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Childhood obesity is one of the major health problems in western countries. The

excessive accumulation of adipose tissue causes inflammation, oxidative stress,

apoptosis, and mitochondrial dysfunctions. Thus, obesity leads to the development of

severe co-morbidities including type 2 diabetes mellitus, liver steatosis, cardiovascular,

and neurodegenerative diseases which can develop early in life. Furthermore, obese

children have low bone mineral density and a greater risk of osteoporosis and

fractures. The knowledge about the interplay bone tissue and between adipose is still

growing, although recent findings suggest that adipose tissue activity on bone can

be fat-depot specific. Obesity is associated to a low-grade inflammation that alters

the expression of adiponectin, leptin, IL-6, Monocyte Chemotactic Protein 1 (MCP1),

TRAIL, LIGHT/TNFSF14, OPG, and TNFα. These molecules can affect bone metabolism,

thus resulting in osteoporosis. The purpose of this review was to deepen the cellular

mechanisms by which obesity may facilitate osteoporosis and bone fractures.
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INTRODUCTION

Childhood obesity represents an international public health problem with epidemic proportions
(1). The World Obesity Federation showed a strong increase of childhood overweight and obesity
in several low-, middle-, and high-income regions over the past three decades (2). In the USA
∼17% of children and adolescents are obese, representing a risk for health status in adulthood and
life expectancy (3, 4).

The excess of adipose tissue causes inflammation, oxidative stress, apoptosis and mitochondrial
dysfunctions (5, 6). Therefore, obesity can lead to the onset of type-2-diabetes, liver steatosis,
cardiovascular and neurodegenerative diseases which can develop early in life (7–12). Different
studies have shown a susceptibility to skeletal fractures in obese children (13–23), suggesting that
adipose tissue affects bone metabolism (24, 25). Therefore, the excess of fat could reduce the
peak of bone mass reached during childhood and adolescence, with a potential osteoporotic risk
in adulthood (1, 26). The bone fragility in obese population is due to an increase in fall injury
risk, an unbalanced diet and a low physical activity. Despite the knowledge about the interplay
between bone and adipose tissue is still growing, recent findings suggest that the influence of
adipose tissue on bone can be fat-depot specific. In fact, the visceral fat storage may determine
negative consequences on bone, while normal fat depots seem to affect positively the skeleton (27).
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Furthermore, obesity can act in a different way on specific
skeletal compartments (i.e., trabecular vs. cortical) and sites (i.e.,
weight-bearing vs. non-weight-bearing) (28). The aim of our
review was to overview the cellular mechanisms by which obesity
regulates bone remodeling leading to osteoporosis and fracture
risk (Figure 1).

MESENCHYMAL STEM CELL FATE

The link between obesity and osteoporosis can be explained
by the common stem cell precursor shared by osteoblasts and
adipocytes (29). Two groups of crucial factors, CEBP-α, -β, - δ,
and PPAR-α, -γ2 and -δ, need to be activated to attain a complete
adipocytic differentiation of a mesenchymal stem cell. Otherwise,
activation of other crucial factors (i.e., RUNX2, BMP2, TGF-
β, and Osterix) are required to shift the differentiation of
a mesenchymal cell into osteoblast (29). The differentiation
“switches” characterizing stem cell fate are strictly linked to
the stimuli present in the microenvironment. Furthermore,
adipocytes cultured from marrow display the capability to revert
to a proliferative status and thus differentiate in osteoblasts (30).

OBESITY AND BONE TURNOVER

The link between obesity and bone turnover has been evaluated
both in humans and murine models, and the excess of fat
mass is associated with reduced bone mineral density (BMD)
(31–34). Obesity influences bone metabolism by different
mechanisms. It stimulates pre-osteoblasts to differentiate toward
adipocytes rather than osteoblasts, thus filling the cavities of
bone marrow with adipocytes rather than trabecular bone
with consequent bone fragility increase (35). Consistently,
in obese adolescents and young adults, total and trabecular
BMD and trabecular number have been inversely related with
marrow adipose tissue (MAT) at the distal tibia, but not
with lumbar spine MAT (36). Obesity can also enhance bone
resorption by the increase of pro-inflammatory cytokine levels
[Tumor Necrosis factor alpha (TNFα) and interleukin-6 (IL-6)],
which promote osteoclast formation and activity by affecting
RANKL/RANK/OPG pathway (37, 38). Bone marrow fat also
may regulate osteoclastogenesis by producing RANKL (39).
Obese subjects show low serum levels of adiponectin (40), an
adipokine that inhibits osteoclast formation and activity (41).
High leptin levels associated with reduced adiponectin may
stimulate both macrophage accumulation into the adipose tissue
(42) and adhesion of macrophages to endothelial cells (43).
Several studies have demonstrated the impact of obesity on
bone remodeling. Weiler et al. found that body fat percentage
is correlated with suboptimal achievement of peak of bone mass
in a cross-sectional study involving 60 girls (10–19 years old)
(44). Goulding et al. showed that severe obesity is associated
with higher risk of distal forearm fractures in boys aged 3–19
years (16).

Furthermore, Hsu et al. reported an increased risk for
osteoporosis and non-spine fractures related with high
percentage of body fat in a cross-sectional study involving 7,137

men, 2,248 postmenopausal women and 4,585 premenopausal
women aged 25–64 years old (33). In leptin-deficient (ob/ob)
obese mice, a reduction of femoral BMD, trabecular bone
volume, and cortical thickness has been observed (45). Using
a mouse model of diet-induced obesity, it has been found that
mice fed with a high fat diet (HFD) had cancellous bone loss
in the proximal tibia, together with a significant body weight
increase (46). In the models, an increase of leptin and TRAP
serum levels, a high RANKL/OPG ratio in cultured osteoblasts,
and in the number of osteoclasts was observed (46–48). HFD
determines an augment of bone marrow adiposity together with
a reduction of BMD in several bone segments, and an increase
of IL-6, TNFα, peroxisome proliferator-activated receptor γ

(PPARγ) (49). Additionally, HFD decreases intestinal absorption
of calcium, through the production of unabsorbable calcium
soaps by free fatty acids (50–52).

HIGH LEVELS OF PRO-INFLAMMATORY
CYTOKINES IN OBESITY

Obesity is characterized by a low-grade chronic inflammation.
The discovery of high TNFα levels in the adipose tissue
of obese mice offered the initial demonstration of a cross-
talk between obesity and inflammation (27). Furthermore, the
detection of leptin, hormone produced by adipocytes, further
sustained the idea that adipose tissue is not only an energy
storage but it is also a dynamic endocrine organ (53, 54). In
fact, the chronic inflammatory status associated to obesity is
characterized by abnormal cytokine production, and activation
of signaling pathways of inflammation, with consequent
development of obesity-related diseases (55). Adipose tissue is
rich of macrophages, key source of inflammatory cytokines (56,
57). Obese subjects produce higher amounts of TNFα and pro-
inflammatory cytokines (IL-6 and C-reactive protein) in adipose
tissue than lean controls (58–60). Furthermore, the levels of
adiponectin are lower in obese patients respect to controls (40).
Obesity has also been related with inflammatory musculoskeletal
diseases (i.e., osteoarthritis) (61). The low-grade inflammation
which characterizes obesity may also influence endochondral
longitudinal bone growth together with change in nutrients,
minerals, and hormone metabolism (62). In obesity, the altered
levels of numerous molecules inhibit osteoblastogenesis, as
TNFα, DKK1, sclerostin, IL-6, serotonin, and advanced glycation
end products (AGEs) [revised in Roy et al. (63)]. Interestingly,
many pro-inflammatory cytokines involved in obesity are also
crucial players of osteoclast formation and activation, and are
known to be involved in bone disease (64–66), suggesting a link
between obesity and bone turnover. In particular, in this review
we focused the attention on MCP1, TRAIL, LIGHT, OPG, and
TNFα (Figure 2).

MCP1

The chemokine Monocyte Chemotactic Protein-1 (MCP1)
interacts with the receptor CCR2, its expression is ubiquitous
and it is up-regulated by numerous stimuli. Firstly, MCP1 has
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FIGURE 1 | Osteoporosis and obesity. Obesity is characterized by a low-grade chronic inflammation leading to increased osteoclastogenesis and adipogenesis,

together with decreased osteoblastogenesis and muscle strength thus determining osteoporosis and increased risk of fractures.

FIGURE 2 | Cytokines linking obesity to osteoporosis. MCP-1, RANKL, IL-6,

TNFα, and LIGHT activate intracellular pathway that induce the nuclear

expression of genes involved in osteoclast formation, activity and survival.

been purified from myelomonocytic cell line THP-1 (67), but it
is expressed by numerous normal cells, such as endothelial cells
(68–72), fibroblasts (73, 74), mononuclear cells (73, 75–82), mast
cells (83), epithelial cells (84), keratinocytes (85), melanocytes

(86), smooth muscle cells (68, 87, 88), mesothelial cells (89),
adipocytes (90, 91), mesangial cells (92–96), chondrocytes (97),
osteoblasts, astrocytes (98, 99), and microglia (99). In untreated
normal cells, MCP1 levels are low, while tumor cell lines
produce MCP1 constitutively (67, 100–104). The expression
of MCP1 can also be downregulated by glucocorticoids (e.g.,
dexamethasone), cytokines (e.g., IL-13), and nitric oxide (79,
80, 97, 105–109). The expression of MCP1 and its receptor is
higher in subcutaneous and visceral adipose tissues of obese
patients than controls (90). Additionally, in omental fat of
subjects with severe obesity, an increase of MCP1 expression
together with an elevated macrophage infiltration was found
(91). MCP1 levels are higher in obese adults (110) and children
(111) compared to aged-matched controls. In obese patients
MCP1 levels were augmented by fructose expenditure (112),
reduced by low-glycemic index diet (113), and modulated by
PTH (114). Moreover, 1α-25-dihydroxy-vitamin D decreases
MCP1 production by adipocytes (115). CCR2-deficient mice
fed with a HFD showed insulin resistance and reduced
accumulation of visceral fat (78). Furthermore, MCP1 exerts a
pro-angiogenic action (116), thus contributing to the expansion
of adipose tissues.

MCP1 interaction with CCR2 on monocytes/macrophages
leads to osteoclastogenesis via JAK/STAT and Ras/MAPK
signaling pathways. However, RANKL co-treatment
is mandatory to generate active bone resorptive
osteoclasts (117).
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TRAIL

TRAIL is a TNF superfamily member, initially known for
its selective pro-apoptotic activity on cancer cell death
(118). In humans, TRAIL binds to its death domain (DD)-
containing receptors, DR5 and DR4, as well as decoy receptors
osteoprotegerin (OPG), DcR1 and DcR2. In contrast to humans,
mice express only one death receptor, mDR5, showing about
60% sequence homology to human DR4 and DR5 (118), and as
decoy receptors, mDcR1, mDcR2 and OPG. TRAIL also affects
non-cancer cell viability and activity, such as thymocytes (119),
neural cells (120), hepatocytes (121), osteoclasts (122, 123),
stem cells (124), valvular interstitial cells (125, 126), vascular
smooth muscle cells (127), and osteoblasts (128–130). TRAIL
pro-apoptotic signal in undifferentiated osteoblasts determines
the activation of caspases (131). In lymphomonocyte cultures
from donors TRAIL directly induces osteoclastogenesis in the
absence of RANKL, whereas generates an inhibitory action
when used simultaneously to RANKL (132). This last condition
is associated with the inhibition of the phosphorylation of
P38/MAPK (133). TRAIL controls homeostasis of the immune
system in health and disease. Zoller et al. demonstrated that
TRAIL determines an inflammatory status in pre-adipocytes
and adipocytes (134). Funcke et al. reported that TRAIL induces
the proliferation of human pre-adipocyte via ERK1/2 activation
(135). Consistently, TRAIL takes part in the pathogenesis
of metabolic diseases, i.e., obesity (121, 136). It has been
demonstrated a positive association between TRAIL serum
levels and body fat, serum lipid concentrations (137), waist-
circumference and fat mass in healthy subjects (138). TRAIL
serum levels were also positively correlated with higher energy
balance (139), LDL and waist circumference, supporting a
significant link between visceral adiposity and TRAIL (140).
Even if these reports demonstrated high TRAIL levels in obesity,
other authors failed to show such correlation (125, 138, 141, 142).
Furthermore, a positive correlation between weight gain and
TRAIL has been demonstrated in obese animal models. In
detail, in adipose tissues of leptin-deficient mice the expression
of TRAIL was significantly higher respect to wild-type mice
(125). Furthermore, TRAIL levels decreased following an
overnight fasting, and then rescued following feeding (125).
Otherwise, results derived from TRAIL-treated wild-type and
HFD fed, or TRAIL-deficient mice, support a defensive role
for TRAIL in obesity. Bernardi et al. reported that in mice fed
with a HFD, weekly injections of TRAIL generated a smaller
fat mass compared to controls. TRAIL-mediated weight loss
was linked to decreased transcript levels of TNFα, caspase-3,
MCP1, augmented apoptosis in adipocytes, and decreased IL-6
serum levels (143). Consistently, TRAIL−/−ApoE−/− mice fed
with HFD showed high levels of IL-6 and MCP1, together with
adipocyte hypertrophy and weight gain respect to ApoE−/− mice
(144). Although Di Bartolo et al. (144) and Bernardi et al. (143)
suggest that TRAIL may be beneficial to treat obesity, conversely
Keuper et al. (125) found that TRAIL stimulated in vitro insulin
resistance in adipocytes. Thus, considering the effect of TRAIL
on adipose tissue together with its pro-osteoclastogenic and
osteoblastic pro-apoptotic effects, further studies are needed to

elucidate the role of TRAIL in obesity and related bone disease,
overall in childhood.

LIGHT/TNFSF14

LIGHT (homologous to Lymphotoxins exhibiting Inducible
expression and competing with herpes simplex virus
Glycoprotein D for herpes virus entry mediator [HVEM], a
receptor expressed by T-lymphocytes) is part of TNF superfamily
(TNFSF14) and a crucial cytokine of the TNF-lymphotoxin
network (145–148). It is expressed by natural-killer cells,
activated T-cells, granulocytes, monocytes, and immature
dendritic cells (149–151). LIGHT can bind two receptors,
lymphotoxin-beta receptor (LTβR) and Herpes virus entry
mediator (HVEM). LTβR is present on stromal and myeloid cells
(146), HVEM on hematopoietic, epithelial and endothelial cells
(151, 152). LIGHT-HVEM interaction determines a potent T-cell
co-stimulatory effect (153–156). LIGHT-deficient mice showed
an impaired activity of CD8+ T-cells and reduced trabecular
bone (157–159). LIGHT has a pro-osteoclastogenic effect and
we demonstrated that its high levels are linked to bone-disease
patients (160–163). LIGHT triggers osteoclastogenesis through
the phosphorylation of Akt, nuclear factor-κB (NFκB) and
JNK pathways, it indirectly also inhibits osteoblastogenesis
through immune cells (160). Moreover, LIGHT is involved
in adipogenesis (164, 165). In detail, Tiller et al. reported
that LIGHT inhibits adipose differentiation without affecting
adipocyte metabolism (166). Otherwise, Kim et al. demonstrated
that LIGHT has a key role in adipose tissue inflammatory
responses through the increase of macrophages/T-cell infiltration
and the release of inflammatory cytokines. In this system LIGHT
effect is HVEM-mediated (164). HVEM deficiency displays a
protective role against adipose tissue inflammation induced
by ovariectomy (165). It has been reported that LIGHT
signaling attenuates beige fat biogenesis (167). Human studies
demonstrated high LIGHT levels in obese adults compared to
controls (168). Interestingly, our preliminary results showed
high LIGHT levels in obese children (169).

OPG/RANKL

Osteoprotegerin (OPG), soluble receptor for TRAIL and
RANKL, is part of the TNF receptor superfamily. OPG,
primarily known as bone resorption inhibitor, shows also anti-
apoptotic and anti-inflammatory effects (170). OPG role has
been evaluated in metabolic diseases (171). Indeed, low levels
of OPG have been found in non-alcoholic fatty liver disease
(NAFLD), important consequence of obesity (172, 173). Erol
et al. found that obese children showed significantly lower
OPG levels compared to the controls. A reduction of OPG
levels in obese subjects has been described in some studies
(174, 175), otherwise no relationship has been found between
BMI and OPG in other reports (176, 177). Interestingly, Ugur-
Altan et al. (174) found that the lowest OPG levels are
associated with the highest HOMA-IR values, and serum OPG
levels negatively correlated with fasting insulin, HOMA-IR,
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and glucose. Otherwise, Suliburska et al. (178) showed that
obese adolescents displayed higher OPG levels compared to
controls, that positively correlated with insulin resistance. Studies
on adults reported a potential correlation between metabolic
syndrome, insulin resistance, NAFLD, and OPG levels (172–
181). These studies demonstrated that in NAFLD the levels of
OPG in sera could be utilized as a non-invasive liver damage
indicator (174).

Obesity is also associated with increased secretion of RANKL
by osteoblasts as well as elevated levels of the RANKL/OPG
ratio (182). RANKL-RANK interaction leads to the activation
of the transcription factors NFκB and AP-1, which in turn
activates nuclear factor of activated T-cells, cytoplasmic 1
(NFATc1). The latter translocates into the nucleus, thus inducing
the expression of genes involved in osteoclast formation
and activity.

TNFα

TNFα is a pro-inflammatory molecule involved in the regulation
of inflammatory response, cell differentiation, proliferation,
and apoptosis (183). TNFα binds two receptors, type 1 or
2, and activates NFkB and MAPK signaling (184), and is
produced mainly by stromal–vascular cells and adipose tissue
macrophages (185). TNFα is an inhibitor of osteoblastogenesis
(186), adipogenesis and adipocyte differentiation, mainly by
binding TNFR1 and activating the NFκB, ERK1/2 and JNK
pathways (187). Another mechanism by which TNFα inhibits
adipogenesis is the activation of Wnt/β-catenin pathway and
inhibition of transcription factors, such as PPARγ and C/EBPs
(188, 189). High levels of TNFα have been found in obese and
diabetic subjects (58). The TNFα treatment in 3T3-L1 cells and
rats induces insulin resistance (190), whereas the suppression of
TNFα and receptor genes improves insulin sensitivity in ob/ob
rodent model (191). Moreover, TNFα upregulates miR-155 and
miR-27 by activating the NFκB pathway, thus inhibiting early
adipogenic transcription factors, i.e., C/EBPβ and CREB (192,

193). TNFα also down-regulates miR-103 and miR-143, which
accelerate adipogenesis (194).

TNFα shows a pro-osteoclastogenic effect that can be direct
or indirect. In detail, for the direct mechanism TNFα binds to
TNFR1 through NF-κB, JNK and p38 with consequent activation
of NFATc1, which promotes the transcription of genes involved
in osteoclast formation and activity. Moreover, TNFα indirectly
affects osteoclast formation by promoting RANKL expression in
bone marrow stromal cells (195). Otherwise, TNFα promoted
osteoclastogenesis only in the presence of RANKL permissive
levels (196).

CONCLUSIONS

Although childhood obesity has not been yet identified as a direct
cause of osteoporosis, several cellular mechanisms linked to the
accumulation of fat in the body can contribute to osteoporosis
and bone fractures. Low grade chronic inflammation commonly
exists in obese populations and the cytokines negatively
affect bone health. Obesity positively regulates osteoclasts
functioning by up-regulating the production of RANKL, LIGHT,
TRAIL, TNFα, MCP1 and inhibiting osteoblastogenesis, thereby
accelerating bone resorption. Future investigations on the
relationship between cytokines and adipogenesis are expected
to lead to the improvement of management strategies for
osteoporosis associated to obesity.
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