
Vol.:(0123456789)

Machine Learning (2022) 111:3203–3226
https://doi.org/10.1007/s10994-022-06178-9

1 3

Machine unlearning: linear filtration for logit‑based
classifiers

Thomas Baumhauer1 · Pascal Schöttle2  · Matthias Zeppelzauer1

Received: 14 September 2020 / Revised: 13 September 2021 / Accepted: 11 April 2022 /
Published online: 11 July 2022
© The Author(s) 2022

Abstract
Recently enacted legislation grants individuals certain rights to decide in what fashion
their personal data may be used and in particular a “right to be forgotten”. This poses a
challenge to machine learning: how to proceed when an individual retracts permission
to use data which has been part of the training process of a model? From this question
emerges the field of machine unlearning, which could be broadly described as the investi-
gation of how to “delete training data from models”. Our work complements this direction
of research for the specific setting of class-wide deletion requests for classification models
(e.g. deep neural networks). As a first step, we propose linear filtration as an intuitive,
computationally efficient sanitization method. Our experiments demonstrate benefits in an
adversarial setting over naive deletion schemes.

Keywords  Machine learning · Machine unlearning · Privacy

1  Introduction

Recently enacted legislation, such as the European Union’s General Data Protection Reg-
ulation (GDPR) (Council of European Union 2016), previously its “right to be forgot-
ten” (Council of European Union 2012), and the California Consumer Privacy Act (State
of California 2018) grant individuals certain rights to decide in what fashion their personal
data may be used, and in particular the right to ask for personal data collected about them
to be deleted.

Editor: Tijl De Bie.

 *	 Pascal Schöttle
	 pascal.schoettle@mci.edu

	 Thomas Baumhauer
	 thomas.baumhauer@fhstp.ac.at

	 Matthias Zeppelzauer
	 matthias.zeppelzauer@fhstp.ac.at

1	 St. Pölten University of Applied Sciences, St. Pölten, Austria
2	 Management Center Innsbruck, Innsbruck, Austria

http://orcid.org/0000-0001-8710-9188
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06178-9&domain=pdf

3204	 Machine Learning (2022) 111:3203–3226

1 3

At present the implementation of such rights in the context of machine learning models
trained on personal data is largely an open problem. In Villaronga et al. (2018) the authors
even conclude that “it may be impossible to fulfill the legal aims of the Right to be Forgot-
ten in artificial intelligence environments”.

Indeed, machine learning models may unintentionally memorize (part of) their training
data, leading to privacy issues in many applications, e.g. image classification (Yeom et al.
2018; Sablayrolles et al. 2019) or natural language processing (Carlini et al. 2019), and
potentially enabling an adversary to extract sensitive information from a trained model by
so-called model inversion (Veale et al. 2018).

Informally, deletion of part of the training data from a machine learning model can be
understood as removal of its influence on the model parameters, in order to obtain a model
that “looks as if it has never seen that part of the data”. We refer to this process as unlearn-
ing. Clearly, the problem of unlearning can be solved in a trivial fashion, by simply retrain-
ing the model without using the part of the data we wish to unlearn. For large, real-world
models, retraining from scratch may incur significant computational costs, and may thus
be practically infeasible, if deletion requests are expected to arrive at any time. We there-
fore wish to find more efficient unlearning algorithms, which is notoriously difficult, owing
to the fact that for many popular learning algorithms every training data point potentially
affects every model parameter.

First approaches towards directed unlearning were introduced in Cao and Yang (2015),
and more recently in Ginart et al. (2019); Bourtoule et al. (2019). In our work we consider
the problem of unlearning in the setting of classification models for which, in contrast to
previous work, we assume that single individuals own all training data associated with a
particular class, as may be the case e.g. in biometric applications.

In this setting, we consider classifiers that predict logits, i.e. (rescaled) logarithmic
probabilities that a data point belongs to certain classes. For such classifiers we propose a
novel sanitization method that applies a linear transformation to these predictions. For an
appropriate hypothesis class this transformation can be absorbed into the original classifier.
The computation of the transformation requires barely more than computing predictions
by the original classifier for a (small) number of data points per class. We call this method
linear filtration. Figure 1 shows the results of this method when used as a defense against
model inversion (Fredrikson et al. 2015).

In summary, the main contributions of our work are:

(1)	 We develop linear filtration, a novel algorithm for the sanitization of classification
models that predict logits, after class-wide deletion requests.

(2)	 On the theoretical side, we add to the definition of unlearning in the sense of Ginart
et al. (2019), by proposing a weakened, “black-box” variant of the definition, which
may serve as a more realistic goal in practice.

(3)	 As practical methodology, we suggest that the quality of an empirical unlearning opera-
tion may be evaluated in an adversarial setting, i.e. by testing how well it prevents
certain privacy attacks on machine learning models.

The rest of this paper is organized as follows: Section 2 gives an overview of work
related to machine unlearning, as well the adversarial methodology employed in our
experiments. Section 3 formalizes the unlearning of training data from machine learning
models. Section 4 establishes several variants of our method of linear filtration. Section 5

3205Machine Learning (2022) 111:3203–3226	

1 3

experimentally evaluates linear filtration, primarily in an adversarial context. Section 6 fea-
tures discussion on the definition of unlearning.

2 � Related work

2.1 � Machine unlearning

The term machine unlearning first appears in Cao and Yang (2015). There the authors con-
sider unlearning the framework of statistical query learning (Kearns 1998). This allows
them to unlearn data points for learning algorithms where all queries to the data are
decided upfront. However, many popular learning algorithms (such as gradient descent)
query data adaptively. In the adaptive setting the approach of (Cao and Yang 2015) does
not give any bounds and quickly falls apart if the number of queries is large, as is the case
for neural networks.

Ginart et al. (2019) features a discussion of the problem of efficient unlearning of train-
ing data points from models, establishes several engineering principles, and on the practi-
cal side proposes unlearning algorithms for k-means clustering. In particular, they recog-
nize that given the stochastic nature of many learning algorithms a probabilistic definition
of unlearning (there “deletion”) is necessary. We adopt this view in our work.

Bourtoule et al. (2019) propose a framework they refer to as SISA (sharded, isolated,
sliced, and aggregated training), which can be thought of as bookkeeping method seek-
ing to limit and keep track of the influence of training data points on model parameters,
thus reducing the amount of retraining necessary upon receiving a deletion request. This
approach comes at the cost of a large storage overhead.

Guo et al. (2019) define �-certified removal, “a very strong theoretical guarantee that
a model from which data is removed cannot be distinguished from a model that never
observed the data to begin with”, a concept akin to that of differential privacy (Dwork et al.
2006). Combining this with the idea of influence functions (Koh and Liang 2017), they
then develop a certified removal mechanism for linear classifiers.

Golatkar et al. (2020a, 2020b) adopt an information theoretic view of unlearning and
develop unlearning operations based on linearized model dynamics (drawing inspiration
from the neural tangent kernel (Jacot et al. 2018; Lee et al. 2019), a technique to describe
the gradient descent dynamics of the training of neural networks using kernel methods).

Fig. 1   Results of a model inversion attack for a toy model trained on the AT&T Faces dataset with 4
classes. For one of the classes, from left to right: one of the training images, reconstruction of the class
by model inversion, reconstruction after naive unlearning, reconstruction after unlearning by our proposed
method of normalizing linear filtration (defined in Sect. 4). The reconstructions of the other classes remain
visually unchanged by normalizing linear filtration, see Fig.5

3206	 Machine Learning (2022) 111:3203–3226

1 3

The work done in Guo et al. (2019); Golatkar et al. (2020a, b) may be considered com-
plementary to the method of linear filtration we are going to develop in this paper, in the
sense that they use strong assumptions (in particular work with linear/linearized models)
obtaining stronger guarantees, while linear filtration is an intuitive heuristic, largely agnos-
tic to model architecture.

Sommer et al. (2020) propose a formal framework for verification of machine unlearn-
ing, based on machine learning backdoor attacks.

2.2 � Membership inference

It is an open problem to find a suitable measure for the quality of unlearning, when employ-
ing a heuristic unlearning operation with no or weak theoretical guarantees, i.e. to quantify
the remaining influence of “deleted” training data on a model’s parameters. In our experi-
ments we thus take ideas from membership inference. The goal of membership inference
is to determine whether a given data point has been used in the training process of a given
model. A few recent works on membership inference include (Shokri et al. 2017; Yeom
et al. 2018; Hayes et al. 2019; Sablayrolles et al. 2019). In particular, our adversarial setup
in Sect. 5.1 draws a large amount of inspiration from Shokri et al. (2017), where a binary
classifier is trained on the outputs of so-called shadow models to decide membership.

2.3 � Model inversion

Broadly, model inversion may be defined as drawing inferences about private training data
from the outputs of a model trained on this data. The term was introduced in Fredrikson
et al. (2014). Fredrikson et al. (2015) reconstruct human-recognizable images of individu-
als from neural networks trained for face recognition, using gradient ascend on the input
space. Recent approaches leverage generative adversarial networks (GANs) for model
inversion (Zhang et al. 2020).

We remark that model inversion is at its core the result of a correlation between input
and output space that is simply captured by the model (and may exist independently of the
model), and thus does not necessarily constitute a privacy breach. McSherry (2016) fea-
tures a highly recommended elaboration of this point in much detail.

Shokri et al. (2017) conclude their discussion of model inversion with the statement
that “model inversion produces the average of the features that at best can characterize an
entire output class.” Thus, model inversion is of some interest in the specific context of our
paper, which focuses on class-wide unlearning (and hence implicitly makes the assumption
that a single individual owns all data for an entire output class). We experiment with model
inversion in Sect. 5.5, see also Fig. 1.

2.4 � Differential privacy

Differential privacy (Dwork et al. 2006; Dwork and Roth 2014; Abadi et al. 2016) limits
the influence of individual training points on a model in a precise probabilistic way. We
briefly remark that (differential) privacy and data deletion may be considered orthogonal
problems, in the sense that private models need not support efficient deletion, and models
supporting efficient deletion need not be private. Ginart et al. (2019) discuss this point in
additional detail.

3207Machine Learning (2022) 111:3203–3226	

1 3

3 � Problem definition

In this section we formalize our notion of unlearning and the threat model we consider.

3.1 � Notation

For a vector v ∈ ℝ
k we use indices ranging from 0 to (k − 1) to denote its entries, i.e.

v = (v0, v1,… vk−1)
⊤ . One–dimensional vector are always column vectors.

For a vector of logits � ∈ ℝ
k let

and �(�) = (�0(�), �1(�),… , �k−1(�)) . We call � the softmax function.
We use uppercase, boldface letters for random variables. If � is a random variable P(�)

denotes its distribution.

3.2 � Classification

We consider a multiclass classification problem: Let � be a random variable taking values
in some input space X (e.g. X = ℝ

28×28 ), and let � be a random variable representing class
labels taking values in Y = {0, 1,… , k − 1} for some natural number k > 2 , with some
joint data generating distribution P(�,�).

Given x ∈ X  , a classifier h ∶ X → ℝ
k for this classification problem attempts to esti-

mate logits � = h(x) such that

Hypothesis class In this paper we consider the class H of all classifiers h of the form

i.e. classifiers that can be decomposed into a (potentially non-linear) feature extraction fol-
lowed by a multinomial logistic regression.

More formally any h ∈ H can be expressed as

where f ∶ X → ℝ
p denotes the feature extraction, p denotes the dimension of the feature

space, and W is a (k × p)-matrix representing a linear transformation ℝ p
→ ℝ

k . Figure 2
shows a schematic representation of the elements of H , where � denotes the softmax func-
tion. To simplify notation we do not consider affine transformations, i.e. classifiers of the
form h ∶ x ↦ W ⋅ f (x) + b for some b ∈ ℝ

k . However, we remark that our method is easily
adapted to this case.

Observe that in particular all deep neural networks for which the output is a densely
connected layer with softmax activations fit into the schema discussed in this section.

𝜎i∗ (�) =
exp(�i∗)∑
i<k exp(�i)

∈ [0, 1], for all i∗ < k

�(�) ≈ P(� ∣ � = x).

h = logistic regression◦feature extraction,

(1)h ∶ x ↦ W ⋅ f (x)

3208	 Machine Learning (2022) 111:3203–3226

1 3

3.3 � Learning algorithms

For a finite training set D ⊆ X × Y , a learning algorithm � calculates a classifier

Note that if � is non-deterministic �(D) can be considered a random variable taking values
in H.

3.4 � Unlearning of classes

Let C ⊊ Y be a set of classes, which we want to unlearn. Consider the multiclass clas-
sification problem for the distribution P(�,� ∣ � ∉ C) , i.e. the original problem with
the classes C removed. We define the hypothesis class H¬C for this problem similarly
to H , i.e. h ∈ H¬C is of form (1) with W a ((k − |C|) × p)-Matrix. For D ⊆ X × Y let
D¬C = {(x, y) ∈ D ∶ y ∉ C} and let �¬C(D¬C) ∈ H¬C denote a classifier calculated by some
learning algorithm �¬C.

Definition 1  (Unlearning) We say that a map

“unlearns C from H with respect to �,�¬C,D ” if the random variables �(�(D)) and
�¬C(D¬C) have the same distribution over H¬C . We call � an unlearning operation (for C).

3.5 � Weak unlearning of classes

A good choice of � will of course depend on the learning algorithm � . We mostly concern
ourselves with the case where � trains a neural network with a densely connected out-
put layer with softmax activations. Unfortunately it is difficult to understand how a neural
network represents knowledge internally (e.g. (Achille et al. 2019)), hence unlearning as
defined above may currently be out of reach. We therefore propose a weakening of the
above definition.

h = �(D) ∈ H.

� ∶ H → H¬C

Fig. 2   Schematic representation
of �◦h , for a classifier h = W◦f
in the hypothesis class consid-
ered throughout this paper. Here
f denotes a feature extraction, W
is a linear transformation, and �
is the softmax function. In deep
learning terminology “Logits”
represents a fully connected layer
with k units and weights W 

3209Machine Learning (2022) 111:3203–3226	

1 3

Definition 2  (Weak unlearning) As before let � be a map H → HC and for � (taking val-
ues in the input space X according to the data generating distribution) consider the random
variables

i.e. the logit outputs of the respective classifiers, taking values in ℝ k−|C| . We say that “ �
weakly unlearns C from H with respect to �,�¬C,D ” if �seen and �¬seen have the same dis-
tribution over ℝ k−|C| . We call � a weak unlearning operation (for C).

Fact 3  If � is an unlearning operation, then � is a weak unlearning operation. 	� ◻

3.6 � Discussion

Definition 1 demands that the distributions over the hypothesis class (i.e. in practical
terms the parameter space) are the same, while 2 relaxes this to the distributions over
the output space being the same. Intuitively speaking: 1 demands � make the model h
“look as if h had never seen the data”, while 2 demands � make the outputs of h “look
as if h had never seen the data” We may therefore consider unlearning (in the strong
sense) to be a white-box variant and unlearning in the weak sense to be a black-box
variant of the definition of unlearning. See section 6 for further discussion.

Abusing the terminology introduced in this section we refer to maps � that roughly
fit definitions 1 and 2 , respectively in the sense that they make the relevant distributions
similar in an appropriate divergence measure, as “good”, “satisfactorily performing”,
etc. unlearning operations.

3.6.1 � Threat model

 The considerations about the white- and black-box setting also nicely fit into the com-
mon classification of adversaries against machine learning models, as used in adver-
sarial machine learning (e.g., Biggio and Roli (2018); Papernot et al. (2016)). Here, it
is common that a white-box adversary has full knowledge of all classifier properties,
including training data and weights, while in the black-box scenario, an adversary can
either only access the classifier’s final decision or has at most access to the logits. In
line with this, considering a white-box adversary makes only sense when evaluating
attacks against an unlearning operation in the strong sense (i. e., according to defini-
tion 1), while the appropriate mode to evaluate a weak unlearning operation (cf. defini-
tion 2) is to consider an adversary who can only access the logit output of the classifier.
In general, the white-box setting adheres to Kerckhoffs’ principle (Kerckhoffs 1883) and
should be adapted for rigorous theoretical security guarantees. The black-box setting
on the other hand, is more akin to practice. The goal of an adversary in our setting is to
distinguish between the distributions of the original and unlearned model, given that she
has no previous outputs of samples of the deleted class.

�seen = h0(�), where h0 = �(�(D))

�¬seen = h1(�), where h1 = �¬C(D¬C)

3210	 Machine Learning (2022) 111:3203–3226

1 3

4 � Method

In this section we propose an intuitive weak unlearning operation � for classes,
exploiting the special structure of elements of H . In our experiments in section 5 we
demonstrate that � performs satisfactorily for neural networks. We reiterate that the
method introduced here is a heuristic, and not an unlearning operation in the strict
sense of definition 2.

4.1 � Definition of weak unlearning operation �
z

For simplicity of notation let C = {0} , i.e. we are going to unlearn class 0. However our
method easily generalizes to arbitrary C . Let h = W◦f ∈ H be a classifier. For j < k let

be the expected prediction for class j, and let

In practice, we may estimate aj from the training data. Next, define a map � such that for
v = (v0, v1,… , vk−1)

⊤ ∈ ℝ
k we have 𝜋(v) = (v1, v2,… , vk−1)

⊤ . For arbitrary z ∈ ℝ
(k−1) let

Let Fz = BzA
−1 and note that Fz represents the linear transformation which maps the j-th

row of A to the j-th row of Bz . We call Fz a filtration matrix. Let

Finally, we define a new classifier

Our unlearning operation is thus

We call �z a linear filtration.
Note that �z replaces W by Wz = FzW  , hence after applying �z we may delete W.

This means that, even though our unlearning operation essentially filters the outputs
of the original classifier, the linearity of the filtering operations allows us to absorb
the filter into the classifier. This is an important feature in a situation were it may no
longer be permissible to store the original classifier. Furthermore, as we consider weak
unlearning and thus black-box adversaries with access to the logit output only, in our
scenario, an adversary can solely access the final, i.e., filtered, output of the newly
derived classifier.

So how do we choose z ∈ ℝ
k−1?

aj = 𝔼 [h(�) ∣ � = j] ∈ ℝ
k

A =
(
a0 ∣ a1 ∣ ⋯ ∣ ak−1

)
∈ ℝ

k×k.

Bz =
(
z ∣ �(a1) ∣ �(a2) ∣ ⋯ ∣ �(ak−1)

)
∈ ℝ

(k−1)×k.

Wz = FzW ∈ ℝ
(k−1)×p.

hz ∶ x ↦ Wz ⋅ f (x).

�z ∶

{
H → H¬C

h ↦ hz.

3211Machine Learning (2022) 111:3203–3226	

1 3

4.1.1 � Naive unlearning

z = �(a0) . This gives Fz = (0 ∣ Ik−1) , i.e. Fz = � . Intuitively, we may think of this choice as
simply cutting the output unit associated with C out off the classifier. We call this unlearn-
ing operation the naive method and will use it as a baseline to measure the improvements
other methods provide.

4.1.2 � Normalization

This means we shift �(a0) such that its mean becomes the mean of the remaining rows of
Bz . The intuition behind this choice of z is that we would like inputs of the class in C to be
misclassified in a “natural” way. We base this method on the assumption that the values in
�(a0) encode a natural distribution for predictions of the class in C . However, we expect
the values in �(a0) to be unnaturally low (absolutely speaking), hence we shift them. We
refer to this method as normalization or normalizing filtration. It is the main method we
propose. Figure 3 agrees with the intuition described above: the bars for normalization line
up nicely with the bars of the retrained models, while the bars of randomization do not.
Proposition 1 summarizes what normalizing filtration achieves.For comparison we define
three more methods.

4.1.3 � Randomization

z ∼ N(0, Ik−1) . We sample z from a multivariate normal distribution. We refer to this
method as randomization.

4.1.4 � Zeroing

 z = 0 . We refer to this method as zeroing.

z = 𝜋(a0) −
1

k − 1

∑

1≤i<k

(a0)i +
1

(k − 1)2

∑

1≤i,j<k

(aj)i.

Fig. 3   The probability dis-
tribution predicted for class
“airplane” after its unlearn-
ing by either normalization or
randomization from models
trained on CIFAR-10, compared
to models retrained without class
“airplane”. The bars are centered
around the mean and have length
of the standard deviation, over
100 models

3212	 Machine Learning (2022) 111:3203–3226

1 3

4.1.5 � Transfer

 Instead of retraining the entire model, we only retrain the logistic regression head W with
the same settings as the original model while holding f fixed. We refer to this method as
transfer unlearning.

Proposition 1  (Normalizing filtration.) After applying normalizing filtration to delete class
0 we obtain a classifier hz with the following property:

I.e. the mean of the predictions of inputs belonging to the deleted class is equal to the mean
of predictions of the remaining classes.

Proof 
Thus we have:

	� ◻

4.2 � Computational complexity of �
z

To find �z we need to compute the following: 1) A, i.e. the expected predictions for all k
classes; 2) A−1 , the inversion of a (k × k)-Matrix; 3) z, in case z has a non-trivial definition
(e.g. computing a sample of N  ); 4) Fz , the multiplication of a ((k − 1) × k) with a (k × k)

-Matrix; 5) Wz , the multiplication of a ((k − 1) × k) with a (k × p)-Matrix.
Algorithm 1 lists this computation for the case of deleting class 0.

mean (� [hz(�)|� = 0]) = mean (mean 1≤j<k(𝜋(aj))).

� [hz(�)|� = 0] =� [Wzf (�)|� = 0]

=� [Wzf (�)|� = 0]

=� [FzWf (�)|� = 0]

=Fz � [Wf (�)|� = 0]

=Fza0 = z.

mean (� [hz(�)|� = 0]) =mean (z)

=mean (𝜋(a0)) −
1

k − 1

∑

1≤i<k

(a0)i +
1

(k − 1)2

∑

1≤i,j<k

(aj)i

=
1

(k − 1)2

∑

1≤i,j<k

(aj)i

=mean (mean 1≤j<k(𝜋(aj))).

3213Machine Learning (2022) 111:3203–3226	

1 3

In practice (1) will incur the majority of the computational costs, while (2)–(5) will
be negligible. Thus, if we estimate A by predicting � samples per class the computational
complexity of finding �z(h) is 𝓁 ⋅ k times the complexity of computing a prediction of h.
We find that �z is robust in respect to the quality of the estimation of A, hence a small
amount of sample points per class suffice, see Sect. 5.4.

Note that the costs incurred by linear filtration are virtually the same for several concur-
rent deletion requests: we just need to change Bz appropriately, e.g. if we want to delete
class 3 in addition to class 0 we need to replace �(a3) in column 3 with some z3 . The only
additional costs incurred are the computation of z3 (which for our proposed methods are
negligible).

5 � Experiments

5.1 � Evaluation method

By definition 2 the quality of a weak unlearning operation depends on the similarity of the
resulting distributions P(�seen) and P(�¬seen) . We begin by defining a divergence measure
for distributions based on the Bayes error rate. This then motivates us to empirically evalu-
ate the performance of the unlearning operations proposed in Sect. 4 by training binary
classifiers on the pre-softmax outputs of our models.

5.1.1 � Classifier advantage

 Let � be a Bernoulli random variable uniformly taking values in {0, 1} . Let

be the mixture of �seen and �¬seen . Let

be a binary classifier operating on the mixture � and define

� = �seen ⋅ (1 − �) + �¬seen ⋅ �

b ∶ dom (�) → {0, 1}

3214	 Machine Learning (2022) 111:3203–3226

1 3

We call �b the classifier advantage of b. Intuitively speaking, �b is a measure for how good
b is at telling the mixture � apart. Let

be the Bayes optimal classifier for P(�,�) Then �b∗ ∈ [0, 1] and it is a measure for the dif-
ference between P(�seen) and P(�¬seen) , based on how much better the Bayes optimal clas-
sifier b∗ performs than random guessing. A value of �b∗ close to 0 indicates that P(�seen)
and P(�¬seen) are similar.

5.1.2 � Experimental setup

 Assume that b∗ can be approximated sufficiently well by a classifier b derived via a state-
of-the-art binary classification algorithm. Then �b approximates �b∗ , hence we consider a
low value of �b to be evidence for the similarity of the distributions of �seen and �¬seen .
Note that even if we do not believe that b approximates b∗ well, we may still use �b as a
relative performance measure for different unlearning operations.

Drawing i.i.d. samples from P(�seen) and P(�¬seen) is computationally expensive as it
requires us to run the algorithms �(D) respectively �¬C(D¬C) for every sample point. In
our experiments we thus take a pragmatic approach. We train 100 models which get to see
the full training data and 100 models which get to see the training data with C removed, i.e.
models that unlearned by retraining from scratch. We then apply our unlearning operation
to each of the models that got to see the full training data. For every single model we then
calculate the predictions for the full test data by that model, without applying the softmax
activations of the output layer. We label the predictions made by models that originally got
to see the full training data with “seen” and predictions made by models which never got
to see the training data for C as “not seen”.

Finally, we train a binary classifier b that given a prediction attempts to predict its label
“seen” or “not seen”. For this purpose we use the predictions of 70 models of either cat-
egory as training data and the predictions of the remaining 30 models of either category
as test data. Figure 4 shows a schematic representation of our setup. In practice, we train a
separate binary classifier on the predictions of each class.

Note the subtle difference of our setup to the shadow model setup of (Shokri et al.
2017), where the authors ask their binary classifier (there “attack model”): “Do these out-
puts look like they come from a member of the training set?”, and hope for an accurate
answer, such that their membership inference attack succeeds. We ask our binary classifier:
“Do these outputs look like they come from a model that has seen C?”, and hope for an
inaccurate answer, as we hope that our unlearning operation prevents the attack.

5.2 � Data

5.2.1 � MNIST

 The MNIST dataset (Lecun et al. 1998) contains 70, 000 28×28 images of handwritten
digits in 10 classes, with 7, 000 images per class, split into 60, 000 training and 10, 000 test
images.

(2)�b = 2
(
� [P(� = b(�) ∣ �)] −

1

2

)
.

b∗ ∶ u ↦ argmax i<2P(� = i ∣ � = u)

3215Machine Learning (2022) 111:3203–3226	

1 3

5.2.2 � CIFAR‑10

The CIFAR-10 dataset (Krizhevsky 2009) contains 60, 000 32×32×3 images in 10
classes, with 6, 000 images per class, split into 50, 000 training and 10, 000 test images.

5.2.3 � AT&T Faces

 The AT&T Laboratories Cambridge Database of Faces (AT&T Laboratories Cam-
bridge 1994) contains 400 92×112 images of 40 subjects, with 10 images per subject.

5.3 � Network architectures

5.3.1 � MLP

For the MNIST dataset, we evaluate our unlearning method on a multilayer perceptron
(MLP), with one hidden layer of 50 units.

5.3.2 � CNN

For the CIFAR-10 dataset, we evaluate our unlearning method on convolutional neu-
ral networks (CNNs). Our networks consist of two convolutional (with 16 respec-
tively 32 3×3 filters) and two max-pooling layers, followed by a fully connected
layer with p units with rectified linear activations and a softmax output layer. We
experiment with p ∈ {64, 256, 1024} . Note that our unlearning operation works by

Fig. 4   Experimental setup: On the full training data we train 100 models by � =train(). To these mod-
els we then apply an unlearning operation � =unlearn(). We then predict() our test data for each
of these models and label these predictions “seen”. On the training data with C removed we train 100 mod-
els by �¬C =train(). We then predict() our test data for each of these models and label these pre-
dictions “not seen”. Finally, we use all labeled predictions as the training/test data of a binary classifier b,
which we employ as our “attack model”. We interpret low test accuracy of b as evidence for good perfor-
mance of a weak unlearning operation

3216	 Machine Learning (2022) 111:3203–3226

1 3

manipulating W ∈ ℝ
k×p , thus we want to investigate how the size of W affects unlearn-

ing performance.

5.3.3 � ResNet

For the AT&T faces dataset we evaluate our unlearning method on a residual neural net-
work architecture (He et al. 2016). We use a convolutional layer (with 8 5×5 filters), fol-
lowed by 5 downsampling residual blocks (with 2i+3 3×3 filters in the i-th block), followed
by global max-pooling and a softmax output layer.

5.4 � Results

We experiment with the following classification algorithms: nearest neighbors (NN), ran-
dom forests (RF), and AdaBoost (AB). For the models trained on MNIST and CIFAR-10
we unlearn the first class (of 10) in the dataset (the digit “zero” and the class “airplane”,
respectively). For the models trained on AT&T Faces we unlearn the first 4 individuals (of
40) in the dataset.

Table 1 shows classifier advantages (remember equation (2)) for the MLPs trained
on MNIST. We observe a significant decrease of advantage when unlearning by nor-
malization compared to the naive method for the unlearned class, and similar advantage
for the remaining classes. The classifier advantage for the transfer learning approach is

Table 1   Classifier advantage
for 1 unlearned and 9 remaining
classes, for MLPs trained on
MNIST

Unlearned NN RF AB

Naive 0.593 0.609 0.641
Normalization 0.327 0.362 0.438
Transfer 0.462 0.552 0.550
Remaining NN RF AB
Naive 0.048 0.090 0.098
Normalization 0.041 0.089 0.095
Transfer 0.315 0.383 0.428

Table 2   Classifier advantage
for 1 unlearned and 9 remaining
classes, for CNNs trained on
CIFAR-10, with p = 256

Unlearned NN RF AB

Naive 0.609 0.457 0.590
Normalization 0.146 0.110 0.093
Randomization 0.634 0.579 0.582
Zeroing 0.642 0.566 0.575
Transfer 0.951 0.840 0.952
Remaining NN RF AB
Naive 0.115 0.080 0.109
Normalization 0.148 0.097 0.118
Randomization 0.416 0.279 0.230
Zeroing 0.421 0.276 0.219
Transfer 0.949 0.819 0.948

3217Machine Learning (2022) 111:3203–3226	

1 3

between the values for naive unlearning and normalization for the unlearned class, and
considerably higher for the remaining class. Table 2 shows classifier advantages for the
CNNs trained on CIFAR-10 (with p = 256 ). We observe a vast decrease of advantage
when unlearning by normalization compared to the naive method for the unlearned
class, while randomization and zeroing do not provide such benefits. For the transfer
learning approach, the classifier advantages are high for both unlearning and remaining
classes. Table 3 shows classifier advantages for the residual networks trained on AT&T
Faces. We observe a slight decrease of advantage when unlearning by normalization
compared to the naive method for the unlearned classes, and similar advantage for the
remaining classes. Again, for the transfer learning approach, the classifier advantages
are high for both unlearning and remaining classes.

5.4.1 � Effect of sample size

We investigate the effect of sample size for estimating the matrix of mean predictions
A (recall Sect. 4.1). Table 4 shows the results for CNNs trained on CIFAR-10 (with
p = 256 ). Unlearning by normalization, compared to the naive method, we observe a
strong decrease of advantage for the unlearned class for a sample size of 10 per class
( 1% of the test data), and for a sample size of 100 per class ( 10% of the test data) we
observe performance comparable to the estimation based on the full test data.

Table 3   Classifier advantage for
4 unlearned and 36 remaining
classes, for residual networks
trained on AT&T faces

Unlearned NN RF AB

Naive 0.467 0.573 0.574
Normalization 0.381 0.454 0.462
Transfer 0.985 0.977 0.978
Remaining NN RF AB
Naive 0.149 0.266 0.245
Normalization 0.152 0.263 0.246
Transfer 0.998 0.996 0.996

Table 4   Classifier advantage for
CNNs trained on CIFAR-10, for
different sample size s per class,
with p = 256

Unlearned s NN RF AB

Naive – 0.609 0.457 0.590
Normalization 10 0.193 0.114 0.122
Normalization 100 0.156 0.095 0.111
Normalization 1000 0.146 0.110 0.093
Remaining s NN RF AB
Naive – 0.115 0.080 0.109
Normalization 10 0.205 0.142 0.171
Normalization 100 0.169 0.108 0.136
Normalization 1000 0.148 0.097 0.118

3218	 Machine Learning (2022) 111:3203–3226

1 3

5.4.2 � Effect of p

For the CNNs trained on CIFAR-10 we investigate the effect of the number p of units
in the fully connected layer. Table 5 shows that unlearning by normalization signifi-
cantly decreases classifier advantage for all tested values of p on the unlearned class.
We observe a slight increase of advantage for the remaining classes, that appears to get
slightly worse with p increasing.

5.4.3 � Effect on classification accuracy

While implicit in definition 2, an important consideration for the design of an unlearn-
ing operation is that we do not want to decrease the performance of a classifier on the
remaining classes. Table 6 reports the test images for which the most likely label pre-
dicted was changed by one of our unlearning methods, compared to the naive method.
Normalization did not change any labels (and thus in particular non of the correct ones).

Table 5   Classifier advantage, for
CNNs trained on CIFAR-10, for
different numbers p of units in
the fully connected layer

Unlearned p NN RF AB

Naive 64 0.290 0.321 0.380
Normalization 64 0.086 0.106 0.119
Naive 256 0.609 0.457 0.590
Normalization 256 0.146 0.110 0.093
Naive 1024 0.627 0.485 0.603
Normalization 1024 0.174 0.138 0.138
Remaining p NN RF AB
Naive 64 0.040 0.043 0.044
Normalization 64 0.044 0.040 0.045
Naive 256 0.115 0.080 0.109
Normalization 256 0.148 0.097 0.118
Naive 1024 0.129 0.090 0.115
Normalization 1024 0.174 0.104 0.129

Table 6   The amount of labels changed in percent, when compared to the naive method, for 100 models
trained on CIFAR-10, and p = 256 . The “all”-column reports the value for predictions of the entire test set,
the “unl.”-column for predictions of images of the unlearned class, and the “cor.”-column for predictions of
images of the remaining classes that are correctly predicted by the naive method. The “acc.”-column shows
the mean classification accuracy

Deletion method All Unl. Cor. Acc

Naive – – – 69.2
Normalization 0.0 0.0 0.0 69.2
Randomization 20.1 48.8 11.8 64.8
Zeroing 18.3 45.4 10.3 65.7

3219Machine Learning (2022) 111:3203–3226	

1 3

5.4.4 � Summary of experimental results

Normalization (1) decreased classifier advantage on the unlearned classes in all three
experiments; (2) showed robustness with regards to sample size for parameter estimation;
(3) performed well for different dimensions of the feature space, and (4) did not negatively
affect classification accuracy. The transfer learning approach performed poorly for all three
datasets.

5.5 � Model inversion

Figures 1 (on page 2) and 5 show the results of a “model inversion attack”, i.e. gradient
ascend on the input space for a model trained on AT&T Database of Faces. We use a neu-
ral network consisting of two fully connected layers with 1000 and 300 units respectively
with sigmoid activations and a softmax output layer.

Visually, naive unlearning barely affects the quality of the reconstruction for any of
the classes (in particular not the unlearned class). On the other hand the normalization
method greatly disturbs the reconstruction of the unlearned class, while barely affecting

Table 7   KS � for � consisting
of 1000 unit vectors pointing
in uniform random directions.
(Lower values are better.)

Unlearned CIFAR-10 MNIST

Naive 0.115 0.184
Normalization 0.038 0.1
Baseline 0.015 0.017
Remaining CIFAR-10 MNIST
Naive 0.037 0.034
Normalization 0.038 0.034
Baseline 0.013 0.023

Fig. 5   Model inversion for a
toy model trained on the AT&T
Faces dataset with 4 classes.
The top row shows one training
image of each class, the second
row reconstructions of classes
by model inversion, the third
row reconstructions after naive
unlearning of the class in the
first column, the bottom row
reconstructions after unlearning
the class in the first column by
normalizing filtration. See Fig. 6
for the remaining classes

3220	 Machine Learning (2022) 111:3203–3226

1 3

the remaining classes. In accordance with our discussion of model inversion in Sect. 2, we
thus interpret Fig. 1 as visual evidence suggesting a desirable effect of our normalization
method on the correlation between input and output space represented by our model. We
leave a more detailed investigation of this phenomenon for future work.

5.6 � Random direction Kolmogorov–Smirnov statistics

Given 𝛷 ⊆ ℝ
k−|C| , and having drawn samples S1 , S2 from P(�seen) and P(�¬seen) respec-

tively in the fashion described in Sect. 5.1, we compute the statistic

Here KStwo sample denotes the two-sample Kolmogorov-Smirnov statistic and � ⋅ S is short-
hand for {𝜙 ⋅ s ∶ s ∈ S} ⊆ ℝ.

Table 7 reports the KS � statistic for � consisting of 1000 unit vectors pointing in uni-
form random directions. We compare naive unlearning to normalizing filtration for the
CIFAR-10 experiment employing CNNs ( p = 256 ), and the MNIST experiment employ-
ing MLPs. As noted in Sect. 5.1 the samples we draw are not i.i.d., hence we also report
a baseline KS � statistic computed from two independent batches of 100 models trained
without the class we unlearn.

The results paint a picture similar to Sect. 5.4. In both experiments normalizing fil-
tration decreases KS � for the unlearned class, with somewhat better performance in the
CIFAR-10 experiment, while the KS � remains unchanged for the remaining classes.

6 � Discussion

In Sect. 3 we made a didactic choice to introduce the special hypothesis class H (which
permitted absorption of the filtration operation) before defining unlearning. It should how-
ever be clear how definitions 1 and 2 are applicable to any class of classifiers, and in the
somewhat more common setting of deletion requests of single data points. We would like
to emphasize our belief that in the light of the non-deterministic nature of many learning
algorithms a probabilistic definition of unlearning, such as chosen in (Ginart et al. 2019)
(there “deletion”) and our work, is necessary.

For contrast let us consider the definition of unlearning in (Bourtoule et al. 2019) that
asks to find a model that “could have been obtained” without looking at the deleted train-
ing data. Since all models on discrete digital systems necessarily have a finite parameter
space we very much could obtain any model without looking at any data by guessing its
parameters. What happened here?

Guessing a model’s parameters can be considered drawing a sample from a uniform
distribution over the parameter space. On the other hand a probabilistic definition such
as 1 requires the distribution over the parameter space to be the same as if we had run the
original learning algorithm without using the deleted data, which for reasonable learning
algorithms is certainly not uniform. If we would like to stick to an informal definition we
should therefore say that a model “could have been obtained, with reasonable likelihood”.

We further conclude that it is an important consideration whether a definition of
unlearning makes sense when not read in a benevolent way (e.g. by a party whose interest

(3)KS �(S1, S2) =
1

|�|
∑

�∈�

KS two sample(� ⋅ S1,� ⋅ S2).

3221Machine Learning (2022) 111:3203–3226	

1 3

in unlearning stems from of legal obligation). In fact our definition of weak unlearning 2,
i.e. unlearning in a black-box sense, suffers from a similar issue. A malicious way to
define a weak unlearning operations � is the following: for any classifier h, simply train
a new classifier h′ without using the deleted data, then define �(h) = h�� = (h, h�) , where
h��(x) = h�(x) . The outputs of �(h) look exactly like those of h′ , thus � is indeed an
unlearning operation in the black-box sense, however we never actually deleted h. Let us
thus emphasize that the weak definition of unlearning is only applicable when acting in
good faith.

7 � Conclusion

We considered the problem of unlearning in a class-wide setting, for classifiers predict-
ing logits. We developed normalizing filtration as an unlearning method, with compel-
ling visual results (figure 6). These are backed up by good experimental results with
regards to to our proposed definition of weak unlearning and our metrics of classifier

Fig. 6   Model inversion for a toy model trained on the AT&T Faces dataset with 4 classes. On the left side
we show results for naive unlearning, on the right side for normalizing filtration. On either side: The top
row shows one training image of each class, the second row reconstructions of classes by model inversion,
the (i + 2)-th row shows the reconstructions after unlearning the class in the i-th column by the respective
unlearning operation

3222	 Machine Learning (2022) 111:3203–3226

1 3

advantage (2) and the KS � statistic (3). We emphasize once again the black-box nature
of weak unlearning, entailing the black-box nature of our proposed unlearning opera-
tion. While linear filtration can be absorbed into the final layer of a classifier (for the
hypothesis class considered), our approach remains somewhat limited with regards to
its shallowness. In future work we hope to find methods that allow for deeper absorp-
tion, thus hopefully leading to stronger privacy guarantees. On the other hand our
method’s intuitive simplicity nicely complements concurrent approaches such as (Guo
et al. 2019; Golatkar et al. 2020a, b). Another promising direction may be to enhance
our method by some form of shrinkage of the logits, in case the unlearned class con-
stitutes a large part of the misclassifications of one of the remaining classes and plan
to explore the connection to the field of private prediction van der Maaten and Han-
nun (2020). Finally it should be noted that, while the “right to be forgotten” inspired
our research, whether our approach is adequate in this context is for legal scholars to
decide.

Appendix

A more complete versions of tables from section 5.4

MNIST – MLP experiment

See Tables 8, 9.

Table 8   Accuracy (in percent)
and cross-entropy loss, mean
± standard deviation, for 100
MLPs trained on MNIST. p
is the number of units in the
fully connected layer, i.e. the
dimension of the feature space. s
is the sample size per class, used
to estimate the mean predictions

Unlearned NN RF AB

Naive 0.593 0.609 0.641
Normalization 0.327 0.362 0.438
Randomization 0.910 0.869 0.902
Zeroing 0.919 0.886 0.909
Remaining NN RF AB
Naive 0.048 0.090 0.098
Normalization 0.041 0.089 0.095
Randomization 0.116 0.132 0.133
Zeroing 0.119 0.129 0.132

Table 9   Classifier advantage
for 1 unlearned and 9 remaining
classes, for MLPs trained on
MNIST. p is the number of units
in the fully connected layer, i.e.
the dimension of the feature
space. s is the sample size per
class, used to estimate the mean
predictions

Accuracy Loss

Before unlearning 97.1 ± 0.19 0.10 ± 0.01
Baseline model 97.1 ± 0.18 0.09 ± 0.01
Naive 97.1 ± 0.20 0.10 ± 0.01
Normalization 97.1 ± 0.20 0.10 ± 0.01
Randomization 96.7 ± 0.33 0.11 ± 0.01
Zeroing 96.7 ± 0.30 0.11 ± 0.01

3223Machine Learning (2022) 111:3203–3226	

1 3

CIFAR10 – CNN experiment

Tables 10, 11.

Table 10   Classifier advantage
for 1 unlearned and 9 remaining
classes, for CNNs trained on
CIFAR-10. p is the number of
units in the fully connected layer,
i.e. the dimension of the feature
space. s is the sample size per
class, used to estimate the mean
predictions

Unlearned p s NN RF AB

Naive 64 – 0.290 0.331 0.380
Normalization 64 10 0.113 0.135 0.137
Normalization 64 100 0.089 0.105 0.129
Normalization 64 – 0.086 0.106 0.119
Randomization 64 – 0.547 0.487 0.528
Zeroing 64 – 0.599 0.534 0.560
Naive 256 – 0.609 0.457 0.590
Normalization 256 10 0.193 0.114 0.122
Normalization 256 100 0.156 0.095 0.111
Normalization 256 – 0.146 0.110 0.093
Randomization 256 – 0.634 0.579 0.582
Zeroing 256 – 0.642 0.566 0.575
Naive 1024 – 0.627 0.485 0.603
Normalization 1024 10 0.230 0.164 0.179
Normalization 1024 100 0.216 0.157 0.172
Normalization 1024 – 0.174 0.138 0.138
Randomization 1024 – 0.741 0.637 0.682
Zeroing 1024 – 0.746 0.642 0.680
Remaining
Naive 64 – 0.040 0.043 0.044
Normalization 64 10 0.072 0.075 0.080
Normalization 64 100 0.047 0.044 0.047
Normalization 64 – 0.044 0.040 0.045
Randomization 64 – 0.240 0.203 0.174
Zeroing 64 – 0.246 0.204 0.163
Naive 256 – 0.115 0.080 0.109
Normalization 256 10 0.205 0.142 0.171
Normalization 256 100 0.169 0.108 0.136
Normalization 256 – 0.148 0.097 0.118
Randomization 256 – 0.416 0.279 0.230
Zeroing 256 – 0.421 0.276 0.219
Naive 1024 – 0.129 0.090 0.115
Normalization 1024 10 0.242 0.149 0.182
Normalization 1024 100 0.217 0.128 0.146
Normalization 1024 – 0.174 0.097 0.118
Randomization 1024 – 0.506 0.309 0.249
Zeroing 1024 – 0.508 0.310 0.251

3224	 Machine Learning (2022) 111:3203–3226

1 3

Acknowledgments  The authors thank Valentin Muhr for early discussion on Machine Unlearning.

Author contributions  TB was the lead author of the paper, developed the method for machine unlearning
and performed the experiments. PS supported the evaluation, supervised the method development, contrib-
uted to paper writing and performed the preliminary research* on the investigated topic together with MZ.
MZ raised the funding for the research, initiated the idea for the paper, supervised the method development
and evaluation and contributed to the writing of the paper.

Funding  Open access funding provided by MCI Management Center Innsbruck – Internationale Hochs-
chule GmbH. The first and third author were funded by the Austrian Research Promotion Agency (FFG)
COIN project 866880 “Big Data Analytics”. The second author was supported by the Austrian Science
Fund (FWF) under Grant No. I 4057-N31 (“Game Over Eva(sion)”).

 Data availability  We only use data that is openly available.

Code availability  We will make the code available at Github upon acceptance of the manuscript.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Ethics approval  Not Applicable.

Table 11   Accuracy (in percent)
and cross-entropy loss, mean
± standard deviation, for 100
CNNs trained on CIFAR10. p
is the number of units in the
fully connected layer, i.e. the
dimension of the feature space. s
is the sample size per class, used
to estimate the mean predictions

p s Accuracy Loss

Before unlearning 64 – 65.1 ± 1.01 1.01 ± 0.03
Retraining 64 – 66.0 ± 1.06 0.96 ± 0.03
Naive 64 – 66.4 ± 1.04 0.95 ± 0.03
Normalization 64 10 66.4 ± 1.04 0.95 ± 0.03
Normalization 64 100 66.4 ± 1.04 0.95 ± 0.03
Normalization 64 – 66.4 ± 1.04 0.95 ± 0.03
Randomization 64 – 61.1 ± 2.08 1.17 ± 0.10
Zeroing 64 – 62.3 ± 1.76 1.12 ± 0.09
Before unlearning 256 – 68.1 ± 0.85 0.93 ± 0.02
Retraining 256 – 69.2 ± 0.80 0.89 ± 0.02
Naive 256 – 69.2 ± 0.83 0.88 ± 0.02
Normalization 256 10 69.2 ± 0.83 0.88 ± 0.02
Normalization 256 100 69.2 ± 0.83 0.88 ± 0.02
Normalization 256 – 69.2 ± 0.83 0.88 ± 0.02
Randomization 256 – 64.9 ± 1.76 1.07 ± 0.08
Zeroing 256 – 65.7 ± 1.40 1.03 ± 0.06
Before unlearning 1024 – 69.7 ± 0.81 0.93 ± 0.03
Retraining 1024 – 70.5 ± 0.82 0.88 ± 0.03
Naive 1024 – 70.7 ± 0.82 0.88 ± 0.03
Normalization 1024 10 70.7 ± 0.82 0.88 ± 0.03
Normalization 1024 100 70.7 ± 0.82 0.88 ± 0.03
Normalization 1024 – 70.7 ± 0.82 0.88 ± 0.03
Randomization 1024 – 67.1 ± 1.55 1.06 ± 0.08
Zeroing 1024 – 67.6 ± 1.16 1.03 ± 0.05

3225Machine Learning (2022) 111:3203–3226	

1 3

Consent to participate  Not Applicable.

Consent for publication  Not Applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Abadi, M., Chu, A., Goodfellow, I., McMahan, B., Mironov, I., Talwar, K., & Zhang, L. (2016). Deep
learning with differential privacy. In: 23rd ACM Conference on Computer and Communications
Security (ACM CCS)

Achille, A., Paolini, G., & Soatto, S. (2019). Where is the information in a deep neural network? arXiv
190512213

AT&T Laboratories Cambridge (1994) The database of faces
Biggio, B., & Roli, F. (2018). Wild patterns: Ten years after the rise of adversarial machine learning.

Pattern Recognition, 84, 317–331.
Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C., Jia, H., Travers, A., Zhang, B., Lie, D., &

Papernot, N .(2019). Machine unlearning. arXiv preprint arXiv:​1912.​03817
Cao, Y., & Yang, J . (2015). Towards making systems forget with machine unlearning. In: 2015 IEEE

Symposium on Security and Privacy
Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., & Song, D. (2019). The secret sharer: Evaluating and testing

unintended memorization in neural networks. In: 28th USENIX Security Symposium (USENIX
Security 19)

Council of European Union (2012) Regulation (eu) 2012/0011. https://​eur-​lex.​europa.​eu/​legal-​conte​nt/​
EN/​TXT/?​uri=​CELEX:​52012​PC0011, accessed: 2022/04/28 09:23:04

Council of European Union (2016) Regulation (eu) 2016/679. https://​eur-​lex.​europa.​eu/​eli/​reg/​2016/​679/​
oj, accessed: 2022/04/28 09:23:04

Dwork, C., & Roth, A .(2014). The algorithmic foundations of differential privacy. Foundations Trends
in Theoretical Computer Science, 4(3–4):211-407

Dwork, C., McSherry, F., Nissim, K., & Smith, A .(2006). Calibrating noise to sensitivity in private data
analysis. In: Halevi S, Rabin T (eds) Theory of Cryptography

Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., & Ristenpart, T .(2014) . Privacy in pharmacogenet-
ics: An end-to-end case study of personalized warfarin dosing. In: Proceedings of the 23rd USE-
NIX Conference on Security Symposium

Fredrikson, M., Jha, S., & Ristenpart, T. (2015) . Model inversion attacks that exploit confidence infor-
mation and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security

Ginart, A., Guan, M., Valiant, G., & Zou, JY .(2019) . Making AI forget you: Data deletion in machine
learning. In: Advances in Neural Information Processing Systems, pp 3518–3531

Golatkar, A., Achille, A., & Soatto, S .(2020a) . Eternal sunshine of the spotless net: Selective forgetting
in deep networks. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Golatkar, A., Achille, A., & Soatto, S .(2020b) . Forgetting outside the box: Scrubbing deep networks of
information accessible from input-output observations. arXiv 200302960

Guo, C., Goldstein, T., Hannun, A., & van der Maaten, L .(2019) . Certified data removal from machine
learning models. arXiv 191103030

Hayes, J., Melis, L., Danezis, G., & De Cristofaro, E. (2019). LOGAN: Membership inference attacks
against generative models. PoPETs

He, K., Zhang, X., Ren, S., & Sun, J .(2016). Deep residual learning for image recognition. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1912.03817
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012PC0011
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012PC0011
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj

3226	 Machine Learning (2022) 111:3203–3226

1 3

Jacot, A., Gabriel, F., & Hongler, C . (2018) . Neural tangent kernel: Convergence and generalization in
neural networks. Advances in Neural Information Processing Systems

Kearns, M. (1998). Efficient noise-tolerant learning from statistical queries. Journal of the ACM, 45(6),
983–1006.

Kerckhoffs, A. (1883). La cryptographie militaire. Journal des sciences militaires, IX(1), 5–38.
Koh, PW., & Liang, P . (2017) .Understanding black-box predictions via influence functions. Proceed-

ings of the 34th International Conference on Machine Learning
Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Tech. rep.: University of

Toronto.
Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document

recognition. Proceedings of the IEEE
Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Sohl-Dickstein, J., & Pennington, J .(2019) . Wide neural

networks of any depth evolve as linear models under gradient descent. Advances in Neural Informa-
tion Processing Systems

McSherry, F. (2016). Statistical inference considered harmful. https://​github.​com/​frank​mcshe​rry/​blog/​
blob/​master/​posts/​2016-​06-​14.​md, accessed: 2022/04/28 09:23:04

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, ZB., & Swami, A. (2016). The limitations of
deep learning in adversarial settings. In: 2016 IEEE European symposium on security and privacy
(EuroS&P), IEEE, pp 372–387

Sablayrolles, A., Douze, M., Schmid, C., Ollivier, Y., & Jegou, H. (2019). White-box vs black-box: Bayes
optimal strategies for membership inference. In: International Conference on Machine Learning

Shokri, R., Stronati, M., Song, C., & Shmatikov, V. (2017). Membership inference attacks against machine
learning models. In: 2017 IEEE Symposium on Security and Privacy (SP)

Sommer, DM., Song, L., Wagh, S., & Mittal, P. (2020). Towards probabilistic verification of machine
unlearning. arXiv 200304247

State of California (2018) California Consumer Privacy Act. https://​legin​fo.​legis​lature.​ca.​gov/​faces/​billT​
extCl​ient.​xhtml?​bill_​ id=​20172​0180A​B375, accessed: 2022/04/28 09:23:04

van der Maaten, L., & Hannun, A.Y. (2020). The trade-offs of private prediction. CoRR abs/2007.05089,
https://​arxiv.​org/​abs/​2007.​05089, 2007.05089

Veale, M., Binns, R., & Edwards, L. (2018). Algorithms that remember: Model inversion attacks and data
protection law. Mathematical, Physical and Engineering Sciences: Philosophical Transactions of the
Royal Society A.

Villaronga, EF., Kieseberg, P., & Li, TJ .(2018) . Humans forget, machines remember: Artificial intelligence
and the right to be forgotten. Computer Law & Security Review

Yeom, S., Giacomelli, I., Fredrikson, M., & Jha, S .(2018) . Privacy risk in machine learning: Analyzing the
connection to overfitting. 2018 IEEE 31st Computer Security Foundations Symposium (CSF)

Zhang, Y., Jia, R., Pei, H., Wang, W., Li, B., & Song, D .(2020) . The secret revealer: generative model-
inversion attacks against deep neural networks. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp 253–261

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://github.com/frankmcsherry/blog/blob/master/posts/2016-06-14.md
https://github.com/frankmcsherry/blog/blob/master/posts/2016-06-14.md
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_%20id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_%20id=201720180AB375
https://arxiv.org/abs/2007.05089

	Machine unlearning: linear filtration for logit-based classifiers
	Abstract
	1 Introduction
	2 Related work
	2.1 Machine unlearning
	2.2 Membership inference
	2.3 Model inversion
	2.4 Differential privacy

	3 Problem definition
	3.1 Notation
	3.2 Classification
	3.3 Learning algorithms
	3.4 Unlearning of classes
	3.5 Weak unlearning of classes
	3.6 Discussion
	3.6.1 Threat model

	4 Method
	4.1 Definition of weak unlearning operation
	4.1.1 Naive unlearning
	4.1.2 Normalization
	4.1.3 Randomization
	4.1.4 Zeroing
	4.1.5 Transfer

	4.2 Computational complexity of

	5 Experiments
	5.1 Evaluation method
	5.1.1 Classifier advantage
	5.1.2 Experimental setup

	5.2 Data
	5.2.1 MNIST
	5.2.2 CIFAR-10
	5.2.3 AT&T Faces

	5.3 Network architectures
	5.3.1 MLP
	5.3.2 CNN
	5.3.3 ResNet

	5.4 Results
	5.4.1 Effect of sample size
	5.4.2 Effect of p
	5.4.3 Effect on classification accuracy
	5.4.4 Summary of experimental results

	5.5 Model inversion
	5.6 Random direction Kolmogorov–Smirnov statistics

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

