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Since the discovery that a single dose of ketamine, an N-methyl-D-aspartate receptor
(NMDAR) antagonist, had rapid and long-lasting antidepressant effects, there has
been increased interest in using NMDAR modulators in the pharmacotherapy of
depression. Ketamine’s efficacy seems to imply that depression is a disorder of NMDAR
hyperfunctionality. However, studies showing that not all NMDAR antagonists are able
to act as antidepressants challenge this notion. Furthermore, NMDAR co-agonists have
also been gaining attention as possible treatments. Co-agonists such as D-serine and
sarcosine have shown efficacy in both pre-clinical models and human trials. This raises
the question of how both NMDAR antagonists and agonists are able to have converging
behavioral effects. Here we critically review the evidence and proposed therapeutic
mechanisms for both NMDAR antagonists and agonists, and collate several theories
on how both activation and inhibition of NMDARs appear to have antidepressant effects.
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INTRODUCTION

The N-methyl-D-aspartate receptors (NMDARs) are a class of ionotropic glutamate receptors
that are widely expressed in the brain. They are composed of two glycine-binding GluN1 subunits
and two glutamate-binding GluN2 subunits (GluN2A, GluN2B, GluN2C and GluN2D). In the
adult brain, the majority of NMDARs are a combination of GluN1 with GluN2A and/or GluN2B
(Papadia and Hardingham, 2007), that play important roles in neurodevelopment, synaptic
plasticity, learning and memory (Morris et al., 1986; Riedel et al., 2003; Hunt and Castillo, 2012;
Burnashev and Szepetowski, 2015). Conversely, dysregulation of NMDARs is associated with some
neuropsychiatric disorders, such as schizophrenia, where NMDAR hypofunction has been evinced
through the psychotomimetic effects of NMDAR antagonists (Olney et al., 1999), and NMDAR
hyperfunction has been associated with excitotoxicity and neurodegeneration (Zhou et al., 2013).
This has led to the inverted-U curve hypothesis of NMDAR function (Lipton and Nakanishi, 1999),
and highlighted NMDAR modulators as potential therapeutic interventions for neuropsychiatric
disorders.

The NMDAR co-agonists, D-serine, D-alanine and glycine, and glycine uptake inhibitors,
have proved effective at ameliorating negative symptoms of schizophrenia when used as
adjunctive therapies (Heresco-Levy et al., 2004, 2005; Tsai et al., 2004, 2006; Kantrowitz
et al., 2010), and support the NMDAR hypofunction theory for this disorder. The NMDAR
antagonist, memantine, has proved to be therapeutically beneficial in some cases of Alzheimer’s
disease (Reisberg et al., 2003), where glutamate-mediated neuropathology is posited. However,
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recent attention has focused on the NMDAR as a therapeutic
target for major depression, and despite often ambiguous
mechanistic insight, both inhibition and stimulation of this
receptor convey antidepressant properties. This review article
will critically evaluate the current literature reporting the validity
of NMDAR modulation in major depression, and will propose a
mechanism by which the function of this receptor in an ‘‘on’’ or
‘‘off’’ state may have antidepressant actions.

NMDAR MODULATION AS
A THERAPEUTIC STRATEGY:
CONFLICTING EVIDENCE

Interest in the utility of NMDAR modulators in depression
developed when a single sub-anesthetic dose of ketamine, a
non-competitive NMDAR antagonist, was shown to produce
rapid and long-lasting antidepressant effects (Berman et al.,
2000). However, while much headway has been made in
elucidating the mechanisms behind ketamine’s efficacy, our
understanding of the role of NMDARs in mood disorders
is far from complete. Added to this is the complexity of
the different sub-environments of different brain regions,
different types of neurons (i.e., pyramidal neurons and
interneurons) and the diversity of NMDAR subunits and
regulators. Given the volume of information obtained from
research on ketamine, it appears that NMDAR antagonists
have great potential as a new class of antidepressants. This
is supported by studies on other NMDAR antagonists, such
as nitrous oxide (Zorumski et al., 2015) and lanicemine
(Sanacora et al., 2014; Downey et al., 2016), which show
great promise as potential antidepressants in pre-clinical
models. However, memantine does not display antidepressant
properties (Zarate et al., 2006), and numerous NMDAR
agonists, in particular agonists of the glycine site (e.g.,
GLYX-13, Moskal et al., 2014), may be potential treatments
for depression. This raises the question of how both NMDAR
antagonists and agonists are able to have antidepressant effects
(Figure 1).

NMDAR ANTAGONISTS: THE MECHANISM
OF KETAMINE

Ketamine is an anesthetic and a psychotomimetic drug (Krystal
et al., 1994) with antidepressant properties (Berman et al.,
2000). Recently, Miller et al. (2016) reviewed the evidence
behind two dominant hypotheses explaining ketamine’s
mode of action—direct inhibition, and disinhibition
(Figure 1). The ‘‘disinhibition’’ theory proposes that
ketamine antagonizes NMDARs on inhibitory interneurons,
therefore removing the inhibition of pyramidal neurons,
and increasing glutamate neurotransmission. The ‘‘direct
inhibition’’ theory, however, proposes that NMDARs are
tonically activated by ambient glutamate and glutamate
from spontaneous-releasing synaptic vesicles, and that
this detrimental tonic activation is directly inhibited by
ketamine.

Although a consensus has not been reached for the
initiation of ketamine’s activity, research has highlighted
certain key elements that may provide a clue for how
NMDAR antagonists work as antidepressants. Research
has shown that ketamine blockade of NMDARs inhibits
the eukaryotic elongation factor 2 (eEF2) kinase, which
leads to eEF2 de-phosphorylation and de-suppression of
Brain-Derived-Neurotrophic-Factor (BDNF) translation
(Autry et al., 2011). The levels of BDNF and its receptor,
Tropomyosin receptor kinase B (TrkB), have been
positively correlated with antidepressant efficacy, possibly
through their roles in synaptogenesis and neurogenesis
(Saarelainen et al., 2003; Duman and Monteggia, 2006;
Leal et al., 2014). BDNF has also been shown to activate
the mammalian target of rapamycin (mTOR) signaling
pathway (Nosyreva et al., 2013), which is involved in
protein synthesis and increased excitatory neurotransmission
(Miller et al., 2014).

Studies with NBQX, an α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor (AMPAR) antagonist, and
rapamycin, an mTOR inhibitor, have also shown that the
AMPARs and the mTOR signaling pathway are essential
for ketamine’s antidepressant effects. Li et al. (2010) have
shown that ketamine activated growth factor signaling
proteins, increased levels of synaptic proteins and AMPAR
subunits, and increased dendritic spine densities. These
effects were abolished by inhibitors of mTOR, extracellular
signal-regulated kinases (ERK) and Protein kinase B
(Akt).

Intuitively, all NMDAR non-competitive antagonists might
be expected to function in a similar way to ketamine, but
that does not hold true for memantine. One explanation
is that memantine, unlike ketamine, is a poor blocker of
resting NMDAR currents, and that ketamine is a ‘‘resting
NMDAR blocker’’, which supports the ‘‘direct inhibition’’
theory of ketamine’s antidepressant action (Gideons et al.,
2014; Kavalali and Monteggia, 2015). Moreover, memantine
neither induced eEF2 de-phosphorylation nor increased BDNF
expression (Gideons et al., 2014), and its activity is not affected
by mTOR inhibition (Sabino et al., 2013). Another theory for
these differential effects of memantine and ketamine is that
they could be binding to distinct NMDAR ‘‘subpopulations’’
(Johnson et al., 2015), which might include NMDAR subunit
composition and/or synaptic location, though this remains
controversial (Wroge et al., 2012; Emnett et al., 2013; Gideons
et al., 2014).

NMDAR AGONISTS: MOLECULAR
MECHANISMS

Given the evidence supporting NMDAR antagonists as a new
class of antidepressants, it is counter-intuitive that NMDAR
agonists are also able to act as antidepressants. In particular,
co-agonists of the GluN1 subunit (GLYX13, D-serine) have
been shown to improve mood in healthy volunteers, and reduce
indices of behavioral despair in rodent behavioral tasks such
as the forced-swim test (FST) and the learned helplessness
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FIGURE 1 | Summary of the mechanisms of how N-methyl-D-aspartate receptor (NMDAR) antagonists (direct inhibition and disinhibition) and
co-agonists lead to antidepressant effects. The indirect hypothesis proposes that NMDAR antagonists inhibit the basal activation of inhibitory interneurons,
resulting in disinhibition of pyramidal neurons. The direct hypothesis proposes that NMDAR antagonists inhibit basal activation of pyramidal neurons (caused by
spontaneous or ambient glutamate) that in turn inhibits protein synthesis. The co-agonist hypothesis proposes that NMDAR co-agonists activate signaling pathways
in pyramidal neurons that result in increased synaptic plasticity. Both NMDAR antagonists and agonists activate signaling pathways that result in increased protein
translation and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) activation, leading to increased LTP induction, synaptic plasticity and
antidepressant behavior.

(LH) paradigm (Malkesman et al., 2012; Burgdorf et al.,
2013; Levin et al., 2015). In the FST, animals administered
with the NMDAR co-agonists exhibited reduced immobility
(despondency) in water, which indicated an antidepressant-like
effect. In the LH task, the latency to escape a foot-shock is a
measure of depressive-like behavior, and NMDAR co-agonists
reduced this parameter. Burgdorf et al. (2013) also demonstrated
that GLYX13 and ketamine increased surface GluN2B and
GluR1 levels in the medial prefrontal cortex (mPFC) and the
hippocampus, and increased excitatory post-synaptic current
(EPSC) in the hippocampus. This suggested that, in spite of
their differential pharmacological properties, commonmolecular
pathways are activated by both compounds.

The glycine transporter inhibitor, sarcosine, has also been
shown to attenuate immobility in the FST in mice, and
improve mood scores in depressed patients (Huang et al.,
2013; Mathew, 2013). An investigation into its psychotropic
mechanisms revealed that it induced the phosphorylation
of mTOR, ERK and Akt, as well as GluR1 which implies
increased membrane insertion of AMPARs (Chen et al., 2015).
Parenthetically, although sarcosine is generally recognized as
a glycine transporter inhibitor, it also possesses NMDAR
co-agonist properties, and can enhance the activation of this

receptor through its direct binding to the glycine site on the
GluN1 subunit (Zhang et al., 2009a). The antidepressant effects
of sarcosine can, therefore, be attributed to the inhibition of
synaptic glycine uptake, and/or direct NMDAR stimulation.
Nevertheless, overall it appears that mTOR signaling and
AMPARs are common downstream targets of both NMDAR
agonists and antagonists. This raises the question of how
NMDAR modulators that have opposing effects on NMDARs
could lead to similar downstream effects. Several theories that
have been proposed to explain this phenomenon will now be
considered.

PARTIAL AGONISTS AS POTENTIAL
ANTAGONISTS: DUAL EFFECTS OF
GluN1 AGONISTS

Many GluN1 co-agonists are partial agonists that may act as
antagonists at higher concentrations, and the most extensively
studied of these is D-cycloserine (DCS). It has been proposed
that at low concentrations and when the NMDAR glycine
site is not fully occupied, DCS acts as an agonist, albeit with
a lower efficacy than glycine (van Berckel et al., 1999). At
higher concentrations however, DCS can compete with, and
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block, glycine’s co-agonist function, thereby reducing activity of
NMDARs. This is supported by pre-clinical models and clinical
trials for depression and schizophrenia that show the contrasting
dose-dependent effects of DCS. While DCS has been shown to
improve negative symptoms of schizophrenia in humans at doses
below 250mg, doses above that exacerbate the positive symptoms
(van Berckel et al., 1999). The reverse is true for depression where
doses above 250 mg are necessary to observe antidepressant
effects in an add-on clinical trial (Heresco-Levy et al., 2013),
suggesting that DCS’s antidepressant effects are achieved when
it acts as an NMDAR antagonist.

AMPAR CONVERGENCE

Current literature supports the notion that AMPARs may play
an important role in the efficacy of antidepressants. For example,
chronic administration of paroxetine and fluoxetine increase the
total (Martinez-Turrillas et al., 2002) and phosphorylated levels
of GluR1 (Svenningsson et al., 2002, 2007). The importance
of AMPAR potentiation has also been demonstrated in studies
using positive modulators of AMPARs, such as LY451646
(Andreasen et al., 2015), and in investigations using AMPAR
antagonists where the antidepressant properties of fluoxetine and
ketamine are blocked (Farley et al., 2010; Li et al., 2010). More
recently, Zanos et al. (2016) attributed the antidepressant effects
of ketamine to the action of ketamine metabolites on AMPARs.

The activity of AMPAR has also been shown to be important
for synaptic potentiation, the mechanism thought to underlie
antidepressant actions. While ketamine increased total field
potential in the hippocampus, NMDAR-specific field potential
decreased, implying that AMPAR and other non-NMDARs
contributed to the increase (Nosyreva et al., 2013). This
has led to the theory that the key mechanism of action of
antidepressants is the increased ratio of AMPAR/NMDAR
activity rather than NMDAR antagonism (Andreasen et al.,
2013). Therefore, increasing AMPAR activity, decreasing
NMDAR activity, or both, would achieve an antidepressant
effect. The NMDAR antagonists, such as ketamine, that inhibit
NMDAR activity would lead to an increased AMPAR/NMDAR
activity ratio. However, drugs that are able to increase AMPAR
activity through an NMDAR-independent pathway would
also lead to an increased AMPAR/NMDAR activity ratio.
For instance, glycine treatment has been shown to increase
AMPAR insertion in the synaptic membrane (Lu et al.,
2001), which may surpass its NMDAR stimulatory properties.
Furthermore, Andreasen et al. have demonstrated that a
positive AMPAR modulator and NMDAR antagonist have
synergistic antidepressant effects in mice (Andreasen et al.,
2013).

NON-NMDAR TARGETS

When exploring the mechanisms of NMDAR modulators, the
assumption made is that the key mode of action of these drugs
are NMDAR-dependent. However, this may not be the case. For
example, glycine has a high affinity for post-synaptic NMDARs
at low concentrations (Zhang et al., 2014), but greater levels

in the synaptic cleft could result in spill-over and additional
binding to extra-synaptic inhibitory strychnine-sensitive glycine
receptors (GlyRs). Thus, elevated synaptic glycine has been
associated with increased NMDAR EPSCs and LTP (Johnson
and Ascher, 1987), whereas exogenously applied glycine appears
to have an inhibitory effect on NMDARs, and subsequent LTD
(Chen et al., 2011). Therefore, the same co-agonist could lead to
either LTP or LTD, depending on which receptor it preferentially
activates (Zhang et al., 2014). Sarcosine may have potentially
three modes of action since it is a glycine transport inhibitor
(Smith et al., 1992), a NMDAR co-agonist, and has some GlyR
agonist properties (Zhang et al., 2009b). Ketamine itself has been
shown to bind to and affect non-glutamatergic pathways (Sleigh
et al., 2014), such as the opioid system (Gupta et al., 2011).
Indeed, it has also been shown that administration of ketamine
metabolites result in antidepressant behavior independent of
NMDAR inhibition, but dependent on AMPAR activation
(Zanos et al., 2016).

“FULL” CO-AGONISTS

Arguably, the antidepressant action of partial agonists, such as
DCS, might be explained by their potential antagonist properties,
which is consistent with non-competitive antagonists such as
ketamine having the same behavioral effects. However, this
does not account for the actions of D-serine, an endogenous
co-agonist of the GluN1 subunit that does not act as an
antagonist at high doses (Kleckner and Dingledine, 1988; Berger
et al., 1998; Mothet et al., 2000). Unlike DCS, sarcosine, and
GLYX13, D-serine has a higher affinity than glycine for the
NMDAR glycine site and does not bind to other targets (Matsui
et al., 1995; Levin et al., 2015). Nevertheless, D-serine has been
shown to have antidepressant effects.

An acute dose of D-serine reduced feelings of anxiety and
sadness and improved cognitive scores in healthy volunteers
(Levin et al., 2015). Likewise, in rodents, an acute dose of
D-serine led to improvements in the FST, female urine sniffing
test (FUST), and LH paradigm, similar to the antidepressant
effects observed after a single dose of ketamine (Malkesman
et al., 2012). These actions of D-serine have also been shown
to be occluded in GluN1-knock out mice. Reduced immobility
in the FST, and reduced latency in the novelty-suppressed
feeding test were also observed in mice chronically fed with
D-serine, or when the D-serine synthesizing enzyme, serine
racemase, was over-expressed (Otte et al., 2013). So how can
the antidepressant properties of both D-serine and ketamine
be explained? Could preference for particular NMDAR-
subtypes, their extra-synaptic or synaptic expression, and/or
their neuroanatomical location influence the action of receptor
modulators?

NMDAR SUBTYPE SPECIFICITY AND
LOCALIZATION

Given that NMDARs are composed of different subunits, some
emphasis has been placed on the differential physiological
properties of receptors composed of different subunit subtypes,
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FIGURE 2 | Illustration of a complementary mechanism providing an explanation for how both NMDAR co-agonists and antagonists are able to lead
to similar downstream antidepressant effects. (A) Differential activation of NMDARs based on location: tonic activation of extra-synaptic NMDARs by
ambient/spontaneous glutamate release lead to inactivation of the mammalian target of rapamycin (mTOR) signaling complex and the inhibition of protein synthesis.
On the other hand, action-potential stimulated release of glutamate and the presence of the synaptic co-agonist D-serine leads to activation of synaptic NMDARs,
triggering pathways that lead to protein synthesis and synaptic plasticity. (B) Main proposed mechanism underlying complementary antidepressant effects of
NMDAR antagonists and agonists: NMDAR antagonists, such as ketamine, inhibit the tonic activation of extra-synaptic NMDARs, resulting in activation of the mTOR
signaling complex and protein synthesis. Administration of NMDAR co-agonists, such as D-serine, occupy un-saturated glycine sites on NMDARs, stimulating
synaptic NMDARs and leading to LTP and antidepressant effects. Ketamine binding at synaptic sites is not represented.
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in particular GluN2A and GluN2B. Various groups have
shown that the GluN2A and GluN2B subtypes are functionally
distinct. A popular theory is that GluN2B-containing NMDARs
are linked to neurodegeneration, whilst GluN2A-containing
NMDARs are linked to neuroprotection (Lujan et al., 2012).
Also, different NMDAR subtypes are dominant at different
stages of development (Wenzel et al., 1997). For instance,
the GluN2B-containing NMDARs play a key role in cortical
development, and their loss of function, achieved by knocking
out GluN2B, cannot be rescued with other subunits, such as
GluN2A (Wang et al., 2011). Furthermore, GluN2B activation
has been linked to the suppression of protein synthesis and
decreased miniature EPSCs in both developing and adult rodents
(Wang et al., 2011; Miller et al., 2014). The subtypes also
have different characteristics. The GluN2B subunit, compared to
GluN2A, displays higher sensitivity to agonists, and differential
sensitivity to the magnesium block (Kuner and Schoepfer,
1996; Erreger et al., 2007; Miller et al., 2014). However, this
raises the question of how subtype differences can result in
different downstream effects. Several mechanisms have been
proposed.

First, the synaptic localization of different subtypes could
explain differences in function. That is, GluN2A-containing
NMDARs are primarily expressed at synaptic sites, while
GluN2B-containing NMDARs are mostly expressed at extra-
synaptic sites (Massey et al., 2004). Second, the GluN2 subtypes
may convey their specific effects through their structural
differences. Experiments have shown GluN2A and GluN2B
might regulate different signaling cascades through variances
in their intracellular C-terminal tail (Foster et al., 2010).
At the ligand binding site, several NMDAR modulators and
potential therapeutics have shown a preference for a particular
GluN2 subtype (Williams, 1993; Fischer et al., 1997; Paoletti et al.,
1997; Nozaki et al., 2011). Interestingly, the GluN2B-containing
NMDARs are proposed to underlie the effects of ketamine and
GLYX13, because their actions are blocked by GluN2B-specific
antagonists, and both compounds increase cell surface levels of
GluN2B (Burgdorf et al., 2013). Perhaps more pertinent is the
demonstration that the antidepressant fluoxetine binds directly
to, and blocks, GluN2B-containing NMDARs (Szasz et al., 2007;
Kiss et al., 2012).

Finally, Miller et al. (2014) have shown that GluN2B-
containing NMDARs are more sensitive to ambient and
spontaneous glutamate release, proposing a mechanism where
ketamine’s direct inhibition of tonic ambient glutamate
neurotransmission results in disinhibition of protein synthesis
and an overall increase in AMPAR activation and synaptic
signaling. Given that Papouin et al. (2012) have demonstrated
that synaptic and extra-synaptic NMDARs are gated by different
endogenous co-agonists, D-serine and glycine respectively,
and that glycine-gated extra-synaptic NMDARs control the
ambient glutamate-generated tonic current, it suggests a
mechanism where ketamine preferentially inhibits an extra-
synaptic pool of NMDARs mainly composed of a GluN2B
subunit.

One model, therefore, is that NMDAR agonists
preferentially stimulate synaptic NMDARs (action-potential-

driven neurotransmission), while NMDAR antagonists
block extra-synaptic NMDARs (spontaneous or ambient
glutamate-driven neurotransmission; Figure 2). However,
research on this has been controversial and a consensus
on the exact roles and locations of NMDARs composed
of specific subtypes have yet to be elucidated. It has even
been suggested that extra-synaptic NMDARs may exist as
separate pools with different modes of activation and functions
(Papouin and Oliet, 2014).

CONCLUSION

The modulation of the NMDAR as a potential therapeutic
strategy for major depression is supported by compelling
evidence, though existing clinical data have not yet eluded to
a pathophysiological role of NMDARs in this disorder. That
is, both NMDAR antagonists (e.g., ketamine) and agonists
(e.g., D-serine) have therapeutic actions in depression, unlike
in schizophrenia where the exacerbation of symptoms by
ketamine, and their improvement by D-serine, suggests
NMDAR hypofunction in psychotic illness. However,
molecular considerations do argue the involvement of NMDAR
dysfunction in the pathogenesis of depression, particularly
with respect to ambient glutamate-driven neurotransmission.
Receptor antagonists block this detrimental tonic activation
of extra-synaptic NMDARs, while agonists promote synaptic
glutamate neurotransmission that leads to synaptic potentiation
(Figure 2). In this regard, the therapeutic actions of both
receptor antagonists and agonists are accommodated. Of
course, further investigations are required to support or
refute this hypothesis. Additional patient studies are also
required both to substantiate the antidepressant actions of
NMDAR modulators, and to show if depressed subjects can
be stratified into agonist and/or antagonist responders and
non-responders. Nevertheless, molecular studies propose that
both NMDAR inhibition and stimulation converge on the
activation of BDNF/mTOR signaling. Therefore, it would be
interesting to test whether a combination of GluN1 agonist
and NMDAR antagonist would have synergistic, reinforcing
effects.
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