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Modulating human memory 
for complex scenes with artificially 
generated images
Cameron Kyle‑Davidson1*, Adrian G. Bors1 & Karla K. Evans2

Visual memory schemas (VMS) are two‑dimensional memorability maps that capture the most 
memorable regions of a given scene, predicting with a high degree of consistency human observer’s 
memory for the same images. These maps are hypothesized to correlate with a mental framework of 
knowledge employed by humans to encode visual memories. In this study, we develop a generative 
model we term ‘MEMGAN’ constrained by extracted visual memory schemas that generates 
completely new complex scene images that vary based on their degree of predicted memorability. 
The generated populations of high and low memorability images are then evaluated for their 
memorability using a human observer experiment. We gather VMS maps for these generated images 
from participants in the memory experiment and compare these with the intended target VMS maps. 
Following the evaluation of observers’ memory performance through both VMS‑defined memorability 
and hit rate, we find significantly superior memory performance by human observers for the highly 
memorable generated images compared to poorly memorable. Implementing and testing a construct 
from cognitive science allows us to generate images whose memorability we can manipulate at will, as 
well as providing a tool for further study of mental schemas in humans.

Cognitive science research of human visual episodic memory over the last few decades reveals both large storage 
capacity and a surprising ability to retain  detail1,2. Recent work at the intersection between the fields of machine 
learning and cognitive psychology have exposed another property of visual memory for images: consistency 
between  observers3. Showing a set of images to a human population sample, most members of that sample will 
remember roughly the same subset of images. This implies that to a certain extent, image memorability (i.e. 
how likely the average person is to remember a given image) is an implicit property of the image itself. Image 
memorability does not correlate strongly with simple image characteristics such as colour, intensity, the number 
of objects present in the  scene3, or with attention, and is robust to overt cognitive  influence4. Rather, high-level 
scene attributes help explain the memorability of  images5, such as the content of the image (for example the 
presence of “a person”) or the dynamics occurring in the captured scene (“throwing a ball”). While memorabil-
ity is affected very weakly by certain global features, such as average image hue and contrast, semantic context 
plays a stronger role, explored  in6. These features are related to, but not completely explained by, objects present 
in the  image7, and specifically, their location and  size8. These findings have lead to attempts to predict image 
memorability using computational tools, which find the best predictor to be high-level semantics, such as the 
image scene  category5. Later work established the influence of scene category and contextual distinctiveness on 
 memorability9, and current state-of-the-art models employ automatic deep feature extraction via convolutional 
neural networks (CNN)10,11. The field of image memorability prediction has advanced to the point where CNN-
based models can predict how likely an image is to be remembered with human-level consistency (Spearman 
rank correlation coefficient of ρ = 0.67)10.

Initially the majority of research studies framed the problem of image memorability prediction as regres-
sion to a one-dimensional score. Recent research results develop an understanding of memorability as a two-
dimensional property that varies across an image, resulting in the extraction and analysis of cognitive relational 
patterns that capture the regions of scene images human observers deem memorable. These relational patterns, 
known as Visual Memory Schemas (VMS)12, capture the cognitive representations and structures that humans 
use to organise and encode a given image into memory, have high consistency between humans ( ρ = 0.70 ), 
and a limited relation with one dimensional single score predictors for memorability. VMS internal consistency 
(measured via Pearsons 2D correlation) is higher than both VMS correlation with eye fixations ( P2D = 0.50 ) or 
saliency ( P2D = 0.58)13. Compared to image memorability prediction, fewer works tackle the task of modifying 
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the memorability of images, or that of generating images that are intended to be less or more memorable. Modify-
ing the memorability of face images was explored  in14, where it was found that active appearance  models15 could 
be employed to adjust various facial features associated with memorability. Deep generative models have also 
shown some success in modifying image memorability, from face  generation16, to employing style  transfer17, to 
transformer-based network capable of modifying the memorability of a seed  image10.

Here, we develop a generative model we call ‘MEMGAN’, capable of synthesizing completely new photo-
realistic scene images by using two-dimensional maps of memorability. These maps are based upon cognitive 
relational patterns, which reveal the mechanisms humans employ to encode scene images in memory. We vali-
date this approach by performing a repeat-recognition human experiment, and find that our generated images 
significantly modulate the memory performance of human observers. When designing our approach, we set 
out to verify that visual memory schemas (VMS) capture information that is memorable in an image to a suf-
ficient degree to constrain a generative model that can synthesise completely new scenes which in turn are able 
to modulate human memory. We start with the analyses of the per-category consistency and the per-category 
memorability signal (measured by D-Prime) for the VISCHEMA image  datasets18, and explore the relationship 
between consistency and memorability in order to verify that VMS maps are suitable descriptors of memorability. 
We then consider two deep learning generative adversarial techniques for generating memorable images: based 
upon the Wasserstein loss  metric19, and a progressively growing network. This approach allowed us to investi-
gate what effect modifying the visual memory schemas the scenes were based on, has on the generated images. 
The generative neural network requires feedback on the memorability of its’ synthesised scenes during training 
time. The network generates hundreds of thousands of images during its training, and memorability feedback 
is necessary for every generated image. To deal with this constraint, we train a VMS prediction model based 
directly upon human data that can produce VMS feedback for arbitrary scene images. The predictor learns which 
features (from indoor scenes) make up a visual schema for our experimental kitchen scenes. It is this feedback 
that constrains the generative model. We evaluate our generated scenes via a human observer memory experi-
ment, testing if our newly generated more memorable images are remembered better than the generated low 
memorability images. These findings allow us to acquire new insights into the efficacy of modulating the perfor-
mance of human memory via images generated to activate specific visual memory schemas in human observers.

Developing the capability to generate memorable scene images without requiring an initial image seed has 
clear practical and theoretical applications. Such a technique could be applied to create highly effective memo-
rable advertisements, improve educational tools, and there is also the potential for medical applications, such as 
tracking the decline in memory of patients with advancing cognitive deficits by providing a targeted baseline of 
memorability. A completely data driven approach such as this would provide significant advances to the meth-
ods used in cognitive science for the study of mental structures for the organisation of thought and behaviour 
employed by humans.

Results
VMS consistency and memorability. VMS maps capture spatial and relational components of episodic 
memory, and hence contain additional information compared to single-score based image memorability meth-
ods. In order to evaluate the validity of the data driven VMS maps as image memorability predictors we examine 
their image category consistency. We employ a method from signal detection theory to extract a global ‘memora-
bility’ signal for each category for human observers and then evaluate the correlation between this global signal 
and VMS map consistency. The evaluation is performed on both the VISCHEMA 1  dataset12, which consists of 
800 images and their corresponding 800 2D memorability maps, and the VISCHEMA 2  dataset13, an expansion 
to VISCHEMA 1 which consists of another 800 images and memorability maps.

The VISCHEMA 1 and 2 datasets contain a variety of images, grouped in the following categories: isolated, 
populated, public, entertainment, work/home, kitchen, living room, small and big. The consistency of the VMS 
maps, on a category-by-category bases for both VISCHEMA 1 and 2 is presented in Table 1. The consistency is 
calculated by taking 25 splits of the data (one split creating two VMS maps for each image, each built from an 

Table 1.  Vischema 1 and Vischema 2 consistency, per category. Certain categories of images, such as kitchens 
or scenes involving public entertainment (playgrounds, theme parks) are more consistent than others, such as 
the isolated category. Higher consistency implies participants agreed on specific features that made the image 
memorable.

Category

Consistency

VISCHEMA 1 VISCHEMA 2

Isolated 0.556 0.447

Populated 0.624 0.562

Public Ent. 0.706 0.661

Work/home 0.674 0.57

Kitchen 0.628 0.479

Living room 0.568 0.446

Small 0.611 0.525

Big 0.637 0.595
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equal division of human annotation data) and correlating the resulting VMS maps against each other, using the 
Pearson’s Correlation Coefficient. For all image categories the correlation is positive, and in many cases, strongly 
positive as is the case for the “entertainment” category, composed of images of fairgrounds and playgrounds. 
Observers tend to agree with each other on which regions allowed them to remember the image in the categories 
that show strong consistency signal.

In order to test that visual memory schemas can capture image memorability we calculate the signal strength 
of the observers’ memory for the given images by using the sensitivity index, also known as the D′ (D-Prime) 
measure. The sensitivity index, D′ is a measure from signal detection theory that represents the strength of a given 
signal, in our case characterising the human observers ability to remember the given image. The results for the 
D′ scores are provided in Table 2 and similar to the consistency of memorable regions show that not all image 
categories are equally memorable. Strong overall positive correlation between image memorability measured with 
D′ and per category consistency of VMS maps for both VISCHEMA 1 ( ρ = 0.83 , p < 0.05 ), and VISCHEMA 
2 ( ρ = 0.76 , p < 0.05 ) suggest a robust relationship between the two measures. When comparing this correla-
tion for each image in each category, we also see a positive correlation, shown in Fig. 1. The overall high VMS 
consistency and positive correlation with the image memorability signal (measured by D′ ) indicates that VMS 
maps are a good descriptor of image memorability. In the following we refer to the combined VISCHEMA 1 and 
2 datasets as the VISCHEMA PLUS dataset.

Generating memorable images based on VMS maps. In our study we start by developing two dif-
ferent deep learning network architectures for generating memorable complex scenes, one based upon the Was-
serstein  GAN19 capable of producing images up to 128× 128 pixels and the ProGAN  architecture20 architecture 
capable of producing images of up to 256× 256 pixels resolution. In order to generate images of varying level of 
memorability we explore incorporating the data driven VMS maps into the deep learning training and genera-

Table 2.  D-Prime analysis of human memory for each category in the Vischema 1 and Vischema 2 datasets. 
High values clearly indicate that the memory signal for the given image category is strong and thus image 
memorability for human observers is high. Certain categories have stronger signals than others, possibly due to 
easier or more available encoding schemas for that category among the human participants.

Category

D Prime

VISCHEMA 1 VISCHEMA 2

Isolated 1.008 0.692

Populated 1.47 1.197

Public Ent. 2.037 1.813

Work/home 1.896 1.38

Kitchen 1.602 1.257

Living room 1.725 1.252

Small 1.52 1.4

Big 1.741 1.7

Figure 1.  Histogram showing the correlation between per image category consistency for Vischema 1 and 2 
datasets and human observers’ memory. Similar pattern of correlations between datasets indicates the reliability 
of using Visual Memory Schemas.
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tion algorithm in two different ways. The first is by considering it as a single score while the second is as a spatial 
map constraint in the loss function used for training the deep learning models. We evaluated these two different 
constraints in the Wasserstein GAN architecture by assessing whether the newly generated images can produce 
a differential score when applying a computational single-score artificial memorability predictor. Our ProGAN-
derived architecture is capable of generating images of a sufficient quality and resolution for human observer 
experiments, with which we validate our approach.

Single‑score constraint. The first implementation of VMS maps in a Wasserstein GAN architecture is in a form 
of a single score that is based on the average intensity of the VMS map (i.e. observer consistency) and is used to 
modify the memorability of the generated image. We hence refer to our Wasserstein-based memorability genera-
tion network as W-MEMGAN. We generate a range of images characterised by various levels of memorability, 
from low to high, by fixing the generators latent code Z , which controls the semantic content of the generated 
images, and varying the memorability input M to control the memorability of the generated images.

The newly generated images are created in ascending memorability in order to examine the variation space 
between exemplars of non-memorable and memorable images of a given image. Figure 2a,b show the generated 
images for different examples of scene from different scene categories, obtained by fixing Z while varying M from 
low memorability to high memorability. Just from visual evaluation of the images it is evident that clear differ-
ences emerge between images when increasing the memorability constraint. We can observe in all the scenes 
from Fig. 2a, that as memorability increases, semantic details and a more realistic ‘kitchen-like’ appearance 
emerges. The low memorability cases appear to display semantic ‘noise’ representing a collection of mismatched 
features with loose spatial relations. The less memorable images may display the typical elements of a kitchen, 
but lack structure, or rather the correct spatial relationship between the elements. It appears that by defining 
visual memory schemas as constraints of memorability results not only in the appearance of memorable semantic 
details, but also enforces spatial relationships between these details. This lends evidence that VMS maps capture 
semantic details and structures which match learned schemas held in human cognition. From Fig. 2b we can 
observe that when increasing the memorability, this results in a better image structure, clarity, and detail, result-
ing in images that better match human cognitive schemas (Figs. 3, 4).

Figure 2.  Generated images when fixing Z , where the sequence of generated images is displayed from left to 
right, while the memorability M is varied from low to high. Shown categories include kitchens, cathedrals, and 
living rooms.

Figure 3.  Predicted low and high memorability for different memorability weighting factors for α , considering 
α = 0 (in Eq. 3) as baseline. When increasing α , all generated images have a higher memorability than the 
baseline. The most memorable images overall are obtained with α = 25 , but the best pairwise effect is achieved 
with α = 10.
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In order to evaluate the newly generated images in a more quantitative fashion we generate 2000 images by 
setting the memorability constraint M either to very low or to very high. This results in the generation of pairs 
of images where only the memorability information varies between the two generated images while having the 
same random seed Z . These images are then evaluated using  AMNet21, an independent state-of-the-art memo-
rability prediction network. AMNet predicts the memorability of images on a scale between 0 and 1.0, allowing 
us to calculate the difference between our population of intended memorable and non-memorable generated 
images, while also allowing us to inspect the difference between the newly generated paired images. The results 
in Fig. 4a show a statistically significant difference in memorability ( p < 0.01 ) between the two populations. 
Images generated to be memorable clearly show a trend to be predicted as more memorable compared to the 
baseline population of low-memorability images. To note is that not all the highly memorable generated images 
are themselves equally memorable independent from the memorability modulation as we have seen when look-
ing at memorability across different scene categories. Thus, when examining the pairs of our generated images, 
we find that as overall image memorability decreases, it becomes more difficult to influence the memorability of 
certain scene image categories which are already not particularly memorable. When the image generated to be 
memorable has a predicted memorability above 0.65, then 79.5% of the pairs of memorable and non-memorable 
images have a positive difference in memorability. When memorability falls below 0.65, only 40.7% of the pairs 
have a positive difference in memorability, where a ‘positive difference in memorability’ indicates that the image 
generated to be memorable is predicted as more memorable than the image generated to be non-memorable.

Spatial map constraint. A single score for an entire image does not capture spatial information about the mem-
orability in the scene. As VMS maps reveal, not all regions of the image are equally memorable and in many cases 
memorability is concentrated on certain structures inside the image. We hypothesise that these carry semantic 
information that matches corresponding cognitive structures (schemas) used by the observers to encode and 
then retrieve information from long-term memory. It is highly unlikely that human cognition itself uses a single 
score to represent how memorable an image is, and whether it should be encoded. There are most likely multiple 
characteristics within an image associated and encoded with an episode of encountering that image. Instead, 
we hypothesised based on numerous findings from Cognitive Science that how closely a viewed scene corre-
sponds to a cognitive schema plays a role in image memorability or rather how much is an image memorable to 
a human observer. While single score methods might be able to predict image memorability, they do not reveal 
anything about why the image is memorable for a human observer, or which elements in it cause that image 
to be remembered. We instead base this constraint on the concept of a visual memory schema represented in 
two dimensions; an organisational map of semantic elements shared amongst human observers that enable the 
encoding and recognition of scenes.

This method naturally lends itself to a two-dimensional representation of image memorability; the regions 
captured inside a visual memory schema map are thought to directly represent the semantic elements that lead 
to that image’s encoding and recognition. These elements correspond with schemas held in the brain; cognitive 
structures that represent the typical elements (and arrangement of elements) of a scene. A human, through life 
long experience and acquired knowledge, may construct a schema of a kitchen, learning that a kitchen may 
contain countertops, an oven, and kitchen appliances (this is an example; real schemas are likely more complex 
and flexible). Scene images that better match this mental schema in both arrangement and semantic presence 
have an encoding advantage against kitchen scenes that lack these elements or arrangements. Computational 
measures that employ visual memory schemas can be thought of as learning a method to replicate human scene 
memory that more closely mirrors the method the human brain uses to encode scene images.

Hence, to take advantage of the 2D characteristics of VMS maps, we modify W-MEMGAN to take as input 
a 10× 10 pixel map describing the intended spatial memorability of the generated image. The provided input 
are artificial VMS maps created using a deep learning method trained on VISCHEMA 1 and 2 (VISCHEMA 
PLUS), similar to those obtained from human observers.As with single-score VMS constrained memorability, 

Figure 4.  Differences in predicted memorability for low and highly memorable images generated with 
W-MEMGAN.
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employing artificial 2D VMS maps to alter the memorability of generated images also results in a statistically 
significant difference between populations of 1,000 generated memorable and 1000 generated non-memorable 
images, shown in Fig.  4b. These findings indicate that both single-score and spatial constraints extracted from 
the VMS maps incorporated into our W-MEMGAN architecture are capable of modulating the memorability 
of newly generated images evaluated by an artificial memorability predictor such as AMNet. The non-spatial 
single-score implementation of the VMS results in a greater effect size of the difference in memorability (0.19 
vs 0.15, Cohens D) compared to the spatial method. We postulate that this could be the result of additional dif-
ficulty of integrating a spatial constraint compared to calculating a single score constraint for the entire image.

To examine the effect of the feedback strength of the memorability feedback mechanism we tested several 
different values for α , the hyper-parameter which controls the ‘strength’ of the mechanism and defines how 
strongly we intend memorability to affect our generated images. The effect of four different values of α : 0, 10, 25, 
and 50 on the prediction of low and high memorability in generated images is shown in Fig. 3). For α = 0 , the 
memorability predictor provides no feedback to the network, disabling the influence of VMS maps and hence 
is used as a baseline. Best results are achieved for α = 10 , resulting in the clearest difference between high and 
low-memorability images and noticeably above those of the baseline, Fig. 3a. Using an α = 25 resulted in gen-
eration of images with high memorability scores but with reduced ability to discriminate between the low and 
high memorable exemplars. Higher values for α prevent the W-MEMGAN from distinguishing between high 
and low memorability images, instead just raising the memorability of every image generated by the network, 
as shown by the results from Fig. 3b,c.

Human memory performance for generated images. We test the feasibility of directly modulating 
image memorability using VMS maps by conducting a visual memory experiment with human observers. The 
images used in the experiment were generated by our second architecture; based upon  ProGAN20 combined 
with memorability feedback, which we term ‘MEMGAN’. MEMGAN enables the creation of higher resolution 
images at a much higher quality than the W-MEMGAN architecture. Based on our previous results, we weight 
the memorability constraint to a value of α = 10 , which gives the best partition between memorable and non-
memorable generated images. Examples of images generated are shown in Fig. 5. In the experiment, human 
observers were asked to view a stream of generated images presented for 3 s each one at a time. Participants were 
asked to recognize images they recognized as repeats and indicate upon identifying a repeat the areas in the 
image that made them remember the image. This allowed us to evaluate the memorability of generated scenes 
through the hit rate of the images (how often an image was successfully recognized as a repeat) and the consist-
ency of the VMS maps across observers (regions in the image indicated as memorable areas, see the examples 
from Fig. 6).

To determine how consistent our participants were with each other, we take 25 equal splits of our visual 
memory schema map and hit data for each split, and then compare them against one another. We find a hit-rate 
consistency of 0.3 (Spearmans ρ , p < 0.0001 for all splits) and an overall VMS map consistency of 0.38 (Pearson 
Linear Correlation Coefficient). The VMS map consistency is lower than the 0.67 presented  in12, but this is 
expected given that our task contains only two different categories of images, and is thus a very homogeneous 
stimulus set. Nonetheless, there exists a clear consistency between participants.

Figure 5.  Memorable, shown within green boundaries and non-memorable, shown within red boundaries 
generated image pairs. Foils are shown within blue boundaries.
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Differences in observed memorability for generated images. The evaluation of the hit rates for the generated high 
and low memorable images (Fig. 7a, shows that high memorable images result in both higher hit rates (0.45 
for high and 0.39 for low memorable) and higher false alarms rate (0.20 for high and 0.16 for low memorable). 
However there is a statistically significant difference ( p < 0.05 ) for the hit rates but not for the false alarms rates 
between generated images as highly memorable and those with low memorability. This pattern of results, of a 
robust difference in hit rates and a lower difference in false alarms, is  expected13,22 given that the same structures 
that enable easier encoding of a scene, also make it more likely for a human to believe they have seen that scene. 
Indeed, within the VISCHEMA image set with which the memorability evaluator was trained, a rise in memo-
rability corresponds with a rise in false memorability ( ρ = 0.19 , p < 0.001).

Differences in observed visual memory schemas for generated images. Comparison of differences in Visual 
Memory Schemas between high and low memorability images required that we first condense each VMS map 

Figure 6.  Generated high-memorability images (left) and their low-memorability pairs (right). VMS maps for 
each image are shown on the bottom row.

Figure 7.  Difference in memorability (HR and VMS Intensity) for generated image populations. Degree 3 
polynomial fitted for visualisation.
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down to an average intensity. Outliers beyond two standard deviations of the mean were excluded. This gives us 
separate values for both images that were correctly recognised as seen before (true memorability) and those mis-
recognised (false memorability). There is a statistically significant difference ( p < 0.05 , effect size 0.36 Cohens 
D) in the VMS memorability channel for highly memorable images vs low memorable images, with a robust 
Bayes factor ln(BF) = 1.117 indicating substantial evidence for the effect of modulating memorability (see 
Fig. 7b. As before, there is no statistical difference for false memorability between image catgeories. We also com-
pared predicted VMS maps from the generator network to those outlined by the human observers and found a 
Pearsons Correlation of 0.49 ( p < 0.05 ), a Spearman rank correlation of 0.5 ( p < 0.05 ), with a population aver-
age mean-squared error of 58 between predicted and human-gathered VMS maps. These results indicate that the 
relational memorability patterns used to generate the images are effective in defining visual memory schemas in 
the same images, which correlates positively with those indicated by human observers.

Image pair analysis. The results for both the hit rate and observed VMS’s are encouraging, and clearly show 
a statistical difference between the overall populations of highly memorable and low memorability generated 
images. However, the images were generated in pairs, with high and low memorable versions of the same scene 
image, as defined by a fixed latent code, and by modulated memorability, and thus can be compared as such. This 
requires the evaluation of the pair-wise difference, between an image with the same latent code but modulated 
memorability. Results indicate a statistically significant difference ( p < 0.02 , paired T-test, Wilcoxon signed-
rank test) for both hit rates and VMS memorability.

Comparing our results with an independent computational predictor of memorability. We also compare the 
results obtained on our human observer study with those of a recent state-of-the-art memorability  predictor21, 
trained on the same dataset  (LSUN23) from which we drew the training data for our MEMGAN models. We 
find no significant correlation between the memorability scores calculated by the independent memorability 
predictor for our images with the experimentally obtained hit rates or VMS map intensity of our images. This 
finding suggests that memorability predictors based only on single-score models of memorability are missing 
important characteristics of human visual memory, and that state-of-the-art predictors fail to predict human 
memory performance for generated images. However, we do see a significant effect ( p < 0.05 , Paired T-test, 
Wilcoxon signed-rank, Mann–Whitney U), when comparing paired predicted scores for our generated high 
and low memorability images, which suggests computational predictors can differentiate between populations 
of generated images.

Discussion
In this research study we present and evaluate a method of generating scene images constrained by a construct 
from cognitive science: visual memory schemas, and test its validity to modulate human episodic memory of 
images. The modelling of the VMSs is data driven and based on human memory study. We directly manipulate 
the visual schemas of images in a generative deep learning model (MEMGAN) and hence influence the final 
memorability of generated images. To our knowledge this is the first example of a generative model specifi-
cally trained from scratch to generate memorable scene images employing two-dimensional memorability data 
gathered from human observer experiments. Moreover, we double the size of an existing two-dimensional 
memorability dataset, and for the first time investigate the relationship between VMS map consistency and image 
memorability, along with presenting per-category consistency data for VISCHEMA categories. Encouragingly, 
consistency values remain high for both the original VISCHEMA dataset and our second replicated experiment, 
confirming the validity of this approach of gathering two-dimensional memorability maps.

There is currently a limited number of existing approaches to the problem of modification of image memo-
rability. Sidorov et al.16 examine various methods for altering the memorability of images, from basic-photo 
editing techniques such as adjusting the saturation of the image, to the employment of an attention-based 
Generative Adversarial Network (GAN) for generating memorable face photographs. The memorability data 
used as input for training the GAN was drawn from artificial memorability predictors. They find that both their 
altered and generated images produce changes to the artificially predicted memorability score of images but do 
not have any data on human observers. This approach is similar to that  from17, in which a deep style-transfer 
model was trained to automatically apply ‘filters’ such as sepia tones or saturation boosters to images in order 
to boost said images memorability.  In10, Lore et al. develop a transformer network that can be attached to an 
existing generator in order to adjust the memorability of generated images. While this approach does leverage 
existing trained networks to generate photorealistic images, this is dependent upon the chosen generator, and 
additionally requires a generated ‘seed’ image for the network to adjust. As a feedback mechanism they employ 
single-score memorability predictors. They show through human recognition trials that the images adjusted to 
be more memorable tend to be empirically more memorable.

Prior approaches to memorability modification require a starting image (real or generated), and it is the 
memorability of this image that is then modified. We instead desire to create an approach that can generate 
images without requiring this initial seed image, and can instead synthesise recognisable scene images given 
only a latent code and a desired memorability. As proof of concept that cognitive relational patterns can serve 
as the basis for a generative network for memorable scene images we develop and train an architecture that can 
synthesise low-resolution memorability-constrained images. We evaluated the potential of both single-score VMS 
based memorability and spatial memorability as a driving mechanism for scene image generation. The generated 
images, despite low resolution and relatively poor quality, are capable of causing a significant effect in a state-
of-the-art third-party memorability prediction network that had never previously seen the generated images. 
Further, by modifying the strength of the memorability feedback mechanism our memorability constrained 
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images can be made to display both higher and lower image memorability compared to a baseline of generated 
images where the memorability feedback network is disabled. Interestingly, placing too much emphasis on 
the feedback network causes the network to lose discriminative power, becoming unable to correctly generate 
images with high vs low memorability, yet generating images that were predicted to be much more memorable 
overall. This provides evidence that we can manipulate the memorability of generated images in a meaningful 
way. Image memorability based on VMS maps appears to control both the emergence of semantic details as well 
as the spatial relationships created between these details.

The final test of visual memory schemas as viable mechanisms for modulating image memorability is whether 
our approach could functionally work with actual human observers and not only with computational memorabil-
ity predictors. By integrating our memorability evaluator and loss component with a more advanced generator 
allowed us to influence the memorability of relatively high resolution, high-detail images. While we lack the 
resources to generate high resolution photo-realistic images, the images we do generate show clear structure, 
detail, and are certainly recognisable as belonging to their intended category. From our results (and given that 
we based our model constraint on visual memory schemas), we hypothesise that more memorable scenes better 
match the cognitive schema of that scene contained within the human mind. In this work, we observe that mak-
ing a scene more memorable results in changes to the structure and content of the generated scene compared 
to the same scene generated to be of a lower memorability. We hypothesise these differences cause the image to 
become closer or further from the mental representation (i.e, the schema) of that scene which is stored within 
the human brain. However, it is unclear whether the differences in schema between high and low memorability 
images also result in greater difficulties visually recognising the image as an exemplar of its class. To test this, 
we employed a scene recognition deep neural network  (ResNet15224) trained on the Places365  dataset25 to cat-
egorize every synthesised image. We find that in general the majority of images are classified as their class (or a 
highly similar, related class, e.g., galley vs kitchen). For highly memorable generated images, 96% of images are 
correctly classified and for low memorability generated images, 95% of them are correctly classified as kitchens 
by the scene recognition network. There appears to be little difference in how visually recognisable the generated 
images are as members of their class; and the demonstrated memorability effect appears independent of visual 
recognizability. Given that human ability to categorize scene images generally exceeds that of neural networks; the 
recognizability scores shown are best viewed as a lower bound. Additionally, as human memory is not contingent 
upon  resolution26–28 and perfect photo-realism, the images we generate serve well for their intended purpose. We 
show through human observer memory experiment that the images we generate to be more memorable are more 
likely to be detected correctly as repeated images by humans. Additionally, we find that the false-alarm rate of 
said images also increases, an encouraging sign that our images are truly modulated by visual memory schemas, 
as the exact same effect appears in the VISCHEMA dataset of real images. The cognitive schemas that aid the 
remembering of scenes also lead to false remembering when presented with a memorable image modelled on 
the schema, even if that image has never been seen before. Critically, we are able to generate memorable images 
without requiring a seed image, such as the approach employed  in10, and verify that two-dimensional maps of 
memorability can be employed to modulate memorability, rather than relying on single-score approaches.

In summary, our results indicate we were able to both fool computational memorability predictors, and 
manipulate human visual long-term memory via artificially generated images, constrained with a two-dimen-
sional visual memorability schema concept borrowed from cognitive psychology, for which there are neural 
 correlates29. It may appear circular that we have constrained a model with visual memory schemas, (which indi-
cate memorable regions) and find that our generated images are indeed memorable. However, this only appears 
this way because the data shows an effect on human memory; there was no guarantee that this was possible to 
accomplish. There is additionally no guarantee that the generative model would be able to be constrained by the 
visual memory schemas. There is little work in this area (and none that examines the visual schemas of gener-
ated images); and in essence the model is the test—investigating whether it is, or it is not possible to use visual 
memory schemas to synthesise scenes that can modulate human memory. We find that by employing VMS maps 
we are able to generate completely new artificial scenes that cause a desired modulation of human memory as 
tested by a human observer memory experiment. This has interesting implications for the future study of image 
memorability, as well as real-world applications for memorability research.

We have designed a neural network that appears to understand visual memory schemas to a sufficient enough 
degree to use them to visibly change the output of a generated scene, based upon a brand new, extrapolated or 
invented schema (of controllable memorability), that we want the scene to match. The generative network is 
constrained by an artificial VMS map predictor that can produce two-dimensional memorability maps for arbi-
trary scene images; the greater the difference between the predicted VMS map and the target VMS map for a 
synthesised scene, the more the network is penalised. As we have shown, when we constrain a synthesis network 
with a VMS predictor, we find that we are able to generate scenes that affect human memory for those scenes, or 
rather, affect their the performance on a memory test. We learn from this that visual memory schemas appear 
a strong enough descriptor of what information humans encode into memory to enact visible changes on the 
synthesised images based upon the input schema.

Methods
Obtaining visual memory schemas maps for 2D memorability prediction. Recent work employs 
human observer experiments to capture the regions in the image that cause said image to be remembered or 
falsely  remembered12. This dataset is known as VISCHEMA, and contains 800 images and 800 visual memory 
schema maps. These visual memory schema maps correspond to mental knowledge frameworks employed by 
humans to encode the said image into memory, and enable retrieval later. Visual memory schemas (VMS) are 
hypothesised to relate high level image structures to the concept of memorability. These VMS maps were gath-
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ered via a behavioural experiment with human observers on a dataset of 800 scene images from eight different 
categories. Participants (n = 90) were asked to remember 400 images during a study phase. Then, during a test 
phase, they are shown 200 repeats and 200 non-repeated images, and asked to indicate whether they had seen an 
image before. The participants were also asked to draw boxes around the regions of the image that caused them 
to remember said image. When the image was correctly remembered, this produced ‘true memory schemas’ and 
‘false memory schemas’ when incorrectly remembered. These VMS maps were shown to be highly consistent 
(correlation histogram mean of ρ = 0.7 ). VMS internal consistency is higher than both VMS correlations with 
eye fixations ( ρ = 0.5 ) or saliency ( ρ = 0.58 ). VMS-based results hence outperform simple metrics for predict-
ing image memorability for the dataset used in the experiment. Progress has been made towards reconstructing 
these VMS maps artificially, both with fully convolutional models and variational  models13.

For the purposes of this study we extend the original VISCHEMA stimulus set with additional data which 
we term VISCHEMA 2, examples shown in Fig. 8. The VISCHEMA 2 dataset contains an 800 new images and 
800 VMS maps of the same categories as VISCHEMA  112, gathered through human observer experiment, with 
60 participants, thus creating together a 1600 image/VMS pair dataset referred to as VISCHEMA PLUS. This 
dataset is used to train the auxiliary loss function in our generative approach and used to produce the new 
memorable images. VISCHEMA data is available  at18. The experiment to gather additional data was approved 
by Departmental Ethics Committee of the Dept. of Psychology, University of York, UK, and follows the relevant 
guidelines given by that committee. Informed consent was obtained from participants, and they were free to 
withdraw at any time.

Memorability estimation feedback network. The assessment of image memorability is performed 
by employing a Visual Memory Schema prediction model developed  in13, which is based on the Variational 
Autoencoder (VAE)31 learning model. A VAE is made up of two convolutional networks: the encoder aiming to 
extract a latent space representing the data, and the decoder which aims to reconstruct the given data. Following 
training, given an image, the VAE is used to predict its corresponding VMS map. We train this model on the 
VISCHEMA PLUS dataset containing 1600 image/VMS pairs. The output of this model is a two-dimensional 
VMS map. This predicted VMS map is based upon the latent space of the VAE, which corresponds to a learnt 
mapping of image features to memorability based upon multiple human observations for the input image. We 
only consider the ‘memorability’ channel of the VMS maps (true schemas), and do not make use of the ‘false 
memorability’ (false schemas) information. For the given VMS data (x , the encoder of the VAE infers a latent 
space z , by using the following loss function:

Figure 8.  Images from VISCHEMA 2 dataset are shown in the top row, while in the bottom row are the image 
regions indicated by observers as causing them to remember the images from above. Source images are drawn 
from the public SUN  dataset30.



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1583  | https://doi.org/10.1038/s41598-022-05623-y

www.nature.com/scientificreports/

where the former term represents the log-likelihood of VMS reconstruction by using the decoder network and 
the latter represents the Kullback–Leibler (KL) divergence between the variational distribution qθ (z|x) and the 
prior p(z) aiming to assess the image reconstruction ability of the network. θ and φ represent the parameters of 
the VAE’s encoder and decoder networks, respectively.

W‑MEMGAN architecture and training. The diagram of the deep learning architecture used for gener-
ating memorable images is shown in Fig. 9. It consists of a Generator G, a Discriminator D, and the memorability 
feedback network M . While the generator creates memorable images, the discriminator evaluates the ‘realness’ 
of the generated images, and the auxiliary memorability network evaluates whether the memorability of the 
generated image matches the memorability defined by a memorability constraint M . M in this case may either 
be a two-dimensional target VMS map, or a single target memorability score. The image generation network G, 
corresponding to the generator from WGAN, aims to synthesise an image Î using random variables Z as inputs, 
which defines the latent space of the MEMGAN, while M acts as the memorability constraint:

The output of the generator is a generated image Î , whose memorability score is as close to M as possible. Both 
Z and M are drawn from Gaussian distributions. The generator is constrained by both the discriminator D and by 
the memorability feedback network M , which estimates the memorability map Îm = M(I) . The discriminator 
D is implemented as an improved Wasserstein GAN  model32 which employs a penalty term on the discriminator 
loss yielding better performance and stability when compared to the classical  GAN33.

During the training, Z is sampled randomly from a Gaussian distribution, and M is either sampled from the 
Gaussian distribution or Pt , the distribution of possible target VMS maps, depending whether the network is 
being trained for spatial memorability or single-score memorability. When training the discriminator D, M is 
discarded, as it is only necessary for training the generator, where it is used to calculate the memorability loss. This 
has the effect of penalising the generator if the generated images are not of a similar memorability to that defined 
by M . For example, if the image was intended to be memorable while actually it is not memorable, the generator 
loss will increase. Each training epoch consisted of 60,000 kitchen images drawn from the LSUN  database23, and 
the network was trained for 500 epochs, which took approximately 8 days on 4 × Nvidia 1080 Ti GPUs.

MEMGAN architecture and training. The Wasserstein GAN based network does not generate memo-
rable images at a sufficiently high resolution and quality for human trials. Given the latent code Z and an artifi-
cially generated target 2D visual memory schema (VMS) map V , the goal was to generate a sufficiently realistic 
256× 256 pixel image from Z , whose VMS is close to that of V . We hence combine the memorability feedback 
network with a more suitable generator architecture, that of the progressive  GAN20. We draw V from Pt , the 
possible target VMS maps.

While aiming to obtain photo-realism is preferable, it is not a strong requirement for our architecture and 
subsequent human observer experiment. As long as the image generated is recognisably as a member of its target 
category, a human observer will employ the correct visual schema when encoding the image into memory. This 

(1)L(θ ,φ) = −Ez∼qθ (z|x)[log pφ(x|z)] + KL(qθ (z|x)||p(z)),

(2)Î = G(Z,M).

Figure 9.  Memorability-constrained image generation model architecture. PixelNorm and Minibatch Standard 
Deviation layers omitted for clarity.
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allows us to reduce the capacity of the network compared to the original progressive  GAN20, which results in 
an accelerated training time on the available hardware. A simplified (for visualisation purposes) architecture is 
shown in Fig. 10. The MEMGAN architecture we develop bears superficial similarities to both  ACGAN34 and 
 InfoGAN35, though rather than predicting discrete class labels or extracting interpretable dimensions in an 
unsupervised fashion, it generates memorable images, without a prerequisite seed image (such as those used 
 in10), while being supervised by human observer-based cognitive structures. The generative network architecture 
has specific processing blocks for each image resolution, as can be observed in Fig. 10. The output image of each 
resolution block is passed through the memorability predictor as the network generates more accurate images 
of increasing resolution. As each resolution block takes over the information produced by the previous layer 
of processing blocks, the connection of those blocks to the memorability predictor is dropped. This allows the 
memorability signal to affect all resolutions of the generator during training. We only generate up to a resolu-
tion of 256× 256 to limit the computation time, which is ever increasing when attempting to generate images 
of higher resolutions. The training time is reduced at the cost of losing some detail by reducing the capacity of 
the 256× 256 and 128× 128 resolution blocks by half. Finally we add a tanh activation function at the output, 
before merging different resolution blocks, which aids stability.

We trained two deep generative networks in order to generate images for our human memory experiment, 
one with a memorability constraint (MEMGAN) and another without, whose purpose was to generate foil 
images. Both networks were trained for 200 epochs. Each resolution block was slowly introduced to the network 
over a duration of ten epochs, and then trained for an additional ten epochs before the next resolution block 
was introduced. Each of the first five resolution blocks of 128× 128 pixels from Fig. 10, was shown a total of 
4,800,000 images. The final block of 128× 128 was shown 2,400,000 images. These images were drawn from a 
dataset of 240,000 kitchen scene images, and the same number of living room scene images, both drawn from 
the LSUN  database23. This allowed a suitable balance between resolution, quality, and required total training 
time. We follow the example set  in20 and use an Adam  optimiser36 with the following parameters: Lr = 0.0015 , 
β1 = 0 , β2 = 0.99 , e = 1× 10−8 . Each of the two networks was trained for 14 days on 4 × Nvidia 1080 Ti GPUs.

Loss functions. Both our memorable image generators are designed to use the same loss function, the Was-
serstein metric combined with a component which calculates the difference between the desired and generated 
memorability for a given image. This training mechanism works for both single-score and VMS map memora-
bility training examples.

The loss function is designed to embed a memorability predictor and contains the following components: a 
generator network G , a discriminator D and memorability predictor network M . Considering the latent code 
distribution Pz , target VMS distribution Pt , real image distribution Pr , predicted VMS distribution Pv , and 
generated image distribution Pg based upon the latent code ẑ and v̂ we define the loss function in Eq. (3). The 
latent code ẑ is drawn from a Gaussian distribution and v from a distribution of target VMS maps, where height, 
width, and intensity of VMS regions is drawn from a uniform distribution. �Lossgp refers to the gradient penalty 
loss  in37. α controls the strength of the memorability loss. Pg represents the probability of the generated data 
and Pr is the probability of the real data. The additional term controlled by the hyperparameter � prevents the 
gradients inside the discriminator from violating Lipschitz continuity, whereas the first two terms evaluate the 

(3)L = E
ẑ∼Pz ,v∼Pt

[D(G( ˆz, v))] − E
x∼Pr

[D(x))] + �Lossgp + α E
x̂∼Pg ,v∼Pt

[(M(x̂)− v)2]

Figure 10.  Progressive generator with per-resolution memorability estimation.
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Earth-Mover distance between the generated and real distributions. The additional memorability loss, combined 
with the Wasserstein loss, constrains the image generation by both ‘realness’ and memorability simultaneously.

Generating images for human observer experiments. We generated low-memorability and high-
memorability kitchen images with our MEMGAN. To avoid making the task too difficult, we also generate 
memorability-unconstrained images of another interior scene category to act as foils in the memory experiment, 
living rooms. Our target memorability-modulated images are generated in pairs, with a fixed latent code Z per 
pair, varying the desired target VMS map between low and high memorability (modulating memorability con-
straint M); for each highly-memorable image there is a non-memorable image generated defined by the same 
latent code. We generated several hundred pairs and additionally memorability-unconstrained images as foils. 
Foil images and target image pairs suffering from extreme distortion were excluded from this study to avoid dif-
ferences in memorability being caused by drastic quality differences between categories. In order to avoid any 
bias in the selection of images, if one image of a target pair is of acceptable quality to be included in a human 
trial, then the other image of the pair is automatically included as well. What is more there is little chance of bias-
ing the images for memorability one way or another, as it has been shown in prior studies that humans cannot 
intrinsically predict the memorability of any given  image5.

We selected 100 pairs of high and low-memorability generated images, for 200 memorability-constrained 
images overall. We additionally selected 200 generated living room scene foils of suitable quality. The resulting 
400 images were used as a stimulus set for the human observer memory experiment that tested the validity of our 
memory modulation. We quantified the image quality differences by employing the Fréschet Inception Distance 
(FID)38 and note minimal differences between categories. The high-memorability images have a FID of 108 and 
the low-memorability images a FID score of 104, while the non-constrained images (foils) had a FID score of 
88. Based on these minimal differences, it is highly unlikely that differences in image quality are affecting the 
memorability of our images. Code for this model can be found at https:// github. com/ ckyle da/ MEMGAN, and 
the VMS training datasets can be found at https:// www. cs. york. ac. uk/ visch ema/.

Human memory experiment. With our stimulus set of generated images, we conduct a human recogni-
tion memory experiment with 119 participants. Each participant saw one of ten unique sequences of 150 images, 
with 40 targets (i.e. repeats of once presented images in the sequence) per sequence. Both foils and target images 
could be repeated. Each image was shown on-screen for 3 s. Where an image was repeated, we ensured a mini-
mum of at least 30 images between first showing and repeat (see Fig. 11). Each sequence was viewed on average 
by 12 different participants. Participants were asked to indicate by pressing a button when an image they were 
viewing was a repeat. If they correctly indicated a repeat it was considered a hit and if not, then a miss. When 
participants indicated that they recognised a repeat, they were asked to annotate the regions in the image they 
believe caused them to remember the image. This allowed us to gather two-dimensional memorability maps for 
our generated images. Each sequence took approximately 9 min on average for a participant to complete. We 
then analyse these results through several statistical tests, primarily a one-way independent Analysis of variance 
(ANOVA). We also employ Mann–Whitney U tests to verify that our effect occurs in the intended direction, and 
Kruskal–Wallis and Wilcoxon signed-rank tests to verify that our results hold if distribution assumptions are 
relaxed. Critically, no single participant was shown both the high-memorability and the low-memorability image 
of a given pair in the same image stream. This prevented recognition of images by previously viewing the same 
image with a different memorability value, rather than remembering a repeat of the target. Participants were paid 
at a rate of $7.02 per h using the crowdsourcing platform Prolific, and prescreened such that all participants were 
between 18 and 65 years of age and fluent in English. This experiment was approved by the Departmental Eth-
ics Committee of the Dept. of Psychology, University of York, UK, and follows relevant guidelines given by that 
committee. Informed consent was given by participants, and they were free to withdraw at any time.

Figure 11.  Memorability experiment structure.

https://github.com/ckyleda/MEMGAN
https://www.cs.york.ac.uk/vischema/
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Evaluating scene recognition differences. To determine whether there was any difference in recog-
nizability between high and low memorability images that has arisen due to differences in their structure, we 
employ a deep neural network. We select a ResNet152  model24, which has been pretrained on the  Places36525 
dataset, such that it can classify images into one of 365 different scenes. If the network predicts the image is a 
kitchen (or kitchen related) we record this as a successful recognition of the scene. As the network predictions 
can be specific to the type of kitchen (for example, the network is capable of differentiating a ‘galley’ style kitchen 
from a ‘wet-bar’) we select a set of categories that closely relate to kitchens; and assume any prediction in this 
set is a correct recognition that the image shown is a kitchen. This subset consists of: ‘kitchen’, ‘wet_bar’, ‘galley’, 
‘restaurant_kitchen’, and ‘sushi_bar’. We then accumulate predictions by running all images from both the low 
memorability category and high memorability category through this network, and record the predictions. We 
find that the low memorability category has a recognition rate (correct predictions) of 95%, and for high memo-
rability, a recognition rate of 96%.
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