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ABSTRACT
The plastid genome of the deep-shade plant Selaginella erythropus, which has highly unusual chloro-
plasts, was characterized using Illumina pair-end sequencing. This plastome is 140,151 bp in length
with a large single-copy region (LSC) of 56,133bp, a small single-copy region (SSC) of 61,268bp, and
two direct repeats (DRs) of 11,375bp. The overall GC content is 50.68%, while those of LSC, SSC, and
DR are 48.96%, 50.3%, and 55.96%, respectively. The plastome contains 102 genes, including 76 pro-
tein-coding, 15 tRNA (12 tRNA species), and 8 rRNA genes (4 rRNA species). The phylogenetic analysis
shows that S. erythropus is closely related to S. moellendorffii and S. doederleinii. This result is consistent
with the previous phylogenetic relationship inferred from multiple plastid and nuclear loci. However,
only S. erythropus has the two-zoned giant chloroplast, the bizonoplast. The plastome provides an
excellent reference for understanding the unique chloroplast differentiation in Selaginellaceae.
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In most land plants, chloroplasts are located in the mesophyll
cells, with 50–250 chloroplasts per cell (Pyke 2009).
Selaginella is unusual in having several variations on this typ-
ical chloroplast structure (Liu et al. 2020) including giant
chloroplasts of several different forms. The bizonoplast, found
in every leaf dorsal epidermal cell of some Selaginella species,
is a cup-shaped giant chloroplast with dimorphic ultrastruc-
ture (Sheue et al. 2007). The upper zone is characterized by
groups of 2–4 thylakoid membranes parallel to each other,
while the lower zone consists of grana and stroma thylakoid
membranes, similar to normal chloroplasts.

The bizonoplast, first reported from S. erythropus (Mart.)
Spring (Sheue et al. 2007), and only reported in Selaginella,
originates from a proplastid, developing its zoned structure
after exposure to low light (Sheue et al. 2015). Selaginella,
with about 750 species occurring globally in various habitats
(Jermy 1990), is an ideal model genus to understand the
diversity of chloroplasts and their adaptive significance. Given
the unique structure of the bizonoplast and its environmental
correlates, the chloroplast genome of a bizonoplast-contain-
ing species is of special interest. Here we assembled and
annotated the plastid genome of S. erythropus from a speci-
men growing in the nursery at National Chung Hsing
University, Taiwan (24� 070N, 120� 400E) to contribute to the
bioinformatics and genome structure of the bizonoplast.

The total genomic DNA was extracted from fresh shoots
of S. erythropus (voucher # Liu JW-05, in the herbarium of
National Chung Hsing University, TCB, Taiwan; Chiou-Rong
Sheue, crsheue@nchu.edu.tw) using the CTAB method (Doyle
and Doyle 1990). The genomic DNA was fragmented and
libraries were constructed with the insertion sizes 180 bp,
350 bp, 500 bp, and 700bp. These libraries were paired-end
sequenced on an Illumina HiSeq platform (Illumina Inc., San
Diego, CA). The de novo assembly was performed using the
GENEIOUS Prime Velvet plugin (Zerbino and Birney 2008),
and subsequently, the plastid contigs were arranged based
on the plastome of S. moellendorffii (HM173080) (Banks et al.
2011). PCR and Sanger sequencing were conducted to con-
firm the sequences from the SC-DR junctions and highly vari-
able regions. The S. erythropus plastome was annotated using
the software PGA (Qu et al. 2019) and GENEIOUS Prime
(Kearse et al. 2012) by comparing it with the plastomes of S.
moellendorffii (HM173080) (Banks et al. 2011) and S. doederlei-
nii (MH598532) (Zhang et al. 2019).

Typically, plastomes contain two inverted repeats (IRs)
separated by a large single-copy region (LSC) and a small sin-
gle-copy region (SSC) (Mower and Vickrey 2018). However,
the S. erythropus plastome features a set of direct repeats
(DRs), similar to those from some other Selaginella species
(Mower et al. 2019; Zhang et al. 2019) (Figure 1). The plas-
tome is 140,151 bp in length and has two DRs of 11,375 bp
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(8.12%), which are separated by an LSC of 56,133 bp (40.05%)
and an SSC of 61,268 bp (43.72%). The DR in Selaginella spe-
cies is presumably caused by a large inversion containing a
former IR copy (i.e. IRb). This inversion also relocated a partial
LSC region into the former SSC region, thereby resulting in
the relatively short LSC as compared to the SSC in other
Selaginella (Shim et al. 2021).

The S. erythropus plastome GC content is 50.68%, with the
LSC, SSC, and DR regions GC contents being 48.96%, 50.3%,
and 55.96%, respectively. The plastome GC content of S.
erythropus is on the low end of the range (50.75%�56.49%)
from 16 other Selaginella species (Shim et al. 2021) but is
much higher than the average for 3,507 plastome sequences
from algae to seed plants (37.38 ± 2.26%, Kwon et al. 2020).
The S. erythropus plastome comprises 102 genes, including
76 protein-coding (76 PCG species), 8 ribosomal RNA (4 rRNA
species) and 15 transfer RNA genes (12 tRNA species). Nine
PCG genes (atpF, clpP, ndhA, ndhB, petB, petD, rpl2, rpl16 and
rpoC1) harbor a single intron, and one (ycf3) contains two
introns. In addition, accD, infA and rpl20 are likely pseudo-
genes because of incomplete open reading frames.

To construct a phylogenetic tree, 51 shared protein-coding
genes of 20 plastomes were extracted and aligned individu-
ally in MAFFT (Katoh and Standley 2013) implemented in
GENEIOUS Prime (Kearse et al. 2012). The maximum likeli-
hood (ML) tree was determined using GARLI v.2.0 (Zwickl
2006), with 1000 bootstrap replicates and the best model
GTRþGþ I model was selected based on Akaike Information
Criterion (AIC) in jModeltest (Posada 2008). In the ML tree, S.

erythropus is most closely related to S. moellendorffii (Figure
1). This result is consistent with the previous phylogenetic
relationship inferred from three gene regions (rbcL, pgiC,
SQD1) and morphological features (Weststrand and Korall
2016). The plastome of S. erythropus provides an excellent
reference for elucidating the evolution and functional diver-
gence of the giant chloroplasts and bizonoplasts in
Selaginellaceae.
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Figure 1. The maximum likelihood (ML) tree of 20 sampled Selaginella species. Bootstrap proportion (BP) values are indicated along branches. The bold taxon is
S. erythropus, which is newly sequenced in this study. The scale bar denotes 0.05 substitutions per nucleotide. DR: direct repeats; IR: inverted repeats.
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Bio-Sample numbers are PRJNA752173, SUB10127488, and
SAMN20585740, respectively.
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