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Increased C-reactive protein is associated
with the severity of thoracic radiotherapy-
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Abstract

Background: Irradiation of the heart during cancer radiotherapy is associated with a dose-dependent risk of heart
failure. Animal studies have demonstrated that irradiation leads to an inflammatory response within the heart as
well as a reduction in cardiac reserve. In the current study we aimed to evaluate whether inflammatory biomarkers
correlated with changes in cardiac function and reserve after radiotherapy for breast or lung cancer.

Methods and results: We studied 25 subjects with a history of breast or lung cancer without a prior diagnosis of
cardiovascular disease or heart failure, 1.8 years [0.4–3.6] post-radiotherapy involving at least 5 Gray (Gy) to at least
10% of the heart. High-sensitivity C-reactive protein (CRP) was abnormal (≥2 mg/L) in 16 (64%) subjects. Cardiac
function and reserve was measured with Doppler echocardiography before and after exercise and defined as left-
ventricular ejection fraction (LVEF), early diastolic mitral annulus velocity (e’), and increase in LV outflow tract
velocity time integral cardiac output (cardiac reserve) with exercise. Subjects with abnormal CRP had significantly
lower LVEF (51 [44–59] % vs 61 [52–64] %, P = 0.039), lower e’ (7.4 [6.6–7.9] cm/sec vs 9.9 [8.3–12.0] cm/sec, P = 0.010),
and smaller cardiac reserve (+ 1.5 [1.2–1.7] L/min vs + 1.9 [1.7–2.2] L/min, P = 0.024).

Conclusion: Elevated systemic inflammation is associated with impaired left-ventricular systolic and diastolic function
both at rest and during exercise in subjects who have received radiotherapy with significant incidental heart dose for
the treatment of cancer.
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Introduction
Radiotherapy remains a cornerstone of treatment for
many cancers. Lung, esophageal, breast, and proximal
gastric cancers still receive incidental radiation to the
heart as part of curative intent or palliative care [1–4].
Contemporary and more sophisticated administration of
thoracic radiotherapy and systemic immunotherapy have
been effective in reducing cancer-related mortality and
limiting exposure to the heart. However, radiotherapy to
the chest increases the risk for cancer-unrelated morbid-
ity and mortality, especially cardiovascular mortality, in
a dose-dependent manner [1, 5–8]. Furthermore, recent

studies have shown that major adverse cardiovascular
events, like acute myocardial infarction and stroke, are
likely occurring earlier post-treatment than previously
thought [1, 5]. In a well-characterized cohort of 945
women with breast cancer who had received a mean ra-
diation dose to the heart of 2.5 Gray (Gy), Saiki et al.
showed that 60 patients (6%) developed new-onset heart
failure (HF) 5.8 ± 3.4 years following radiotherapy [9].
When a nested case-control matched analysis was per-
formed, the mean heart dose was higher in HF cases
(3.3 ± 2.7 Gy) than controls (2.1 ± 2.0 Gy; P = 0.004), and
the odds ratio (95% confidence interval) for HF per log-
change in mean cardiac radiation dose was 9.1 (3.4–
24.4), thus highlighting that even relatively small doses
of radiotherapy to the heart have the potential to cause
HF [9]. Moreover, exercise intolerance, a surrogate of
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impaired cardiac reserve and a strong predictor of all-
cause and cancer-related mortality [10, 11], seems to ap-
pear early after radiotherapy and may contribute signifi-
cantly to impairments in quality of life [12–15].
Commonly used tools to assess cardiac function (i.e.,

resting left-ventricular ejection fraction [LVEF] by echo-
cardiography) are notoriously insensitive to minor injury,
and therefore subtle changes can go unnoticed. Moreover,
a large portion of patients presenting with new-onset
heart failure are expected to have preserved LVEF [16]. In
Saiki et al., 64% of patients with new-onset HF after radio-
therapy had preserved LVEF [9]. Using cardiopulmonary
exercise testing, we have recently described an early dose-
dependent inverse relationship between radiation dose to
the heart and peak oxygen consumption in patients who
had received radiotherapy to the chest driven primarily by
impairments in cardiac diastolic reserve [13].
The mechanisms by which radiotherapy induces im-

paired cardiac reserve is complex. Preclinical studies
have shown that there is an acute series of events follow-
ing radiotherapy characterized by inflammation resulting
in impaired contractile reserve, followed by cell death
leading to a reparative fibrotic response in the pericar-
dium, myocardium and valvular structures [17–20]. Ac-
tivation of pro-inflammatory pathways likely play an
important role in the early changes seen following radio-
therapy. Animal models have demonstrated reversible
systolic dysfunction and reduced LV contractility reserve
following injections of interleukin (IL)-1β, the prototyp-
ical pro-inflammatory cytokine, in otherwise healthy
mice, whereas mice pretreated with anakinra, an IL-1 re-
ceptor antagonist, or an IL-1β antibody, were spared
from these detrimental effects [21]. Additionally, mice
injected with plasma from patients with stable chronic
systolic HF and elevated plasma levels of C-reactive pro-
tein (CRP) showed normal resting systolic function but
significantly impaired contractile reserve [22]. In the
current study we sought to determine whether CRP, a
systemic inflammatory biomarker and surrogate for IL-1
activity, could identify patients with radiotherapy-
induced impairment in cardiac function or reserve.

Methods
We conducted a single-center prospective study enrol-
ling patients with a history of breast or lung cancer who
had received thoracic radiotherapy with a resultant sig-
nificant cardiac dose (at least 5 Gy to at least 10% of the
heart) as part of intended curative treatment for malig-
nancy. These subjects did not have a prior diagnosis of
cardiovascular disease or heart failure. All patients were
at least 18 years of age, had adequate acoustic windows
for echocardiography, and had to be able to perform
treadmill exercise testing with ventilatory gas-analysis.
All patients underwent informed consent prior to

enrollment. The study was approved by the Virginia
Commonwealth University Institutional Review Board.
A blood sample was obtained to evaluate the bio-

marker high-sensitivity CRP (hsCRP). Elevated systemic
inflammation was defined as an hsCRP ≥2.0 mg/L [23].
All patients underwent transthoracic Doppler echocardi-
ography at rest and immediately post-exercise to evalu-
ate cardiac systolic and diastolic function. Symptom-
limited exercise was performed utilizing a conservative
treadmill ramping protocol using percentage of age-
predicted maximal heart rate (%APMHR) to quantify
subject effort. Tissue Doppler-derived early transmitral
flow velocity (E), early diastolic mitral annular velocities
(e′) averaged between the lateral and septal annulus – a
measure of diastolic function - and the change in left-
ventricular outflow tract velocity time integral cardiac
output (Δ LVOT VTI CO) with exercise – a measure of
cardiac reserve - were obtained according to standard
recommendations [24, 25]. Since estimation of the
cross-sectional area of the left-ventricular outflow tract
represents a potential source of error, the velocity time
integral alone was used as a surrogate for cardiac output
measurement [26].

Table 1 Characteristics of the Cohort

Variables Median [IQR] or N (%)

Age, years 63 [59–66]

Female, n (%) 15 (60%)

Caucasian, n (%) 16 (64%)

African-American, n (%) 9 (36%)

Body mass index, kg/m2 26.4 [22.6–30.2]

Cancer Type

Lung 15 (60%)

Breast 10 (40%)

Time since Cancer Diagnosis, years 2.4 [1.1–3.9]

Prior chemotherapy 21 (84%)

Time since completion of chemotherapy, years 1.5 [0.5–3.0]

Time since completion of Radiotherapy, years 1.8 [0.4–3.6]

Hormonal modulating therapy
(Breast cancer only)

7 (28%)

MCRD, Gy 5.4 [3.7–14.7]

C-reactive protein, mg/L 3.0 [1.7–6.9]

%APMHR 93 [78–102]

LVEF, % 52 [47–61]

Doppler echo e’ velocity (cm/sec) 7.6 [7.0–9.6]

Delta LVOT VTI CO (L/min) 1.6 [1.5–1.9]

Data are listed as n (%) or median (interquartile range). Abbreviations: kg/m2

Kilograms per meter squared, MCRD Mean cardiac radiation dose, Gy Gray
units, mg/L Milligrams per liter, %APMHR Percentage of age-predicted maximal
heart rate, LVEF Left-ventricular ejection fraction, e’ Doppler early diastolic
mitral annular velocity, cm/sec Centimeters per second, LVOT VTI CO Left-
ventricular outflow tract velocity time integral cardiac output with exercise, L/
min Liters per minute.
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Data are reported as median and interquartile range
[IQR] for potential deviation from a Gaussian distribution.
Spearman correlation coefficients were estimated to assess
correlations between CRP and cardiac function from
echocardiography variables. A Mann-Whitney U test was
performed to compare those with and without elevated
systemic inflammation (hsCRP ≥2.0mg/L versus < 2.0 mg/
L). Fisher’s exact test was used to assess differences in the
presence of categorical (Yes/ No) comorbid conditions
based on medical history (prior chemotherapy, cancer
type (breast vs. lung), anemia, obesity, hypertension,

dyslipidemia, diabetes mellitus, current smoker, sedentary
lifestyle) or agents that have a known modifying-
association with CRP (i.e., statins, hormone therapy) be-
tween those with and without elevated hsCRP.

Results
Table 1 provides the demographic and clinical character-
istics of the entire cohort.
Sixteen (64%) subjects had elevated hsCRP (≥2.0mg/L).

The %APMHR achieved during exercise testing was not
different between those with and without elevated hsCRP

Table 2 Distribution of comorbid conditions or statin use in those without and with elevated hsCRP

Categorical Variables hsCRP < 2mg/L
(n = 9)

hsCRP≥ 2 mg/L
(n = 16)

P-value

History of chemotherapy 7 (78%) 14 (88%) 0.602

Cancer type (Breast vs. Lung) 1.000

Breast cancer 4 (44%) 6 (38%)

Lung cancer 5 (56%) 10 (63%)

History of anemia 1 (11%) 4 (25%) 0.621

Obesity 1 (11%) 6 (38%) 0.355

Hypertension 4 (44%) 10 (63%) 0.434

Dyslipidemia 5 (56%) 5 (31%) 0.397

Diabetes Mellitus 1 (11%) 5 (31%) 0.364

Current Smoker 2 (22%) 4 (25%) 1.000

Sedentary Lifestyle 3 (33%) 8 (50%) 0.677

Statin Use 3 (33%) 5 (31%) 1.000

Hormone therapy 3 (33%) 4 (25%) 0.673

Legend: Distribution of nominal variables expressed as Yes or No based on medical history and/or medication use. Proportion of those with the presence of
categorical comorbid conditions, statin use, or hormone therapy use are reported as number (%). Obesity defined as a body mass index ≥30 kg per meter squared

Fig. 1 Impaired cardiac function in patients with elevated C-reactive protein levels after radiotherapy therapy for cancer. Transthoracic Doppler
echocardiography at rest and at immediately post-exercise was used to measured left ventricular ejection fraction (Panel a), mitral annulus early
diastolic velocity for myocardial relaxation (Panel b), and the change in left-ventricular outflow tract velocity time integral cardiac output (Panel c)
with exercise as a measure of cardiac reserve. Subjects with elevated C-reactive protein (CRP) levels showed significantly worse impairments in
cardiac systolic and diastolic function. Abbreviations: LVEF = left-ventricular ejection fraction; hsCRP = high-sensitivity C-reactive protein; e’ = early
diastolic mitral annular velocities averaged between the lateral and septal annulus; Δ LVOT VTI CO = delta left-ventricular outflow tract velocity
time integral cardiac output with exercise
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(93 [81–101] % vs. 95 [74–110] %, P = 0.742). Additionally,
there were no significant differences between those with
and without elevated hsCRP respective to presence of co-
morbid conditions, statin, or hormone therapy use
(Table 2). Finally, none of the subjects had known active
or progressive disease at the time of study participation.
Patients with elevated hsCRP had significantly lower LVEF

(51 [44–59] % vs. 61 [52–64] %, P = 0.039), e’ velocity (7.4
[6.6–7.9] cm/sec vs. 9.9 [8.3–12.0] cm/sec, P = 0.010), and Δ
LVOT VTI CO with exercise (+ 1.5 [1.2–1.7] L/min vs + 1.9
[1.7–2.2] L/min, P = 0.024), respectively compared to those
with hsCRP < 2mg/L. Figure 1 illustrates the differences in
LVEF (Panel A), impaired diastolic function as shown by
lower e’ values (Panel B), and reduced cardiac reserve (Panel
C). In Fig. 2, hsCRP levels as a continuous variable inversely
correlated with the Doppler e’ velocity (R = -0.417, P = 0.048;
Panel A) and Δ LVOT VTI CO with exercise (R = -0.727,
P = 0.011; Panel B), and directly with the Doppler-derived
estimated intra-cardiac pressures with exercise, Δ exercise E/
e’ ratio (R = + 0.636, P = 0.026; Panel C).

Discussion
Radiotherapy is an integral treatment modality for many
cancers. The relationship between ionizing radiation, in-
flammation and cardiotoxicity is complex and incom-
pletely understood [27]. A number of acute effects
including endothelial damage followed by inflammatory
cell infiltration with subsequent fibrotic changes have
been described. Systemic inflammation following radio-
therapy has been associated with transient cardiac dys-
function including HF [17] and elevated pre-treatment
serum CRP levels have been associated with poorer
prognosis in esophageal cancer patients [28]. Moreover,
cross-sectional studies in breast cancer survivors have
shown a correlation between elevation in the pro-
inflammatory markers CRP and IL-1 receptor antagonist
and persistent post-treatment fatigue [29].

Here we show that elevated CRP levels are common
and correlate with measures of impaired cardiac func-
tion in patients who have received thoracic radiotherapy
for the treatment of cancer. These results suggest that
changes in CRP and cardiac function can serve as early
markers of cardiotoxicity following radiotherapy, and
could potentially serve as useful biomarkers for outcome
prediction. The limitations of this study are its small
sample size and cross-sectional nature thus the observed
associations do not prove causality.
In conclusion, further studies are needed to develop im-

proved detection methods and ultimately treatments for
subclinical cardiotoxicity in patients who have undergone
radiation therapy to prevent long-term cardiac sequelae.
Gaining a better understanding of the relationship be-
tween CRP and cardiac function in patients who have
undergone radiation therapy could potentially help to
optimize treatment, and ideally, serve as therapeutic tar-
gets to minimize long-term unwanted cardiac side-effects.
IL-1 blockers are being studied for the prevention and
treatment of heart failure, showing a promising safety and
efficacy profile [30–35] thus introducing the possibility of
future clinical trials investigating IL-1 blockade to treat
patients at risk for radiation-induced heart failure.
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