degradation factors differ in neurons
compared to glial cells, but to our knowledge these specific factors have not yet been
discovered. It is also important to consider that the half-lives derived from this study are
not necessarily reflective of endogenous miRNA half-lives, as the lysis process required for
the degradation assay disrupts the subcellular. organization of its molecular constituents.
This could potentially introduce artificial interactions with degradation factors that would
not occur in an endogenous setting. Despite these limitations, it is evident from the obtained
biochemical data that E2 treatment is altering the cellular milieu (and perhaps degradation
factors) in such a way that it is protective of miR-9-5p and miR-9-3p degradation in a time
and age-dependent manner. However, delineating how E2 treatment impacts the specific
kinetics and mechanisms which regulate miRNA stability require further investigation,
as previous research has indicated that decay rates influence biological processes and
constitute potential drug targets [39].

The molecular switch underlying the time-dependent effects of E2 is likely represented
by a convergence of multiple signaling pathways. Here, we identify another potential
molecular component to this switch in E2 action, namely via stabilization of mature miR-
9-5p and miR-9-3p, which is observed dependent on age. Due to the importance of these
miRNAs in governing normal neuronal function in the adult brain [7,11,40], the results
reported herein allow for new avenues of research in understanding how differential
miRNA stabilization and activity can determine the efficacy of hormone replacement
therapy, particularly in the central nervous system of postmenopausal women.

4. Materials and Methods
4.1. Animals

Animal procedures were approved by the Institutional Animal Care and Use Commit-
tee (IACUC) at Loyola University Chicago (#2009018). All necessary measures were taken
to minimize the pain and suffering of animals subject to the Exp. procedures. 18-month-old
Fischer 344 rats were obtained from the National Institutes of Aging (NIA) colony at Charles
River Laboratories. Rats were pair-housed upon arrival and allowed to acclimate to their
environment for one week prior to further experimentation. Rats were supplied with
standard rat chow and tap water ad libitum and were kept on a 12/12 h. light/dark cycle
with Zeitgeber time (ZT) 0 at 7 A.M. Animals were ovariectomized (OVX) at 18 months of
age after the acclimation period and then left undisturbed for 1 or 12 weeks following OVX,
therefore animals were 18 months and 21 months, respectively, at the time of euthanasia.
These animal procedures were followed as outlined by Rao and colleagues [5]. After the
designated time intervals post-OVX, the animals were given a subcutaneous injection
of either safflower oil or 2.5 µg/kg 17β-estradiol E2 dissolved in safflower oil once/day
for 3 consecutive days. This dose has been previously reported to achieve circulating E2
concentrations within the physiological range for postmenopausal women receiving HRT
(17–75 pg/mL) [6,41,42]). Animals were euthanized 24-h after the final injection.

4.2. Ovariectomy

Animals were deeply anesthetized with vaporized isoflurane and bilaterally ovariec-
tomized (OVX), as described previously [6]. Briefly, the ovary and distal end of the uterine
horn were excised from the body cavity after the uterine horn was clamped with a hemo-
stat and ligated proximal to the clamp. Animals were singly housed and provided with
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acetaminophen analgesic in tap water for 3 days following the procedure. After 3 days of
analgesia, the animals were pair-housed with their previous cage mate and were undis-
turbed for the duration of the experiment.

4.3. Tissue Processing

The animals were deeply anesthetized using vaporized isofluorane and euthanized
by rapid decapitation. Brains were rapidly dissected, flash-frozen in 2-methylbutane at
−30 ◦C, and then sectioned coronally at 200 µm on a freezing microtome (Leica Biosystems,
Lincolnshire, IL, USA). The paraventricular nucleus (PVN) was microdissected using a
0.75-mm Palkovit’s brain punch tool (Stoelting, Inc., Wood Dale, IL, USA) at−1.49 to−2.12
relative to bregma, as defined by The Rat Brain in Stereotaxic Coordinates [43]. Frozen PVN
microdissections were transferred to a microcentrifuge tube and stored at −80 ◦C.

4.4. Cell Culture

For in vitro studies, we used a neuronal cell line derived from the paraventricular
nucleus (PVN) of the rat hypothalamus (IVB cells, provided by John Kaskow, University of
Cincinnati, Cincinnati, OH, USA). Cells were maintained in normal growth media (DMEM
media containing glucose, L-glutamine, sodium pyruvate, and 10% fetal bovine serum
(FBS) and grown to 60–70% confluency prior to experiments. For all Exp. conditions, cells
were maintained in media containing 10% charcoal/dextran stripped FBS (substituted
for regular FBS) for 48 h to eliminate all endogenous sources of hormones from the FBS.
After 48 h, cells were treated with 100 nM E2 or an equivalent volume of media containing
0.001% ethanol (vehicle) for 2 or 15 h before lysis.

4.5. RNA Isolation and cDNA Synthesis

Total RNA was isolated from IVB cells and PVN tissue microdissections using the
Zymogen DirectZol kit (Zymo Research, Irvine, CA, USA). Total RNA (1.0 µg) was reversed
transcribed using the Norgen miRNA cDNA Synthesis kit (Thorold, ON, Canada) or
Invitrogen Superscript IV mRNA synthesis kit for mRNA Cdna (Waltham, MA, USA),
according to manufacturer instructions.

4.6. RT-qPCR

All mRNA transcripts (i.e., miRNA biogenesis components and targets) were quan-
tified by RT-qPCR using the procedures and primers previously described [6]. Each
individual biological sample was assayed as triplicate replicates within an assay. We used
18S rRNA as a housekeeping gene that has previously been verified as unaffected by E2
treatment [44]. Transcripts were quantified relative to vehicle-treated control using the
∆∆Ct method [45]. The following conditions were used for the thermocycler: (1) 95 ◦C for
10 min, (2) 95 ◦C for 15 s, (3) 59 ◦C for 20 s, and (4) 72 ◦C for 12s in addition to melting
curve analysis.

4.7. miRNA Degradation Assay

The miRNA degradation assay was adapted for tissue and whole cell lysates according
to methods originally described by [46], and then modified by Kim and colleagues [18].
Briefly, oligonucleotide constructs were synthesized with the exact nucleotide sequence of
the mature transcript for miR-9-5p and miR-9-3p, [UCUUUGGUUAUCUAGCUGUAUGA]
and [AUAAAGCUAGAUAACCGAAAGU], respectively (Integrated DNA Technologies,
Coralville, IA, USA). These single stranded oligonucleotide sequences were then radiola-
beled on the 5′ end using [γ32P] ATP (3000 Ci/mmol; PerkinElmer, Waltham, MA, USA);
at a ratio of 10 fmols: 20 µg for the radiolabeled RNA and protein from either the IVB cell
lysate or brain tissue lysate, respectively. Incubation of the radiolabeled miRNA oligonu-
cleotides with the lysate was terminated at five different time points by boiling at 95 ◦C for
2 min following the addition of 2 × RNA Loading Dye (New England Biolabs, Ipswich,
MA, USA). The resulting mixture was then resolved on an 8% urea gel by electrophoresis.
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Finally, the gel was visualized by phosphoimaging (Typhoon GE Healthcare, Chicago, IL,
USA) to detect levels of the radiolabeled miRNA at the various time points. Gel bands were
quantified using densitometry analyses with ImageJ (RRID:SCR_003070) v5.2 software and
averaged densitometry values from multiple replicates were plotted on a scatterplot using
OriginLab software (v8.5.1, Northampton, MA, USA). Prism software (v9.1.0, San Diego,
CA, USA) was used to determine degradation kinetics using a non-linear regression, one-
phase decay, half-life calculated from the best fit exponential decay function; specifically,
T1/2 = ln2*tau and area under the curve (AUC). Data were analyzed by two-factor ANOVA,
followed by Tukey post-hoc for multiple pair-wise comparisons.4.8. Western Blot

Protein lysate from IVB cells and tissue was prepared using a 0.5% NP40 buffer with
protease and phosphatase inhibitors (Thermo Fisher Scientific, Skokie, IL, USA). Following
lysis procedures, protein concentration was determined using a bicinchoninic acid (BCA)
assay according to manufacturer instructions (Thermo Fisher Scientific, Skokie, IL, USA).
Total protein (30 µg) was boiled with 4X Laemmli buffer (BioRad, Hercules, CA, USA)
at 95 ◦C for 5 min before electrophoresis on a 10% polyacrylamide gel. Following gel
electrophoresis at 120 V for 1 h, proteins were transferred to Immobilon™ PVDF mem-
branes (Millipore, Burlington, MA, USA) at 100 V for 1 h at 4 ◦C. Membranes were blocked
with a 1:1 solution of TBS and Odyssey blocking solution (Li-cor Biosciences, Lincoln, NE,
USA) for 1 h at room temperature. Following the blocking procedure, membranes were
incubated with the indicated primary antibody overnight with constant agitation at 4 ◦C.
Membranes were then incubated with 1:1000 secondary antibodies, as appropriate (Li-cor
Biosciences, Lincoln, NE, USA), for 1 h at room temperature. Protein bands were visualized
using the Azure Biosystems imaging system (Dublin, CA, USA). Densitometry values were
calculated after subtracting background and relative fold changes were made compared to
vehicle controls.

4.8. Polysome Profiling

Hypothalamic-derived neuronal IVB cells were grown in media containing 10%
charcoal-stripped FBS for 48 h, then treated with E2 (100 nM) or vehicle (0.001% EtOH)
for 15 h, followed by 0.1 mg/mL cycloheximide (Sigma-Aldrich, St. Louis, MO, USA) for
10 min prior to lysis. Cells were lysed in polysome extraction buffer [47] and protein was
quantified by BCA to ensure equal loading between each sample. 1.5 mg lysate was loaded
onto a 15–45% sucrose gradient. Gradients were centrifuged for 90 min at 19,0000× g at
4 ◦C. Fractions were collected on ice at 1.5 mL/min into 10 tubes per gradient. Absorbance
was measured at 254 nm using a Brandel UA-6 Type 11 absorbance detector and data
was recorded with Brandel Peak Chart data capture software to record polysome pro-
files (Gaithersburg, MD, USA). Trizol was immediately added to fractions and stored at
−80 ◦C until RNA isolation. All RNA samples were collected using column purification
(Zymo, Irvine, CA, USA). 200 ng of total RNA per fraction was used for miRNA or mRNA
cDNA synthesis, as described above. RT-qPCR analysis of miRNAs in each fraction was
normalized to 18S mRNA, which did not show shifts in distribution patterns with treat-
ment. Each assay was repeated in 3–4 independent experiments, with 3 technical replicates
per experiment.

4.9. Statistics

Statistical analyses were performed using Prism software (v9.1.0, San Diego, CA, USA).
Data were analyzed by two-factor ANOVA followed by Tukey post-hoc test for multiple
pair-wise comparisons unless otherwise noted in figure captions. Data are displayed as
mean ± SEM and statistical significance was determined at p < 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ncrna7030053/s1, Figure S1: Effects of E2 treatment on mRNA levels of miRNA processing
machinery in the paraventricular nucleus of the hypothalamus (PVN) in a rat model of menopause,
Table S1: Table of experimentally validated targets of miR-9-5p and miR-9-3p.
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