
E128	 J Psychiatry Neurosci 2021;46(1)

© 2021 Joule Inc. or its licensors

Research Paper

A voxel-wise meta-analysis of task-based  
functional MRI studies on impaired gain and loss 

processing in adults with addiction

Zeguo Qiu, BSc; Junjing Wang, PhD

Introduction

Addiction refers to a situation in which substances or activ­
ities become the major focus of a person’s life and cause 
physical or mental harm to the person with the addiction or 
to other people, a result of the obsession with the addictive 
substances or behaviours and the exclusion of other activ­
ities. Substance dependence is characterized by problematic 
substance use (e.g., alcohol, cocaine or cannabis),1 which 
may induce changes in the brain and give rise to physical 
and psychological disturbances.2,3 In 2019, 35 million people 
worldwide were estimated to have substance dependence.4 
Globally, 4.2% and 1.3% of disease burden5 were attributable 
to alcohol and drug use, respectively.6 Similar to substance 
dependence, gambling addiction is an addictive behaviour 
associated with morbidity and harm. The 12-month preva­
lence for gambling addiction among adults ranges from 
0.1% to 6.0% worldwide.7 Gambling addiction is associated 
with suicidal ideation and suicide attempts, which result 
from risk factors such as financial difficulties and depres­

sion.8 As well, people with gambling addiction have high 
rates of comorbid substance dependence.9 Given that addic­
tions such as substance dependence and gambling addiction 
lead to distress and harm, it is crucial to understand their 
neural pathophysiology.

Gain and loss processing (or reward and loss processing) 
refer to the ability to learn from rewarding or undesirable 
stimuli by assigning specific values to the objects or actions in 
our environment10 and using that information to guide future 
behaviours. Disturbances in gain processing — and to a 
lesser extent, loss processing — have been extensively 
reported in substance dependence11 and gambling 
addiction.12 Most experimental paradigms for gain and loss 
processing require participants to make responses to gain 
rewards (not related to the addiction, such as money gain or 
visual erotic rewards) and avoid losses, and to allow for the 
analysis of different processing phases, such as the 
anticipation and outcome periods. To control for irrelevant 
factors such as visual processing of the stimuli and motor 
processing during responses (i.e., button pressing), 
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researchers usually compare gain or loss trials to neutral trials 
in which participants have no gain or loss. Such gain– or loss–
neutral contrasts permit the analysis of valence-related (i.e., 
gain or loss) task activation by theoretically making valence 
the most salient difference among the conditions.13

To date, neuroimaging techniques — especially functional 
MRI (fMRI) — have been widely used to reveal altered gain 
and loss processing in adults with substance dependence and 
gambling addiction.14,15 The neural basis underlying gain and 
loss processing involves several brain regions, including the 
prefrontal cortex (PFC), the ventral striatum and the anterior 
cingulate cortex.16,17 Previous studies have revealed both hyper- 
and hypoactivity in reward-related regions during both 
the expectation and receipt of non-drug (mainly monetary) 
gains in people with addiction compared to healthy controls. 
Some researchers have observed hypoactivation of the ven­
tral striatum in people with cocaine addiction during both 
gain and loss anticipation,18 and hypoactivation of the infer­
ior prefrontal gyrus in smokers during gain outcome notifica­
tion.19 However, other researchers have reported enhanced 
activation of the ventral striatum in people with alcohol ad­
diction during gain anticipation,20 enhanced activity in the 
ventromedial PFC in smokers during loss anticipation19 and 
enhanced activation of the ventral striatum in cannabis­
dependent patients during loss outcome notification.21 Simi­
larly, people with gambling addiction have demonstrated 
diminished activity in the ventral striatum, the ventromedial 
PFC and the insula during anticipation of both gain and 
loss,22 as well as diminished activation of the PFC in response 
to monetary gain and loss outcomes.23 However, gambling 
addiction has also been associated with enhanced activity in 
the right ventral striatum during loss anticipation,24 and 
enhanced activity in the bilateral ventral striatum and left 
orbital frontal cortex during gain outcome notification.25 In 
addition, some researchers have found no significant differ­
ences between people with addiction and healthy controls. 
For example, Bjork and colleagues26 found that people with 
alcohol addiction and healthy controls both showed similar 
activation patterns in the ventral striatum during gain and 
loss anticipation for monetary rewards.

To unravel these inconsistent findings (i.e., both hyper- and 
hypoactivity in reward-related regions during gain and loss 
processing compared to healthy controls), researchers have 
been trying to investigate neural abnormalities in addiction 
from the perspective of meta-analysis.27 Meta-analysis is a sta­
tistical process for synthesizing data from multiple independ­
ent studies, calculating an overall effect.28 By conducting meta-
analyses, Luijten and colleagues27 revealed altered brain 
activity in people with addiction compared to healthy controls 
during the anticipation and outcome receipt of monetary 
rewards, further confirming these results separately in people 
with substance dependence and gambling addiction. They 
showed that people with substance dependence and gambling 
addiction both exhibited attenuated striatal activity compared 
to healthy controls during gain anticipation, but that people 
with substance dependence showed enhanced activity in the 
ventral striatum and people with gambling addiction showed 
reduced activity in the dorsal striatum during gain outcome. 

This was an interesting and valuable meta-analysis, and it pro­
vided some directions for further investigation. First, it synthe­
sized findings only for gain-related phases, not loss-related 
phases. Although gain and loss processing seem to capture 
overlapping neural mechanisms in the healthy population, es­
pecially during the anticipation phase,29 how these 2 processes 
are impaired in people with addiction is as yet unclear. It is 
likely that they undergo distinct changes in the brain, because 
gains and losses are valued differently30 and they are assigned 
different weights when people make decisions.31 Specifically, 
although altered gain processing may give rise to misrepresen­
tations of rewards (e.g., hypersensitivity to addiction-related 
rewards according to incentive sensitization theory32,33), im­
paired loss processing may or may not show the same effect on 
the evaluation of punishments. Therefore, investigating altera­
tions in loss processing for people with addiction is as impor­
tant as understanding gain processing. Second, some studies 
included in the meta-analysis contrasted gain trials with neutral 
trials, and others contrasted gains directly with losses. This mix 
of gain–neutral contrasts (20 data sets) and gain–loss contrasts 
(5 data sets) in a single meta-analysis27 makes it difficult to gain 
insight into brain-activity alterations for these 2 processes with 
opposing valences.34,35 Third, because this meta-analysis fo­
cused primarily on activation of the striatum, findings from 
some region-of-interest (ROI) analyses were also included. 
Findings may be biased because of the ROI choices, and infer­
ences from these findings should be treated with caution.

Overall, based on the studies mentioned above, our meta-
analysis aimed to integrate brain imaging data from multiple 
studies published between 2000 and 2019 to investigate the 
differences between adults with addiction and healthy controls 
during the processing of non-addiction (mainly monetary) 
gains and losses. By applying criteria that were more stringent 
than those of the previous meta-analysis, we hoped to provide 
a better understanding of the nature and direction of impaired 
neural activity in addiction. Because the differences in loss pro­
cessing between people with addiction and healthy controls 
seem to be less well understood, we hoped to gain more 
insights in this regard. Finally, we hoped to provide indica­
tions for future research with the aim of developing inter­
ventions for substance dependence and gambling addiction.

Methods

Study selection

We searched Scopus, PubMed and Web of Science for articles 
published in English from Jan. 1, 2000, to Dec. 1, 2019, using the 
following terms and their derivatives: “functional magnetic res­
onance imaging” OR “fMRI”; AND “reward” OR “reward pro­
cessing”; AND “loss processing”; AND “drug abuse” OR 
“drug use” OR “drug addiction” OR “substance use” OR “sub­
stance dependence” OR “cocaine” OR “marijuana” OR “can­
nabis” OR “THC” OR “methamphetamine” OR “amphet­
amine” OR “ecstasy” OR “MDMA” OR “heroin” OR “opiate” 
OR “opioid addiction” OR “polysubstance” OR “alcohol” OR 
“cigarette” OR “nicotine dependence” OR “alcohol abuse” OR 
“alcohol dependence” OR “alcohol addiction” OR “nicotine 
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addiction.” We also examined the reference lists of relevant 
review articles to include additional papers.

A study was included if it was published in English in a 
peer-reviewed journal between 2000 and 2019, used fMRI, 
compared neural activation between adult human participants 
with substance dependence or gambling addiction and adult 
human healthy controls, used tasks that required participants 
to complete an action to obtain rewards and/or avoid losses, 
and reported significant results of whole-brain analyses as 
3-dimensional coordinates in standard stereotactic coordinate 
space (i.e., Talairach or Montreal Neurological Institute).

A study was excluded if it was conducted in non-human 
or non-adult participants, did not include a healthy control 
group, included occasional users (e.g., occasional smokers) in 
the addiction group and/or the control group, used the same 
patient data as other included studies, was a diffusion tensor 
imaging study or a connectivity study, did not examine task-
based neural activation (e.g., resting-state fMRI study), in­
volved tasks in which rewarding stimuli or losing events 
were presented passively, or included only ROI findings. 
Reviews and meta-analyses were also excluded.

We assessed the quality of each study included in this 
meta-analysis using a 9-point checklist (Appendix 1, Table 
S1, available at jpn.ca/200047-a1). The current study was per­
formed according to the Meta-analysis of Observational 
Studies in Epidemiology guidelines.36 See Figure 1 for the 
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) flow diagram indicating the number of 
studies located and included.

Statistical analysis

Voxel-wise meta-analysis 
We used a seed-based d-mapping software package (SDM 
version 5.15; www.sdmproject.com/software) to perform 
meta-analyses on neural activity differences between addic­
tion groups and healthy controls. The SDM approach makes 
it possible to combine statistical parametric maps and re­
ported peak coordinates, described elsewhere.37–39 To sum­
marize, we first extracted peak coordinates and effect sizes (t-
values) of neural activity differences between addiction 
groups and healthy controls from each included study. We 
converted the effect sizes, reported as z scores or p values, to 
t values using an online converter (www.sdmproject.com/
utilities/?show = Statistics). Second, we recreated a standard 
Montreal Neurological Institute map of the activation differ­
ences by applying an anisotropic Gaussian kernel for each in­
cluded study. In contrast to isotropic kernels — which may 
underestimate the effect size of voxels from the same brain 
area while overestimating the effect size of voxels from other 
areas — anisotropic kernels can improve the plausibility of 
the maps by assigning different values to distinct voxels sur­
rounding a peak based on their spatial correlations.39 Third, 
we applied a random-effects generalized linear model to gen­
erate the mean map by fitting the effect size maps into this 
model. As a result, included studies were weighted differen­
tially based on their sample sizes, between-study heterogen­
eities and intra-study variances, amplifying the contributions 
of studies with larger sample sizes or lower variance.38

Fig. 1: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of study selection. fMRI = functional 
MRI. 

Full-text articles excluded (n = 286)
•
•

•
•
•
•

•
•

No task fMRI analysis/resting-state papers: 60
No reward-processing task analysis (i.e., rewards
passively presented): 122
No comparison to healthy controls: 55
No contrasts between groups: 2
No whole-brain analysis: 34
No significant clusters: 7
Occasional/light users: 4
Case study: 1
No contrasts of interest included: 1

Records excluded (n = 250)
•
•
•
•
•
•
•

Review papers: 56
Non-human: 19
Non-adults: 74
Non-addiction: 72
Non-drug addiction: 13
Non-fMRI: 15
Same sample: 1

Studies included for further analysis
n = 24

Full-text articles assessed for eligibility 
n = 310

Records identified through database
searching (duplicates removed) 

n = 560
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We conducted meta-analyses between all addiction 
groups and healthy controls for different combinations of 
phases of gain and loss processing (i.e., anticipation and out­
come) and outcome types (i.e., gain and loss): gain anticipa­
tion, loss anticipation and gain outcome. In most studies, the 
anticipation phase was the waiting period after the onset of a 
meaningful cue that signalled a potential gain, loss or neu­
tral outcome (e.g., A1 period in Appendix 1, Figure S1). Fol­
lowing this, participants were required to make an active re­
sponse to a target; however, in 2 studies18,19 the anticipation 
phase was defined as the waiting period after participants 
made a response to the target (e.g., A2 period in Appendix 1, 
Figure S1). The outcome phase is the period immediately 
after feedback (i.e., winning, losing or neutral) from partici­
pants’ earlier response within the same trial (e.g., outcome 
period in Appendix 1, Figure S1). For our primary analyses, 
we conducted meta-analyses of gain–neutral contrasts be­
tween addiction groups and healthy controls for both the an­
ticipation and outcome phases, and of loss–neutral contrasts 
for the anticipation phase. By contrasting responses to gains 
or losses against a neutral condition or a baseline, we could 
gather less noisy and more cogent evidence for gain- and 
loss-related neural abnormalities in people with addiction 
than by directly comparing gain-related with loss-related re­
sponses. We calculated differences between addiction 
groups and healthy controls in each voxel and determined 
statistical significance using a standard randomization 
test.40,41 In this meta-analysis, we used the default kernel size 
and thresholds in SDM (p < 0.005 with peak height Z > 1 and 
a cluster extent of > 10 voxels) to optimize sensitivity and 
control false positives.38,42 We did not conduct comparisons 
for the loss outcome because of the small number of studies.

We repeated separate meta-analyses for the phase-by-type 
combinations for the substance dependence subgroup, but 
not for the gambling addiction subgroup, because of a lim­
ited number of studies. And because of insufficient data for 
variables such as mean duration of substance use, we did not 
conduct meta-regression analyses in this study.

Jackknife sensitivity analysis 
We examined the replicability of the findings by conducting a 
systematic whole-brain, voxel-based jackknife sensitivity analy­
sis. This involved repeating the main statistical analysis but re­
moving 1 study each time, calculating the stability of the find­
ings using the remaining studies.37 A result for the jackknife 
sensitivity analysis indicated the ratio between the number of 
study combinations that produced a significant result in 1 spe­
cific region and the number of all study combinations. If a brain 
region remained significant in all or most of the study combina­
tions, we considered the finding to be highly replicable.

Analyses of heterogeneity and publication bias
We performed a heterogeneity analysis using Q statistic 
maps to investigate unexplained between-study variability in 
the findings.38 We also performed Egger’s test to look for 
potential publication bias in these findings by extracting the 
values of significant peaks of comparison between the addic­
tion groups and healthy controls.42

Supplementary analyses 
We conducted supplementary analyses for gain anticipation 
and gain outcome by including gain–loss contrasts and gain–
neutral contrasts. We did not repeat these analyses for loss 
anticipation because of a limited number of data sets. To re­
veal whether differences in definitions of the anticipation 
phase affected our findings, we repeated the analyses for 
gain and loss anticipation for all addictions after excluding 
the 2 studies with different definitions of the anticipation 
phase.18,19 We did not repeat these analyses for the substance 
dependence subgroup because of the small number of stud­
ies. We did not investigate any sex or gender differences in 
our extracted data, because the included studies did not re­
port results separately for males and females, or report the 
differences between males and females.

Results

Included studies and sample characteristics

The literature search yielded 560 publications, and after re­
viewing the titles and abstracts of all studies, we identified 
310 fMRI studies for full-text review. Of the 310 studies, 
60 were resting-state fMRI studies that did not investigate 
task-related brain activations; 122 did not employ tasks 
that required participants to actively complete an action to 
obtain a reward or avoid a loss; 55 did not include a 
healthy control group; 34 did not conduct a whole-brain 
analysis; 7 did not report significant clusters; and 2 did not 
compare activation differences between the addiction 
groups and healthy controls. We excluded these studies 
from the meta-analysis. We also excluded another 4 stud­
ies because occasional users or gamblers were part of 
either the experimental or the control group. We also 
excluded 1  case study, and 1 study that did not provide 
data on the contrasts we needed.

Altogether, we identified 24 studies reporting 26 data 
sets for the current meta-analysis: 21 substance dependence 
data sets (465 people with substance dependence and 
441 matched healthy controls) and 5 gambling addiction 
data sets (81 people with gambling addiction and 85 matched 
healthy controls). Of the 5 gambling addiction studies, 
3  did not include participants with a gambling addiction 
who had comorbid substance dependence. One study in­
cluded participants with gambling addiction and nicotine 
dependence, but the authors conducted additional analyses 
controlling for participants’ smoking status and found no 
confounding effect of smoking habits on the results.43 
Another study included participants with both gambling 
addiction and nicotine dependence and did not investigate 
the effects of nicotine dependence.21 However, this study 
did not affect our results because we did not conduct a sep­
arate subgroup analysis on gambling addiction. The demo­
graphic and clinical characteristics of the included studies 
are shown in Table 1. The quality score for each study and 
other information (including experimental paradigms and 
image acquisition techniques) can be found in Appendix 1, 
Tables S1 to S3.
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Gain anticipation

All addictions versus healthy controls
Twelve studies were included in the comparison of all addic­
tions and healthy controls. All addictions exhibited signifi­
cant hyperactivation in the left angular gyrus/inferior pari­
etal gyrus (extending to the left middle temporal gyrus; 
Brodmann areas [BAs] 22, 39) and right precuneus. All addic­
tions showed hypoactivation in the left striatum, bilateral in­
ferior frontal gyrus (BAs 11, 38, 45), bilateral supplementary 
motor areas (BAs 6, 8), left fusiform gyrus (BA 37) and right 
superior temporal gyrus (extending to the right insula; 
BA 38). See Figure 2A and Table 2 for detailed results. 

Substance dependence subgroup versus healthy controls
Eight studies were included in the comparison of the substance 
dependence subgroup and healthy controls. The sub­
stance dependence subgroup exhibited significant hyperacti­
vation in the left angular gyrus (extending to the left middle 
temporal gyrus; BAs 22, 39), right superior occipital gyrus 
(BA 19) and left middle occipital gyrus (BA 39). It showed 
hypoactivation in the left striatum (extending to the left infer­
ior frontal gyrus; BA 11), left middle frontal gyrus (BA 46), 
left fusiform gyrus (BA 37) and left supplementary motor 
area (BA 6). See Figure 2B and Table 2 for detailed results.

Loss anticipation

All addictions versus healthy controls
Ten studies were included in the comparison of all addictions 
and healthy controls. All addictions exhibited significant 
hyperactivation in the bilateral postcentral gyrus (extending 
to the left inferior parietal gyrus excluding supramarginal 
and angular; BAs 3, 4, 6), right striatum, left middle frontal 
gyrus (extending to the left superior frontal gyrus; BA 10) 
and right inferior frontal gyrus (opercular part, BA 48). All 
addictions showed hypoactivation in the bilateral striatum 
(extending to the left temporal pole; BAs 20, 38, 48), left infer­
ior frontal gyrus (BAs 45, 47, 48) and left fusiform gyrus 
(extending to the left lingual gyrus; BAs 18, 19). See Figure 2C 
and Table 3 for detailed results.

Substance dependence subgroup versus healthy controls
Seven studies were included in the comparison of the substance 
dependence subgroup and healthy controls. The substance 
dependence subgroup exhibited no significant brain 
hyperactivation. However, it did show hypoactivation in the left 
striatum, left lingual gyrus (extending to the left fusiform and 
left inferior occipital gyrus; BAs 18, 19) and left middle occipital 
gyrus (BA 19). See Figure 2D and Table 3 for detailed results.

Gain outcome

All addictions versus healthy controls
Fifteen studies were included in the comparison of all addic­
tions and healthy controls. All addictions exhibited significant 
hyperactivation in the right middle occipital gyrus (extending 
to the right superior occipital gyrus; BAs 7, 19), and the right 

temporal pole (BAs 20, 38). They showed no significant brain 
hypoactivation. See Figure 2E and Table 4 for detailed results.

Substance dependence subgroup versus healthy controls
Eleven studies were included in the comparison of the 
substance dependence subgroup and healthy controls. The sub­
stance dependence subgroup exhibited significant hyperac­
tivation in the right hippocampus (BA 28). It showed hypoacti­
vation in the right median cingulate/paracingulate gyri (BA 
23). See Figure 2F and Table 4 for detailed results.

Jackknife sensitivity analysis

The findings described above remained largely unchanged 
under jackknife sensitivity analysis, indicating high robust­
ness (Tables 2–4).

Analyses of heterogeneity and publication bias

The heterogeneity analysis showed nonsignificant results for 
most of the reported regions, except the left striatum for the 
comparisons of all addictions and the substance dependence 
subgroup versus healthy controls during gain anticipation. 
The results of the heterogeneity analysis and Egger’s test are 
summarized in Tables 2–4.

Supplementary analyses

The results of the meta-analyses of gain–loss and gain–neutral 
contrasts are shown in Appendix 1, Tables S4 (gain anti­
cipation) and S5 (gain outcome). The results from analyses 
after excluding the 2 studies with a different definition of the 
anticipation phase are shown in Appendix 1, Tables S6 (gain 
anticipation) and S7 (loss anticipation).

Discussion

Our results revealed several patterns of altered brain activation 
for people with addiction during gain and loss processing, 
providing new evidence of the neural abnormalities in addic­
tion. First, during gain anticipation, all addictions showed re­
duced brain activation in the striatum, PFC and insula com­
pared to healthy controls, and enhanced brain activation in the 
precuneus, angular gyrus, middle temporal gyrus and inferior 
parietal gyrus. The substance dependence subgroup showed 
very similar patterns, with additional hyperactivation in the 
occipital lobe. Second, during loss anticipation, all addictions 
exhibited enhanced activation in the striatum and PFC com­
pared to healthy controls. However, the striatum also showed 
attenuated activity. A separate analysis for the substance 
dependence subgroup revealed hypoactivation in the striatum 
and occipital lobe. Third, during gain outcome, all addictions 
showed enhanced activation in the occipital lobe.

Neural alterations during gain anticipation

All addictions exhibited decreased activation in the PFC 
(BA 45, inferior frontal gyrus), left striatum and right insula 
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Fig. 2: Results of the meta-analyses for regional differences of task-evoked activation. (A) All addictions and healthy controls during gain an-
ticipation; (B) the substance dependence subgroup and healthy controls during gain anticipation; (C) all addictions and healthy controls during 
loss anticipation; (D) the substance dependence subgroup and healthy controls during loss anticipation; (E) all addictions and healthy controls 
during gain outcome; the substance dependence subgroup and healthy controls during gain outcome. Areas with hypoactivity are outined in 
white, and areas with hyperactivity are outlined in black. The shaded bars indicate maximum and minimum SDM Z values. HC = healthy con-
trol; SD = substance dependence; SDM = seed-based d-mapping. 
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compared to healthy controls (Fig. 2A and 
Table 2). The striatum and PFC are impor­
tant components of the reward network. 
The striatum is crucial for reward experi­
ences and learning,60 and the PFC is crucial 
for reward-based decision-making61 and 
higher-level executive functions, including 
goal representation and action planning.62,63 
Functional interconnections between the 
PFC and the striatum are responsible for re­
ward detection and regulation.63 Our re­
sults were consistent with those of previous 
reports of reduced PFC and striatal activity 
in substance detection27 and gambling 
addiction.22,24,58 These results could be vali­
dated by the incentive sensitization 
theory32,33 and the reward deficiency hy­
pothesis,64,65 both of which predict attenu­
ated activity in the reward system during 
anticipation of non-addiction-related gains. 
According to the incentive sensitization 
theory, the neural system of a person with 
addiction attributes higher incentive sa­
lience to addiction-related rewards (e.g., 
drugs) and less incentive salience to non-
addiction-related rewards (e.g., monetary 
gains). As a result, non-addiction-related 
stimuli used in the experiments may be 
rendered less salient for people with addic­
tion, leading to reduced activation of the 
reward network (i.e., PFC and striatum). 
According to the reward deficiency hy­
pothesis, however, hypoactivity in the re­
ward network is an indicator of a deficient 
reward system that cannot be adequately 
activated by rewarding stimuli (i.e., both 
addiction-related rewards and non-
addiction-related rewards). This pattern of 
activity can also be explained by the re­
ward allostasis model.66,67 According to this 
model, sensitivity to non-addiction-related 
gains is reduced as a compensatory process 
to maintain the stability of the reward func­
tions. Given the limited capacity of the 
reward circuits, non-addiction-related 
rewards may be allocated weaker hedonic 
effects, and addiction-related stimuli may 
take up more resources. Consequently, the 
reward circuits should be less activated for 
people with addiction during anticipation 
of non-addiction-related gains.

We also observed reduced activity in 
the right insula (Fig. 2A and Table 2). The 
insula is an important brain region for the 
integration of internal bodily information, 
necessary for interoceptive awareness and 
emotional arousal.68 Previous studies have 
consistently found decreased insular T
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activity in substance dependence69 
and gambling addiction,70 indicat­
ing a desensitized interoceptive 
state. In our study, insular hypoac­
tivation may have denoted weaker 
interoceptive and emotional re­
sponses to non-addiction-related 
gains compared to addiction-related 
rewards. In addition, the insula is 
part of the salience network, which 
is highly responsive to behav­
iourally relevant stimuli,71 and was 
consistently upregulated for peo­
ple with drug addiction during 
drug-cue exposure.17 It may be that 
for people with addiction, addiction-
related cues are more relevant than 
other rewarding stimuli. Compati­
ble with the allostasis model, the 
attenuated activity of the salience 
network (i.e., insula) in people 
with addiction during anticipation 
of non-addiction-related gains 
likely functioned as a compensa­
tion for its hypersensitivity to 
addiction-related cues.

In contrast ,  al l  addictions 
showed significantly increased 
activation in the right precuneus, 
middle temporal gyrus, inferior 
parietal gyrus and angular gyrus 
compared to healthy controls 
(Fig. 2A and Table 2). These re­
gions are important components 
of the default mode network, 
which is responsible for self-
referential processing and is nor­
mally deactivated during cognitive 
tasks.72–74 The atypical strength­
ened activation of the default 
mode network that we observed in 
all addictions indicates that the ex­
pectation of gains was perhaps as­
sociated with the self. It is likely 
that repeated addictive behaviours 
in daily life (encompassing the an­
ticipation of the hedonic effects of 
drugs or monetary wins) are incor­
porated into self-related memory 
for people with addiction.75 There­
fore, when people with addiction 
anticipated an imminent reward in 
the experiments, they were likely 
prompted by a similar memory of 
the hedonic sensations. Such an as­
sociation between gains and self-
related memory of hedonic sensa­
tions is likely much stronger for T
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people with addiction than for healthy 
controls,75,76 leading to a stronger acti­
vation of the default mode network 
for people with addiction. In addition, 
the precuneus is reported to be crucial 
for the integration of information from 
our environment.77 It has been suggested 
that people with addiction showed 
heightened exteroceptive awareness to­
ward addiction-related cues.77 This 
result is consistent with cue-elicited 
hyperactivation in the precuneus in 
substance dependence,78,79 likely indi­
cating that more salience was assigned 
to rewarding stimuli, such as drugs. 
Therefore, non-addiction-related re­
wards may hold a “bottom–up” atten­
tional advantage for people with ad­
diction compared to healthy controls. 
Because people with addiction show 
impaired interoceptive awareness 
(shown by hypoactivation of the in­
sula) and strengthened exteroception 
(shown by hyperactivation of the pre­
cuneus), it is not surprising that they 
seem to perform less well when it 
comes to monitoring their internal 
feelings and refraining from addictive 
behaviours.

The results described above were 
largely the same for the substance de­
pendence subgroup, but they showed 
additional increased activation of the 
right superior occipital gyrus and left 
middle occipital gyrus (Fig. 2B and 
Table 2). Previous research in rats found 
that the ability to predict the timing of 
imminent rewards elicited the activation 
of the primary visual cortex, which re­
sides in the occipital lobe.80 This finding 
suggests that gain anticipation can be 
reflected in very early visual processing 
in animals. In humans, drug-related 
visual cues have been associated with 
increased brain activation in early visual 
regions for people with substance de­
pendence.81–83 It is likely that for people 
with drug addiction, frequent and large 
drug doses increased the responsive­
ness of the primary visual cortex to cues 
with rewarding properties. Alterations 
in the early visual areas are likely spe­
cific to substance dependence, because 
human studies have shown that sub­
stance use (i.e., ecstasy) is linked to 
neurotoxic changes in the occipital 
lobe84 and heightened excitability of the 
primary visual cortex.85 T
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Neural alterations during loss anticipation

We found that all addictions showed hyperactivation in the 
striatum and parts of the PFC (Fig. 2C and Table 3). Several 
studies have observed hyperactivation in the PFC and stria­
tum in substance dependence and gambling addiction dur­
ing loss anticipation.19,24,86 It has been argued that increased 
reactivity to potential losses is associated with salience im­
properly attributed to imminent losing events,87 which may 
lead to loss-chasing, a continued behaviour in an attempt to 
recover losses.1 It has been shown that impulsive behaviours 
such as loss-chasing are linked to activity in the ventral PFC 
and striatum.88,89 Specifically, researchers have found that 
heightened PFC activation in smokers is related to increased 
craving to relieve smoking abstinence.19 Thus, people with 
addiction may be more aroused by the forthcoming loss than 
healthy controls and have the impulse to chase the loss. Loss-
chasing is particularly central to gambling addiction.87,90 
Thus, the hyperactivities described here may have been 
driven mainly by the gambling addiction subgroup.

Against this, other researchers have found an opposite 
trend, which we also observed in the current analysis: 
decreased striatal activity during loss anticipation in addic­
tion.22,44,58,91 Researchers have suggested that such a hypoacti­
vation is associated with an insensitivity to punishment or 
loss.91,92 It has been argued that people with addiction are less 
sensitive to negative consequences (i.e., losses) and may not 
be able to activate the brain regions responsible for error 
tracking and adaptive learning.92 The striatum, along with the 
PFC, is a critical site for these functions,93–96 helping people to 
learn from negative events and adjust their future behaviours.

The conflicting results described above were perhaps 
caused by the different natures of gambling addiction and 
substance dependence, the data for which were included in 
the analysis of all addictions. The impulse to chase losses is a 
key symptom of problematic gambling.1 In our analysis of all 
addictions, hyperactivation of the brain regions linked with 
impulsive behaviours (i.e., PFC and striatum) may have been 
driven mainly by the gambling addiction subgroup. Indeed, 
a separate analysis of substance dependence did not find en­
hanced brain activity, but the hypoactivation pattern in the 
striatum remained significant. However, given the limited 
number of studies we found on gambling addiction during 
loss anticipation, this explanation remains speculative. 
Future research should gain more insights into gain and loss 
processing in gambling addiction.

The substance dependence subgroup showed additional 
hypoactivation in the left middle occipital gyrus and left 
inferior occipital gyrus (Fig. 2D and Table 3). Similar to the 
reward allostasis model,66,67 this pattern can be seen as a com­
pensatory process in which functions of the occipital lobe 
strive for stability during gain and loss processing. As noted 
above, the occipital lobe exhibited enhanced activation dur­
ing gain anticipation for people with drug addiction, possibly 
indicating increased responsiveness of the primary visual 
cortex to cues of a rewarding nature (e.g., monetary gains). 
This change may come at the expense of reactivity to cues of 
an unrewarding nature (e.g., monetary losses). In other 

words, it is likely that people with drug addiction allocate 
few resources to losing events during early visual process­
ing, because the primary visual cortex is more receptive to 
rewarding stimuli.83 Indeed, the strengthened responsive­
ness of the visual cortex has been more extensively docu­
mented in the literature on gain processing.97 For people 
with drug addiction to maintain the functional stability of 
the occipital lobe, loss anticipation should be associated with 
decreased activation in this region as gain anticipation elicits 
stronger activation.

Neural alterations during gain outcome

All addictions exhibited increased activity in the right middle 
occipital gyrus and right superior occipital gyrus (Fig. 2D 
and Table 4) compared to healthy controls. A previous study 
found that the occipital lobe was activated more strongly in 
response to visually presented pleasant stimuli compared to 
neutral stimuli.98 It was argued that the visual cortex is re­
sponsive to affective information from the stimuli we see. In 
addition, addictive behaviours have been positively associ­
ated with neuroticism and extroversion,99–102 2 personality 
traits that are closely linked to affective sensitivity.103 There­
fore, it is conceivable that people with addiction are more 
responsive than healthy controls are to the emotional com­
ponents of gain outcomes (i.e., pleasantness), even during 
early visual processing. Our results supported this by show­
ing hyperactivity in the occipital lobe in response to re­
warding outcomes.

We observed no significant hyper- or hypoactivation of the 
PFC or striatum during gain outcome. This was not 
surprising, because several studies have obtained similar 
results.21,51,104 However, the existing literature also provided a 
large body of evidence showing altered activity in these 
regions in addiction. For example, some researchers found 
reduced activation of the PFC in people with addiction 
during the delivery of gain outcomes.19,22,23,52,56 Others found 
strengthened activation in both the PFC and striatum.46,48,53 
The discrepancies among the different studies may have been 
due to methodological factors (including task designs) and 
participant characteristics (such as addiction severity and 
abstinence stage). For example, although most studies used 
the monetary incentive delay task105 or a modified version 
(i.e., substance-unrelated activity incentive delay tasks), some 
studies used less common paradigms, including the reward 
prediction task19 and the probabilistic reversal learning task.23 
Participants cannot control the outcomes in paradigms such 
as the reward prediction task, but they can obtain monetary 
gains or avoid losses in a monetary incentive delay task.22,24 It 
may be that the responses to predetermined outcomes and 
the responses to rewards that were actively obtained induced 
different activation patterns in the brain. In addition, the 
length of abstinence has been negatively associated with 
brain activity in monetary gain.106 Differences in participants’ 
abstinence stages or treatment-seeking status were likely 
other important factors contributing to the conflicting results.

It is also worth mentioning that the absence of elevated 
striatal activity during gain outcome in our study was 
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inconsistent with the meta-analysis by Luijten and colleagues.27 
This was perhaps because our study selection criteria differed 
from their work in 2 main aspects. First, we included studies 
comparing gain- or loss-related responses to responses in neu­
tral conditions (i.e., no-win or no-gain) or a baseline, whereas 
Luijten and colleagues also included gain–loss contrasts. 
Second, we included data from whole-brain analyses only, 
whereas they also used data from ROI analyses. As a result, 
only half of the studies included in our work overlapped with 
theirs. In addition, because our meta-analysis was conducted 
more recently, there were more substance dependence data sets 
(i.e., 21) than in the previous meta-analysis (i.e., 15).

Loss anticipation versus gain anticipation

Previous meta-analyses or reviews did not provide system­
atic or conclusive findings on loss processing in addic­
tion,27,107 possibly because some researchers did not include 
or report on loss-related trials.106,108,109 In this study, we com­
pared alterations in brain activity during loss anticipation to 
gain anticipation in people with addiction.

First, although loss anticipation activated the PFC and stri­
atum, gain anticipation showed no such hyperactivity. This 
was perhaps because the impulse to chase losses was pres­
ent only when there was the possibility of losing, leading to 
enhanced activity in regions associated with impulsivity 
(i.e., the PFC and striatum). Second, we observed enhanced 
activation in several posterior parietal areas (e.g., the precu­
neus and angular gyrus) during anticipation for gains but 
not losses. The posterior parietal lobe is an important site for 
spatial awareness and attention.110 It is likely that forthcom­
ing rewards in the environments hold a “bottom–up” atten­
tional advantage for people with addiction, who tend to in­
tentionally seek pleasure through taking drugs or gambling. 
But such activities were not present when they anticipated a 
losing outcome. This finding seems to suggest that people 
with addiction allocate more attentional resources to gains 
than losses.

Furthermore, we observed hypoactivity in the PFC and 
striatum during both gain and loss anticipation. This was in­
consistent with the previous literature, which found robust 
ventral striatal activities in expectation of both positive and 
negative outcomes.111–113 Diminished activity in the reward 
circuits may indicate impaired reward value updating and 
adaptive learning.93,95,114 People with addiction may have dif­
ficulty updating the subjective reward value of the substance 
and consequently require more of the substance to obtain 
pleasurable effects. This is likely one of the reasons why peo­
ple with addiction tend to increase drug dosage or adminis­
tration frequencies over time.115 Although we interpreted the 
hypoactivity during gain anticipation as a result of sensitiza­
tion processes, we proposed that the striatal hypoactivation 
during loss anticipation was due to insensitivity to losses in 
people with addiction. Alternatively, we offer a parsimoni­
ous explanation for these results altogether by applying the 
reward allostasis model again.66,67 According to this model, 
the attenuation of the PFC and striatum is likely a compensa­
tory process for people with addiction to maintain the 

stability of the reward function. That is, people with addic­
tion allocate more resources from the reward network to 
addiction-related cues at the expense of its reactivity to 
non-addiction-related gains and losses. By the same token, in 
areas involved in early visual processing (i.e., the occipital 
lobe), activity was strengthened during gain anticipation but 
attenuated during loss anticipation for people with drug 
addiction. It is possible that the reduced reactivity of the 
occipital lobe to anticipatory losses was a compensatory pro­
cess to reach functional stability of the primary visual cortex.

Conditioning perspective

It is worth noting that some of our findings can be explained 
by the conditioning literature. The experimental tasks used in 
the included studies (especially monetary incentive delay 
tasks) encompassed components of both classical condition­
ing and operant conditioning.116 Specifically, a cue that pre­
dicted a potential gain or loss can be seen as a conditioned 
stimulus, while a delivered outcome can be considered an 
unconditioned stimulus, forming classical conditioning.29 
Participants’ action during the anticipation phase can then be 
considered a conditioned response, because it was preceded 
or triggered by a cue. In the meantime, because the specific 
value of an outcome (i.e., win $1 or win $0) was contingent 
on participants’ actions, the response–outcome association 
formed an operant conditioning in which the outcome could 
also reinforce participants to adapt their actions to maximize 
gains and minimize losses. Therefore, it is reasonable to ex­
pect brain activity in regions related to both types of condi­
tioning during these gain and loss processing tasks. Indeed, 
we found lower activation of the striatum during the antici­
pation phase in people with addiction compared to healthy 
controls. Previous research has found that the striatum is cru­
cial in human classical and operant conditioning.117,118 Hypoac­
tivity in this region may indicate impaired associative learn­
ing,119 especially punishment-based (e.g., monetary loss) 
learning,120 in people with addiction. As pointed out earlier, 
the components of classical and operant conditioning are in­
tricately entangled in gain and loss processing paradigms: 
the cue-outcome association forms a classical conditioning, 
and the response-outcome association forms an operant con­
ditioning. Moreover, because we contrasted gain and loss 
responses against a neutral condition or baseline, the effect of 
conditioning may have been weakened in the extracted data. 
Consequently, the majority of our findings may not be 
entirely interpretable under the conditioning framework. 
Future research can aim at gaining further insights into con­
ditioning in people with addiction by applying established 
conditioning paradigms.

Limitations

There were some limitations in this study. First, the number 
of included studies on gambling addiction was very small. 
Because of relatively stringent inclusion criteria, we identi­
fied and included only 5 studies on gambling addiction. 
Thus, we were unable to investigate unique alterations in the 
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brain for people with gambling addiction from the perspec­
tive of a meta-analysis. Such a limitation kept us from mak­
ing conclusive statements about some of the brain activation 
patterns we observed. For example, was the hyperactivity in 
the PFC and striatum during loss anticipation indeed driven 
by the gambling addiction subgroup? Is there any increased 
activation in the occipital lobe for people with gambling ad­
diction during gain anticipation? Second, only a few studies 
included in our meta-analysis reported clinical information 
about the participants (i.e., mean duration of substance use 
and age of onset of use). As a result, we were unable to con­
duct regression analysis, which could have revealed if there 
were any moderating effects of clinical traits on the neural 
abnormalities. Future research should gain more insight into 
the altered brain mechanisms in gambling addiction and em­
phasize the clinical attributes of the patients. Third, some in­
cluded studies24,47,50,51 controlled for potential confounding 
variables in their analyses and reported adjusted effect sizes 
for the peak coordinates (e.g., t values), but the majority of 
studies did not control for variables of no interest and re­
ported unadjusted statistics. This inconsistency in controlling 
for confounders and reporting related effect sizes may have  
had some influence on our findings, but we infer that the 
effect(s) should be relatively minor because almost all included 
studies discounted the possibility of potential confounders 
driving the results by, for instance, matching the participants 
in advance or conducting correlational analyses between the 
findings and confounders post hoc. Finally, we included only 
studies in adults with addiction in our analyses. This was be­
cause non-adults, especially adolescents, undergo signifi­
cant structural and functional changes in reward-related 
brain regions that are not fully developed until their mid-
20s.121 It is not yet clear how these changes may influence 
adolescents’ susceptibility to addictive behaviours.122 More­
over, although many adolescents try drugs, only a small 
group of them transition to substance dependence.123 On 
these grounds, we investigated only adults with addiction.

Conclusion

This meta-analysis revealed several brain regions that 
showed altered activity during gain and loss processing in 
adults with addiction. Compared to healthy controls, all ad­
dictions showed attenuated activity in the PFC, striatum and 
insula and enhanced activity in several regions in the default 
mode network (e.g., the precuneus and angular gyrus) dur­
ing gain anticipation; enhanced activity in the PFC and con­
flicting results regarding the striatum (which showed both 
hyper- and hypoactivation) during loss anticipation; and en­
hanced activity in the occipital lobe during gain outcome. 
For the substance dependence subgroup, activity in the oc­
cipital lobe was strengthened during gain anticipation but at­
tenuated during loss anticipation. We identified altered brain 
activity for people with addiction not only in the reward net­
work, but also in regions across the brain, some associated 
with higher-level functions (i.e., salience network and de­
fault mode network) and others associated with lower-level 
functions (i.e., the primary visual cortex). We also found that 

people with addiction seemed to be more aroused by and 
more sensitive to forthcoming gains than losses, demon­
strated at both higher-level brain regions (i.e., posterior pari­
etal lobe) and lower-level areas (i.e., the primary visual cor­
tex). Finally and most importantly, we used an allostasis 
model to explain most of the brain activation patterns in 
terms of the functional stability of the relevant regions: the 
reward and salience networks for addiction-related stimuli 
versus non-addiction-related stimuli, and the occipital lobe 
for gains versus losses. These results may help us to under­
stand the pathology of gain and loss processing in addiction.
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