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Abstract: Nitrogen (N) is one of the key nutrients supplied in agricultural production worldwide. 
Over-fertilization can have negative influences on the field and the regional level (e.g., agro-ecosys-
tems). Remote sensing of the plant N of field crops presents a valuable tool for the monitoring of N 
flows in agro-ecosystems. Available data for validation of satellite-based remote sensing of N is 
scarce. Therefore, in this study, field spectrometer measurements were used to simulate data of the 
Sentinel-2 (S2) satellites developed for vegetation monitoring by the ESA. The prediction perfor-
mance of normalized ratio indices (NRIs), random forest regression (RFR) and Gaussian processes 
regression (GPR) for plant-N-related traits was assessed on a diverse real-world dataset including 
multiple crops, field sites and years. The plant N traits included the mass-based N measure, N con-
centration in the biomass (Nconc), and an area-based N measure approximating the plant N uptake 
(NUP). Spectral indices such as normalized ratio indices (NRIs) performed well, but the RFR and 
GPR methods outperformed the NRIs. Key spectral bands for each trait were identified using the 
RFR variable importance measure and the Gaussian processes regression band analysis tool (GPR-
BAT), highlighting the importance of the short-wave infrared (SWIR) region for estimation of plant 
Nconc—and to a lesser extent the NUP. The red edge (RE) region was also important. The GPR-BAT 
showed that five bands were sufficient for plant N trait and leaf area index (LAI) estimation and 
that a surplus of bands effectively reduced prediction performance. A global sensitivity analysis 
(GSA) was performed on all traits simultaneously, showing the dominance of the LAI in the mixed 
remote sensing signal. To delineate the plant-N-related traits from this signal, regional and/or na-
tional data collection campaigns producing large crop spectral libraries (CSL) are needed. An im-
proved database will likely enable the mapping of N at the agro-ecosystem level or for use in pre-
cision farming by farmers in the future. 

Keywords: nitrogen; chlorophyll; leaf area index; agro-ecosystem monitoring; spectral indices; 
random forest; gaussian processes regression; ARTMO toolbox 
 

1. Introduction 
1.1. Nitrogen in Agro-Ecosystems 

Nitrogen (N) plays a pivotal role in the plant life cycle, because it is one of the main 
nutrients needed for plant biomass production. It is essential for plant metabolism (e.g., 
chlorophyll) and major plant cell components such as proteins related to crop growth, 
development and high crop yield performance [1]. N is one of the most abundant mole-
cules in the Earth’s atmosphere [2] and also in plants, where it mainly figures as a building 
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block for the chlorophyll-containing chloroplasts and amino acids that form the plant pro-
teins [3]. Out of all plant proteins, ribulose-1,5-biphosphate carboxylase-oxygenase (ru-
bisco), the major CO2-fixing enzyme in plants, is considered to be the most abundant ter-
restrial protein due to its high concentration in plants [4], which is estimated at about 22% 
of total leaf N [3]. In a C3 plant, 1.7% of total leaf N is allocated to plant chlorophyll and 
approximately 19% of total leaf N is used in the light harvesting complex [3]. This explains 
the strong correlation between leaf N and chlorophyll often reported in literature [5]. The 
concentration of N in plant leaves is, however, relatively small, and ranges from 0.2 to 
6.4%, depending on plant species [6]. 

Plants usually take up N in the form of ammonium (NH4+) and nitrate (NO3−) from 
the soil [7]. This supply is limited and often not sufficient to achieve the desired yield 
levels in intensive agriculture. Therefore, N is one of the most applied nutrients in the 
form of fertilizer. This human N input has massively influenced the global N cycle [8], 
causing negative effects on the agro-ecosystem on regional and global scales [9]. The loss 
of dissolved nitrate (NO3−), nitrite (NO2−) and volatile losses in the form of ammonia (NH3) 
and nitrous oxide (N2O) from agricultural systems has been found to pollute ground and 
surface waters [10,11], deteriorate biodiversity [12], and contribute to greenhouse gas 
emissions [13,14]. For policymakers, it is therefore becoming increasingly important to 
know the in- and output of N in agricultural systems at the connection between the field 
and farm level and the regional watershed, as part of a more holistic approach, at the agro-
ecosystem level [15]. Such information can be used to better manage focus areas such as 
watersheds with nitrate problems in drinking water reserves. Better-informed spatial rec-
ommendations can facilitate targeted application of N input reduction measures at the 
field and regional scale. 

1.2. Remote Sensing of Plant Nitrogen and Biomass 
1.2.1. On the Terminology of Plant Nitrogen Status 

Efficient monitoring of N at both the field and regional level is only possible using 
remote sensing. In the remote sensing literature, however, many different concepts and 
terms are used to describe plant ‘N status’ [5]. The used terms include N status, N content, 
N concentration, plant N, plant N uptake (NUP) or just ‘N’, and they are often used syn-
onymously and are sometimes confused. 

The term ‘N status’ is very popular, and often describes the plant N nutrition relative 
to the optimum desired for the target yield levels in an agronomic scenario [16–18]. This 
is a result of environmental conditions such as soil available N [19], the plant growth stage 
[16], and the expected growth performance and yield expectation, and is often used to 
infer the crops’ fertilizer demand at the field level [20]. It can be evaluated using the plant 
N concentration (Nconc), which is the amount of N relative to the dry mass per sampled 
plant unit (leaf, stems or the whole plant). We therefore consider the Nconc to be a mass-
based N measure. 

Opposed to mass-based N measures are area-based N measures, expressed in N per 
unit area, e.g., kg N ha−1 [5]. Such area-based N measures can be obtained by multiplying 
the Nconc with the plant biomass in dry matter [21], whereas the leaf area index (LAI) has 
also been used to approximate plant biomass on the canopy level [22,23], avoiding growth 
stage effects in crops’ vegetative growth phase. An area-based N measure represents the 
total amount of N in the plant, also called nitrogen uptake (NUP), which refers to the total 
N taken up by the plant. NUP is often measured as ‘aboveground’ NUP, as plant biomass 
samplings often do not take the root biomass into account [1,20,24,25]. The term NUP is 
often called ‘N content’ [21]. N content is, however, often used interchangeably with Nconc, 
as shown in the review in [5], which can be misleading due to the confusion of mass- and 
area-based N measures. 

The used concepts and terms strongly depend on the perspectives of the ‘end users’ 
and the anticipated application. For an agronomist, the plant N status is indicative of the 
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plants’ demand for N fertilization applications. The N status can thus either be the Nconc 
or the NUP. In this case, the term ‘N status’ usually refers to NUP as an area-based N 
measure, since fertilization is usually measured in kg ha−1. 

For policymakers, the plant N status in agriculture is more likely to focus on the en-
tire agro-ecosystem, especially taking waterways into account [26], i.e., how much N fer-
tilizer has been brought into the agro-ecosystem by farmers? In particular, the risk of N 
losses, which pose a risk to the environment, and the economic implications thereof, are 
of interest for environmental stakeholders and policy makers [27]. The concept of N use 
efficiency (NUE) can be defined as the fraction of N taken up by crops, opposed to the 
amount available to the plant from soil or fertilizer application [19], and is often used both 
from an agronomic and from a policymaker’s perspective. 

From a remote sensing perspective, the retrieved signal is a proxy for the total N per 
area (pixel), weighted by its visibility to the sensor. For optical remote sensing, this means 
that the sunlit top of the canopy has more influence on the retrieved signal than the shaded 
parts in the lower canopy and consequently, the N in the upper part of the canopy will 
have higher influence on the retrieved signal than the N in the lower part. Therefore, re-
motely sensed plant N mostly refers to area-based N information, where the plant biomass 
is part of the canopy signal. 

1.2.2. Remote Sensing of Crop Nitrogen 
Remote sensing plant N has often focused on the relationship between the plant leaf 

chlorophyll content (ChlAB) and plant leaf N concentration [18,28,29]. However, the ob-
served relationships have been found to be moderate, with Pearson correlation coeffi-
cients being around 0.65 ± 0.15 [30], which can partially be explained by the small amount 
of leaf N in the light harvesting complex compared to the total leaf N [3,5]. 

For remote estimation of plant N, spectral information from the red edge (RE) 
[17,18,24,31,32] and the near infrared (NIR) wavelength [17,24,33] regions have often been 
used. Studies have often focused on the spectral wavelengths up to 1000 nm [24,33,34]. 
The short-wave infrared (SWIR) region has not often been used, despite it showing signif-
icant potential for plant N estimation [30,35–37]. This spectral region is indicative of ni-
trogen bonds in amino acids [38], and is thereby more directly connected to N in proteins 
than the RE spectral region. 

Spectral index (SI)-based methods have been in use since the late 1970s [39] and are 
now widely used in intensive agriculture, e.g., ‘smart farming’ for fertilizer applications, 
where an increasing number of commercial sensors and remote sensing applications re-
lated to plant N exist [32,40–42]. In most studies, a correlation between SIs and the trait of 
interest is established, and subsequent parametric regression allows prediction of plant 
N. Today, nonparametric methods such as machine learning regression algorithms 
(MLRAs), including partial least squares regression (PLSR) [43,44], random forest regres-
sion (RFR) [44,45], and Gaussian processes regression (GPR) [46–48], are more frequently 
used. Methods based on deep learning, such as neural networks, are being explored [49], 
but are not used frequently [5]. MLRAs and deep learning-based methods are considered 
nonparametric regression methods [46]. For a more in-depth discussion of commonly 
used algorithms for N retrieval from remote sensing data, see the review of [5]. 

1.2.3. Remote Sensing Plant Biomass 
The estimation of plant biomass through remote sensing has been extensively per-

formed [30,48,50–54]. Overall, crop traits such as LAI and canopy cover (CC) related to 
aboveground plant biomass show higher correlations than methods that estimate plant N 
[48,52]. So far, plant biomass estimation has mostly been based on SIs [17,53,55,56], and 
MLRAs seem to be less widely in use [48,57]. For biomass traits such as the LAI, mostly 
information in the RE and NIR regions has been shown to be of importance [52,55,56], 
with the visible (VIS) region—mainly the red domain—seeing use as well [43,58]. These 
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are similar regions to those shown to be important for the estimation of plant-N-related 
traits. 

1.2.4. Field Spectrometer for Validating Satellite Measurements 
Few studies are available for direct plant N estimation using satellite imagery [59,60]. 

A limitation for such studies is the need for large and expensive field trials for model 
training and calibration. This is particularly difficult for small-structured agricultural sys-
tems such as prevailing in Switzerland. Ref. [61] showed, for average field sizes of 1.6 ha, 
that no monitoring was possible for up to 22% of the fields because no ‘pure’ field pixel 
was available at 20-m resolution. Increasing the spatial resolution to 10 m reduced the 
number of fields that could not be monitored to 6.4%. This issue is exacerbated for Swit-
zerland, where the average farm size is just 21 ha [62] and the field sizes are even smaller 
(around 1.5 ha, Federal Office of Agriculture census data). Therefore, it would be of great 
interest if field spectrometer (FS) measurements provided the link between satellite and 
small-plot N fertilization trials that would otherwise be too small for the calibration of 
satellite measurements. Thus, several studies have used ground-based FS for the simula-
tion of satellite sensors [24,33,63,64]. In these studies, the FS effectively acted as the tool 
for a simulation and validation of the data acquired by the satellite sensor. 

1.3. Aims of This Study 
To link satellite imagery with plant traits, data simulation using radiative transfer 

models (RTMs) has been extensively performed [46,65–67]. Often, if at all, with only small 
real-world validation datasets. In this paper, we aim to contribute to this research gap by 
applying parametric and nonparametric methods for estimation of mass- and area-based 
plant N traits, as well as analysis methods so far only applied to RTM-based studies to a 
real-world hyperspectral dataset including multiple crops, test sites and years. We further 
aim to elicit differences between the sensitivity of wavelength regions for plant-N-related 
traits as a function of bandwidth and number of bands available for prediction in ground- 
versus satellite-based sensing. We hypothesize that the SWIR region might be of greater 
importance for N estimation in satellite-based sensing as opposed to ground-based sens-
ing due to the effect of the canopy area in the satellite-based signal. Ultimately, we aimed 
to estimate the potential of the Sentinel-2 (S2) satellites for plant N estimation in small-
scale agricultural agro-ecosystems. 

2. Materials and Methods 
2.1. The Dataset 

The dataset used in this study originates from three datasets containing spectral li-
braries (FS reflectance data) of main Swiss field crops (corn, potatoes, sugar beet, summer 
and winter barley, spring wheat, sunflower and winter wheat) from the years 2013–2016 
and 2019. All datasets were collected within the eastern regions of the canton of Zürich, 
Switzerland. Please see the ‘supplementary materials – dataset’ for more information on 
the dataset (Figures S1 to S3 and Table S1) as well as a download link for the data used in 
this study. The 1st and the 2nd datasets originate from FS measurements taken as part of 
ground truth data collection for the projects SEON (Swiss Earth Observatory Network) 
[68] and FLOURISH [69]. The 3rd dataset originates from FS measurements on the winter 
wheat experiments form the work of [20]. In all cases, spectral reflectance data were col-
lected with a FS (ASD FieldSpec4®, ASD Inc., Malvern Panalytical, Malvern, UK) with a 
spectral range of 350–2500 nm resampled to 1 nm band intervals. FS measurements were 
performed using a white reference and ten measurements distributed in the plot were 
averaged for each plot. Selected plant traits from this dataset include crop growth stage 
(BBCH), the mass-based N measure N concentration (Nconc), chlorophyllAB concentration 
(ChlAB) and LAI as seen in Table 1. To approximate total N and ChlAB on the canopy level, 
Nconc and ChlAB were multiplied with LAI, forming two additional traits: LAI*Nconc and 
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LAI*ChlAB. The trait LAI*Nconc approximates the Nitrogen uptake (NUP), as an area-based 
N measure. Ref. [22] suggested multiplying LAI with ChlAB to increase canopy level N 
status estimation. 

The mentioned traits were determined on 1 to 4 m2 plots located in within farmers’ 
fields after being evaluated for crop growth stage according to the BBCH scale [70] and 
FS measurements. Within the same plots, LAI was non-destructively measured with a LI-
COR LAI-2200 (2000) Plant Canopy Analyzer (LI-COR Biosciences, Lincoln, NE, USA), as 
described in detail by [71]. Total biomass samples (very early growth stages) or leaf sub-
samples of 10 to 20 of the youngest fully developed leaves (later growth stages) were col-
lected in the measurement plots and subsequently dried for N analysis and freeze dried 
for ChlAB. Nconc was measured with an elemental analyzer (Flash EA Series, Thermo Fisher 
Scientific, Waltham, MA, USA) or EURO EA (HEKAtech GmbH, Wegberg, Germany), 
ChlAB was measured using 95% ethanol extraction and subsequent absorbance measure-
ment by a photometer (EnSpire multimode plate reader, Perkin Elmer, Waltham, MA, 
USA) at 470, 649 and 664 nm using the equations given in [72]. 

To test the effect of crop canopy structure on the obtained reflection signal [73], four 
subsets were created: (1) An ‘erectophile’ dataset containing the crop species with erecto-
phile morphology winter wheat, winter barley, spring wheat and corn, (2) a ‘planophile’ 
dataset containing the broad-leaved crop species sugar beet, rapeseed, sunflower and po-
tatoes, (3) a dataset containing only winter wheat and (4) a dataset containing only sugar 
beet (Table 1). 

Table 1. Datasets and traits used in this study. 

Individual Traits n Min Median Max 
Nconc [%] 322 0.68 3.46 5.32 

ChlAB [mg g−1] 194 2.28 5.34 7.11 
LAI [m2 m−2] 272 0.05 2.09 8.63 
LAI*Nconc [%] 210 0.17 7.20 41.25 

LAI*ChlAB [mg g−1] 193 0.14 11.25 56.01 
Combined Data n Min BBCH Median BBCH Max BBCH 

full dataset 180 15 30 80 
erectophile 98 15 31 80 
planophile 55 15 22 67 

winter wheat 64 15 30 32 
sugar beet 45 15 21 38 

2.2. Data Analysis 
2.2.1. Dataset Pre-Processing 

For the analysis, the atmospheric water absorption bands in the wavelength regions 
1350–1440 nm, 1790–1990 nm and 2400–2500 nm were omitted from the FS data. Data in 
the 350–400 nm region was also omitted due to the low signal-to-noise ratio. To speed up 
computation, the FS data were resampled into 10-nm intervals (in the following referred 
to as the FS dataset). All dataset pre-processing and subsequent analysis was performed 
in R statistical software version 4.0.3 [74]. The R package ‘hsdar’ [75] was used to resample 
the FS dataset to the spectral resolution of the ‘MultiSpectral Instrument’ (MSI, Table 2) of 
S2 by using the S2 spectral response function provided by ESA(in the following referred 
to as S2 dataset). 
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Table 2. The specifications of the Multispectral Instrument (MSI) on board the Sentinel-2 (S2) satel-
lites (reproduced from the European Space Agency ESA). Band B10 was not used in the S2 
resampled dataset as it lies within a region of atmospheric water absorption. 

Band Band Name 
Center Wavelength 

[nm] 
Bandwidth  

[nm] 
Ground Resolution 

[m] 
B01 Coastal aerosol 443 21.00 60 
B02 Blue 490 66.00 10 
B03 Green 560 36.00 10 
B04 Red 665 31.00 10 
B05 RE1 705 15.50 20 
B06 RE2 740 15.00 20 
B07 RE3 783 20.00 20 
B08 NIR1 842 106.00 10 
B8a NIR2 865 21.50 20 
B09 Water vapour 945 20.50 60 
B10 SWIR—cirrus 1375 30.50 60 
B11 SWIR1 1610 92.50 20 
B12 SWIR2 2190 180.00 20 

2.2.2. Normalized Ratio Indices Generation 
SIs were calculated as normalized ratio indices (NRIs, Equation (1)) using all possible 

band combinations of wavelengths 𝜆𝜆𝐴𝐴 and 𝜆𝜆𝐵𝐵: 

𝑁𝑁𝑁𝑁𝑁𝑁 =
𝜆𝜆𝐴𝐴 − 𝜆𝜆𝐵𝐵

(𝜆𝜆𝐴𝐴 + 𝜆𝜆𝐵𝐵) (1) 

This resulted in 14,706 unique NRI combinations for the FS dataset and 66 combina-
tions for the S2 dataset. The calculated NRIs were correlated against the individual crop 
traits (Table 1) using Pearson’s correlation. The Pearson’s correlation was squared to ob-
tain the coefficient of determination (R2). For the NRI scoring the highest R2 value was 
used to fit a linear regression equation to the trait of interest [24,36,52,76,77]. 

2.2.3. Random Forest Regression 
Random Forest Regression (RFR) was used as a nonparametric machine learning 

method to regress the individual crop traits on the spectral data. RFR was performed with 
ten-fold cross validation [44,78]. RFR was implemented using the ‘caret’ [79] and ‘ranger’ 
[80] packages in R. The optimal model parameter mtry (the number of variables to use in 
each tree) was determined using the best performing model elicited in cross-validation. 
The RF variable importance scores were calculated using the permutation importance [81] 
and were used to rank the importance of the available and used spectral bands for the 
estimation of the trait of interest. 

2.2.4. Gaussian Processes Regression–Band Analysis Tool 
An alternative spectral analysis was conducted in the automated radiative transfer 

models operator (ARTMO) toolbox [82]. ARTMO consists of a suite of radiative transfer 
models and post-processing toolboxes, such as the global sensitivity analysis (GSA) 
toolbox [83], the MLRA toolbox [84] and the emulator toolbox [85]. The MLRA and emu-
lator toolboxes consist of a suite of MLRAs for mapping applications and subsequent anal-
ysis. The Gaussian processes regression–band analysis tool (GPR-BAT) [86] included in 
the MLRA toolbox was used as an additional method to identify the importance of spec-
tral bands for trait estimation. For this, a GPR model was fitted using ten-fold cross vali-
dation. GPR was used with an automatic relevance determination (ARD) kernel, where 
correlation length scales 𝜎𝜎𝑖𝑖 for each spectral band of the GPR covariance (kernel) function 
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can be directly used as band importance measures [46,87]. Iteratively, the spectral band 
exhibiting the highest 𝜎𝜎𝑖𝑖  value of the ARD kernel [47,86] was omitted from the GPR 
model using a sequential backward band removal (SBBR) algorithm [86] until only one 
spectral band remained. This resulted in an approximation of the influence of each band 
for the trait of interest [86]. The frequency at which a spectral band was ranked within the 
top five lowest Sigma values for each of the ten cross-validation folds was taken as the 
importance factor for said spectral band. 

2.2.5. Global Sensitivity Analysis 
The global sensitivity analysis (GSA) toolbox was originally developed to estimate 

the key input variables driving the spectral output of radiative transfer models (RTM) by 
using sensitivity analysis of the input variables [83]. Instead of using RTM spectra, the 
spectra of the real-world dataset were used to perform a GSA of all sampled crop traits at 
once using the full FS and S2 datasets where entries for all traits were available. Contrary 
to the NRI regression, RFR and GPR-BAT, which are univariate analyses in which one 
target trait is analyzed at a time, the GSA is a multivariate analysis. Since the GSA allows 
estimation of the contribution of each input variable across the whole spectrum, it can be 
used to elicit the importance of spectral regions for all traits of interest at once [83,88]. To 
reduce the large computation time needed for GSA, the input spectra can be approximated 
using an emulator [88] that fits an ML model emulating the original spectra. Here, multi-
ple emulators from ARTMOs MLRA toolbox were trained, and the best-performing (ac-
cording to an 80/20% training/test set data split) was chosen to approximate the available 
spectral data. This emulator was then used to conduct the GSA, which effectively varies 
the target trait of interest along its variance range in a Monte-Carlo simulation, measuring 
the sensitivity of each spectral band to the variance change of the target trait. For each 
trait, 1000 iterations were simulated. 

3. Results 
3.1. Comparison of Spectral Analysis Methods 

The comparison of the NRI regression, RFR and GPR results for both the FS and the 
S2 dataset and all their subsets is shown in Figure 1. For Nconc, R2 values for the FS datasets 
ranged from 0.33 to 0.59 for the NRI method (p < 0.001). R2 values for the RFR method 
ranged from 0.16 to 0.74 (RMSE = 0.45 to 0.52) and from 0.22 to 0.77 for the GPR method 
(RMSE = 0.39 to 0.47) and FS datasets. R2 values for the S2 datasets ranged from 0.17 to 
0.25 for the NRI (p < 0.001); from 0.29 to 0.68 for the RFR (RMSE = 0.44 to 0.55) and from 
0.30 to 0.80 for the GPR method (RMSE = 0.38 to 0.45). In the full, erectophile and winter 
wheat datasets, the ML-based methods RFR and GPR outperformed the NRI method for 
both the FS and S2 dataset. Overall, the RFR and GPR exhibited similar R2 values with the 
GPR showing slightly higher values. For the NRI method we found generally higher R2 
values for the FS data than for the S2 resampled data. This was not observed for the RFR 
and GPR, where the differences in R2 were small. In the sugar beet dataset, both ML-based 
methods showed higher performance on the S2 than for the FS dataset. 
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Figure 1. Coefficients of determination (R2) values for the field spectrometer (FS) dataset (empty bars) and the Sentinel-2 
(S2) resampled dataset (hatched bars) for the used methods: Normalized Ratio Index (NRI, blue), Random Forest Regres-
sion (RFR, red) and Gaussian Processes Regression (GPR, green) as related to the plant traits described in Table 1. 

For ChlAB, R2 values for the FS datasets ranged from 0.45 to 0.85 for the NRI (p < 0.001); 
from 0.5 to 0.81 for the RFR (RMSE = 0.39 to 0.66) and from 0.63 to 0.91 for the GPR (RMSE 
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= 0.34 to 0.56). For the S2 datasets, R2 values ranged from 0.43 to 0.85 for the NRI (p < 0.001); 
from 0.48 to 0.80 for the RFR (RMSE = 0.35 to 0.65) and from 0.41 to 0.84 for the GPR (RMSE 
= 0.44 to 0.71). For each method, the differences between the FS and the S2 datasets were 
small except for GPR, which showed higher R2 values for the FS than the S2 data in the 
erectophile and sugar beet subsets. The NRI method performed very similarly to the ML-
based methods for ChlAB. 

For LAI, R2 values for the FS datasets ranged from 0.60 to 0.92 for the NRI (p < 0.001); 
from 0.74 to 0.91 for the RFR (RMSE = 0.32 to 0.81) and from 0.69 to 0.93 for the GPR (RMSE 
= 0.29 to 0.58). For the S2 dataset, R2 values ranged from 0.54 to 0.90 for the NRI (p < 0.001); 
from 0.73 to 0.91 for the RFR (RMSE = 0.30 to 0.75) and from 0.69 to 0.89 for the GPR 
method (RMSE = 0.35 to 0.59). Differences between the FS and the S2 data were very small 
for LAI, with the FS data exhibiting only slightly higher R2 values. Performance of the NRI 
was overall similar to that of the ML-based methods, except for the full dataset. 

For the LAI-scaled trait LAI*Nconc, R2 values for the FS data ranged from 0.61 to 0.91 
for NRI (p < 0.001); from 0.78 to 0.92 for RFR (RMSE = 1.56 to 3.97) and from 0.81 to 0.90 
for GPR (RMSE = 1.40 to 3.35) depending on the subset. For the S2 data, R2 values ranged 
from 0.54 to 0.89 for the NRI (p < 0.001); from 0.80 to 0.93 for the RFR (RMSE = 1.46 to 3.73) 
and from 0.81 to 0.89 for the GPR (RMSE = 1.47 to 3.51). Differences between the FS and 
S2 datasets were small. 

For the LAI-scaled trait LAI*ChlAB, R2 values for the FS data ranged from 0.59 to 0.91 
for the NRI (p < 0.001); from 0.74 to 0.92 for the RFR (RMSE = 1.86 to 5.49) and from 0.83 
to 0.89 for the GPR (RMSE = 1.97 to 4.75). For the S2 data, R2 values ranged from 0.53 to 
0.90 for the NRI (p < 0.001); from 0.77 to 0.92 for the RFR (RMSE = 1.67 to 5.29) and from 
0.76 to 0.86 for the GPR (RMSE = 2.31 to 4.81). Differences between the FS and the S2 data 
were again small. 

3.2. Spectral Band Selection 
3.2.1. Random Forest Variable Importance 

The waveband ranking for Nconc in the full FS dataset (Figure 2, left column) showed 
the RE spectral region around 710 nm to be of high importance for the RFR model, along 
with the band at 400 nm and two bands in the SWIR region around 2000 nm. For the full 
S2 dataset (Figure 2, right column) the two RE bands (RE2 at 740 nm and RE3 at 783 nm, 
see Table 2), the two NIR bands and SWIR bands were influential for Nconc approximation. 
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Figure 2. Calculated variable importance scores of the random forest regression (RFR) on the full dataset for the field 
spectrometer (FS, left) and the Sentinel-2 (S2, right) resampled data. The colors show the waveband regions visible (VIS: 
400–690 nm), red edge (RE: 700–790 nm), near infrared (NIR: 800–1350 nm) and short-wave infrared (SWIR: 1450–2400 
nm). The water absorption bands in the regions 1350–1450, 1790–1990 and >2400 nm were omitted due to their low signal 
to noise ratio. 

The waveband ranking for ChlAB on the full FS dataset showed the most influential 
variable to be the band at 700 nm in the RE region. The VIS region, especially the green to 
red domain (520 to 660 nm), contained many bands ranked with high importance. The 
band ranking for ChlAB in the S2 dataset showed the same wavelength at 705 nm (RE1 
band of S2) to be highest ranked followed by the green band at 560 nm. The other bands 
in the VIS range at 490, 665 and 443 nm (the S2 bands blue, red and coastal aerosol) also 
seemed to be important variables being less highly ranked, showing a similar pattern as 
observed for the FS dataset. 

For LAI, in the full FS dataset, we found the NIR region at 870 nm to have the highest 
rank followed by other bands in the NIR, RE and one band in the VIS region at 400 nm. 
The S2 dataset exhibited the two bands RE3 at 783 nm and NIR1 at 842 nm as being highest 
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ranked for LAI estimation, followed by the NIR2 band at 865 nm. Ranking for the FS da-
taset showed a similar pattern, where the NIR region between 850 and 870 nm and the RE 
region at 750 and 760 nm were shown to be the most important. 

The two LAI-scaled traits showed bands in the RE and NIR regions between 760 and 
940 nm to be of importance for the FS dataset. For LAI*Nconc, the band at 760 nm was the 
highest ranked, followed by the band at 900 nm, showing a much lower importance. In 
the S2 dataset the RE3 band at 783 nm was ranked the highest, followed by the NIR1 band 
at 842 nm and the NIR 2 band at 865 nm being very similar as in the FS dataset. 

For LAI*Cconc four bands in the RE (bands 770, 780 nm) and NIR region (bands 810, 
890 nm) were ranked highest. For the S2 dataset, the RE3 band at 783 nm was found to be 
the most important, followed by the NIR1 and NIR2 bands at 842 and 865 nm, respec-
tively. The other S2 bands possessed a much lower variable importance. 

3.2.2. Gaussian Processes Regression–Band Analysis Tool 
The GPR-BAT performed on the full FS dataset showed the LAI and LAI-scaled traits 

to be largely invariant to band removal until five bands were left, after which R2 values 
decreased sharply (Figure 3). Prediction performance for Nconc was invariant to band re-
moval until 20 bands, after which GPR R2 values increased until five bands were left, after 
which the R2 values decreased sharply again. ChlAB showed a similar trend, where R2 val-
ues increased until five bands were left and then sharply decreased. The RMSE values for 
the traits followed the same trend, albeit inverted. They stayed invariant to band removal 
(or decreased) until ten to five bands and then sharply increased (Supplementary Figure 
S4). GPR-BAT R2 values for the five most important FS bands were 0.74 for Nconc, 0.75 for 
ChlAB, 0.91 for LAI and 0.84 for LAI* Nconc and LAI* ChlAB. For the S2 dataset, GPR-BAT R2 
values were 0.77 for Nconc, 0.76 for ChlAB, 0.81 for LAI, 0.84 for LAI*Nconc and 0.85 for 
LAI*ChlAB. Therefore, the top five ranked bands were used for analysis of the GPR-BAT. 

 
Figure 3. Prediction performance in (R2) for the traits as a function of the number of spectral bands obtained using the 
Gaussian processes regression–band analysis tool (GPR-BAT) tool with sequential backward band removal (SBBR) algo-
rithm applied (for details on SBBR, see: [86]). 
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Figure 4 shows the frequency of how many times a certain band was ranked from 1st 
to 5th place across all the ten folds from the cross-validation performed in the GPR-BAT 
(see Section 2.2.4). 

 
Figure 4. Occurrence of the top five ranked bands with lowest GPR sigma values for the ASD sensor (left) and the S2 
resampled sensor (right). Data from 10-fold cross validation, e.g., 50 (10 folds × 5 ranks) is the maximum possible occur-
rence. 

For the Nconc, the VIS region around 400 nm and the SWIR region (around 2000 nm) 
was shown to be of high importance. The green and early red (around 600 nm) and RE 
(around 700 nm) regions were shown to be of minor importance for the full FS dataset. 
The S2 dataset showed especially the green band of S2 at 560 nm and—less often—the two 
NIR bands at 842 and 865 nm to be the most important bands. The S2 RE bands at 705 and 
740 nm were also important, albeit ranked in the second rank. 

The spectral bands with the largest importance for ChlAB estimation using GPR for 
the FS dataset were located in the SWIR region around 2400 nm, with other important 
bands in the green (590 nm), RE (760 nm) and SWIR region at 2000 nm. The S2 dataset 
showed the most important bands to be the SWIR2 band at 2190 nm and the RE3 band at 



Remote Sens. 2021, 13, 2404 13 of 24 
 

 

783 nm and the NIR2 band at 865 nm. This was a slightly stronger focus on the NIR region 
compared to the FS dataset. 

For LAI, we found a large spread of important bands over the spectrum for the FS 
dataset. The bands at 570 nm and at 740 nm were ranked 1st the most often. The top 
ranked bands were also situated in the SWIR region (once at 1670 and 2010 nm) and in the 
blue VIS region around 420 nm. The S2 resampled dataset showed a strong focus on the 
RE region, with the RE2 band at 740 nm being the first-ranked band the most often. The 
water vapor band at 945 nm in the NIR region also exhibited high importance. The S2 
green band at 560 nm—the most important region in the FS dataset—was also highly, but 
not top, ranked. 

The distribution of important bands for LAI*Nconc was like LAI for the FS dataset. The 
important bands were in the VIS region at 410 and 420 nm, at 770 nm in the RE region and 
two in the SWIR region at 1670 and 1720 nm. The S2 resampled dataset showed the RE2 
band at 740 nm, the RE3 band at 783 nm and the water vapor band at 945 nm to be the 
most important for the GPR-BAT. 

For estimation of LAI*ChlAB from the FS dataset, important bands were found across 
the full spectrum with the most important band located at 1350 nm. Other important 
bands were in the VIS region near 410 nm, one band at 770 nm in the NIR and one in the 
SWIR region at 1670 nm. The S2 resampled dataset also showed a focus on the RE region 
as found for LAI and LAI*Nconc. The importance at the end of the NIR region at 1350 nm, 
which was observed in the FS dataset, was not observed in the S2 dataset. 

3.3. Global Sensitivity Analysis 
Using the ARTMO toolbox [78], different MLRAs were fitted to the full dataset only 

as the data subsets proved to be too small, resulting in insufficient emulator performance 
for GSA. For the full FS dataset, a canonical correlation forest was chosen as the best per-
forming emulator with a RMSE of 3.95 and a normalized RMSE (NRMSE) of 11.8% (re-
flectance values). The per-wavelength NRMSE ranged from 10% in the NIR plateau up to 
17.57% at 720 nm in the RE region (Figure S5). For the S2 resampled dataset, the canonical 
correlation forest was also identified as the best performing emulator with a RMSE of 3.57 
and NRMSE of 11.72%. The per-wavelength NRMSE values ranged from 10.26% at the 
NIR2 band (865 nm) to 12.66% at the RE1 band situated at 705 nm (Figure S6). 

The sensitivity of each spectral band for the trait estimation showed LAI to be the 
most dominant variable, especially in the RE and the NIR region (Figure 5). The LAI 
showed up to 93% of the total sensitivity in these regions. This was independent of the 
dataset (FS and S2). LAI also exhibited strong sensitivity in the VIS region around 400 nm. 
Sensitivity for the LAI dropped in the SWIR region after 1400 nm but remained large with 
a local SWIR peak at 2000 nm. The S2 dataset showed very similar pattern for the LAI in 
the regions, where an S2 band was located. 
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Figure 5. GSA results for the ASD ground spectrometer (left) and the Sentinel-2 resampled (right) sensor for the full 
dataset. 

The sensitivity pattern observed for ChlAB was very different from the one observed 
for LAI, exhibiting peaks where LAI showed a low sensitivity at 710 nm (72.04%), in the 
green region around 550 nm (56%), and in the SWIR region around 1670 nm (61%). The 
lowest sensitivity was observed in the RE and NIR region, where LAI was dominant. The 
S2 dataset showed very similar sensitivity as the FS dataset, albeit at a much lower spectral 
resolution. 

For Nconc, a very low sensitivity compared to the other traits was observed, ranging 
from 0.5 to 16.47%. Sensitivity for Nconc was especially low in the RE and NIR region, 
where LAI was dominant. The lowest sensitivity was found at 740 nm. The wavelength 
region with the highest sensitivity for Nconc was the VIS region, with an average sensitivity 
of 15% and the peak sensitivity for Nconc of 16.47% located at 540 nm. Large parts of the 
SWIR region from 1400 to 2400 nm showed sensitivities ranging from 10 to 12%. For the 
S2 dataset, Nconc exhibited very low sensitivity over the whole spectrum, with values rang-
ing from 1.4 to 2.8%. 

4. Discussion 
4.1. Optimal Analysis Method Depends on Target Trait 

For ChlAB, coefficients of determination (R2 values) for the NRI method were in the 
same range or better than the Random Forest Regression (RFR) and Gaussian processes 
regression (GPR) approaches (Figure 1). Other studies using NRIs found significant R2 
values for estimating crop-specific ChlAB of 0.55 for winter wheat [89], 0.92 for maize, 0.81 
for soybean [34] and 0.77 for sugar beet [90], comparable to the values observed for the 
crop-specific subsets found in this study (0.72 for winter wheat and 0.79 for sugar beet). 
R2 values found for ChlAB for the full, crop unspecific dataset were, however, much lower 
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(<0.57). This was to be expected, as the large variance between the crops is not only caused 
by different ChlAB levels across different crops, but also by the strongly differing canopy 
architecture, leaf morphology and partly growth stages (Table 1). Due to the mediocre 
correlation between ChlAB and plant N status [30], traits such as Nconc and LAI are more 
interesting from an agronomic viewpoint, since they are more directly related to the plant 
management decisions of the farmer on the field level. 

For Nconc, a mass-based N measure, the ML-based methods RFR and GPR performed 
generally better than the NRIs, a finding also confirmed by [5,91]. This was most pro-
nounced in the full dataset, where RFR R2 was 0.64 (RMSE = 0.52) and GPR R2 0.74 (RMSE 
= 0.39). This is in the same range as reported by [44] for RFR applied for pastures (R2 = 0.76 
and RMSE of 0.38), e.g., grassland, which are mixed species stands. A slightly different 
approach was used by [45], who calculated SIs and did subsequent RFR for Nconc in winter 
wheat (R2 = 0.87 and RMSE of 0.32), e.g., a single-crop dataset. We found RFR R2 values 
through direct estimation to be 0.74 (RMSE = 0.47) for the crop-specific winter wheat da-
taset. Ref. [47] reported GPR R2 values for mass-based N (in mg g−1) of 0.3 ± 0.07 for a 
dataset of mixed tree species. 

The area-based N trait LAI*Nconc exhibited much higher model performance than the 
Nconc in our study. This is in line with literature citing the direct estimation of Nconc to be 
mediocre [30]. However, signal separation remains an issue with this composite parame-
ter, as described further below in the discussion of the spectral regions of interest and the 
GSA (see Section 4.5). 

The biomass-related trait LAI was estimated better with the ML-based methods than 
the NRI method. Using NRIs, we explained 0.59 of the observed variation in the crop un-
specific full dataset, which is less than the R2 of 0.71 reported by [92], who also used NRIs 
in a mixed-crop dataset. The R2 of up to 0.92 found in the crop-specific subsets was similar 
to single-crop values of up to 0.98 found for maize [93]. R2 for LAI predicted with the RFR 
model was 0.77 (RMSE = 0.81) for the full dataset and a maximum of 0.91 for the sugar 
beet dataset (RMSE = 0.32). These values are comparable to the ones found by [94] for 
soybean (R2 = 0.74 and RMSE of 0.11) and [78] for rice (R2 = 0.76 and RMSE of 0.67). Ref. 
[95] found R2 values for LAI in a multi-crop dataset of up to 0.91 using GPR (RMSE = 0.51). 
This was very similar to the results obtained in this study (full dataset R2 of 0.91 using 
GPR, RMSE = 0.55). 

4.2. Low Specificity of Index-Based Methods for Satellite-Based Remote Sensing 
The parametric, index-based methods performed very well overall, indicating that 

they can be readily used for proximal remote sensing tasks, e.g., with a FS. More sophis-
ticated SIs that take either more than two bands into account [28,33,50,58], or are a com-
position of multiple indices [29,96], can—and regularly do—increase prediction results 
over NRIs. NRIs are, however, still a capable instrument in remote sensing, offering fast 
and efficient calculation and easy interpretation. This explains the commercial systems 
based on spectral indices already in operation [32,40,41]. For the S2 resampled dataset 
representing satellite-based remote sensing, performance of the NRIs was low, especially 
for Nconc. This was mostly due to the unavailability of bands in the S2 sensor that were 
important in the FS dataset for Nconc (Figures S7 and S8). This is also reflected in the liter-
ature, where more sophisticated indices, such as MSAVI, ClRedEdge, etc., are often used for 
Nconc estimation from S2 data instead of NRIs [32,34]. These indices were also calculated 
in this study, but yielded very low coefficients of determination for Nconc on the full dataset 
(R2 of 0.02), and were sometimes not even significant. The performance on the crop-spe-
cific datasets was found to be similarly low. These non-NRI indices were shown to be not 
specific for traits, e.g., multiple indices showed equal prediction performance for Nconc. 
The same was also observed for ChlAB, where the prediction performance of more special-
ized vegetation indices such as the MSAVI, MCARI and ClRedEdge index [33,34,89] and oth-
ers showed half of the indices to be situated within <0.1 R2 of each other. Especially LAI 
and ChlAB shared indices that were indicative of these two traits at the same time. This 
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was true for both the FS and the S2 dataset. Another reason for the low specificity of the 
index-based methods may be the crop-unspecific dataset, as well as the few datapoints of 
the generative growth stages. The nonparametric ML methods RFR and GPR showed sim-
ilar prediction performance between the FS and the S2 datasets (Figure 1). RFR and GPR 
performed especially well in the prediction for both the mass- and the area-based N trait 
and LAI in the S2 dataset compared to the NRIs. Coupled with the low specificity of the 
index-based methods, this indicates that ML-based approaches may be better suited for 
satellite-based remote sensing applications of plant N than index-based methods. This 
better performance was especially apparent in the full dataset reflecting all the heteroge-
neity mentioned above. 

4.3. Model Performance on Data Subsets 
In the smaller, crop-specific datasets, the relative performance of the NRI increased 

(Figure 1). Even though random forests (RFs) can work well on small datasets [97], they—
like all ML-based methods—generally perform better with larger datasets [98]. The RFR 
and GPR performances on the data subsets showed large variation in R2 and RMSE values 
in the data subsets (Figures S9 and S10), which were too small to fit a reliable emulator in 
ARTMO and run a GSA (see Section 2.2.5). This suggested that in the case of limited data 
availability, the computationally far less expensive NRI method performs similar as the 
ML-based methods. It is important to note that this is generally only the case for crop-
specific datasets, as the NRIs were outperformed by the ML methods on the unspecific 
full datasets containing several crops (Figure 1). This could be due to the ML-based meth-
ods using more input variables (e.g., spectral bands) than the NRI approach. RFR and GPR 
use all available spectral bands for regression and therefore more of the available infor-
mation of the spectrum compared to the index-based methods that used two bands in this 
study and usually up to four bands [28,56]. It is likely that underlying crop architecture 
and morphology, as affected by growth stage, related background soil signal, plant health 
status, etc., are used by the RFR and GPR algorithms. The full dataset contains the most 
variance, therefore the ML models also perform the best on them. For that reason, we see 
the full dataset as valuable for agro-ecosystem modeling and monitoring. To fully answer 
these questions, especially with respect to crop-specific datasets, further data collection 
campaigns are needed to obtain larger crop spectral libraries (CSL) to exploit the power 
of ML-based algorithms in conjunction with the S2 satellites. 

4.4. Influence of Band Number and Bandwidth on Trait Estimation 
Trait estimation of the RFR and GPR methods on the S2 dataset showed little perfor-

mance loss compared to the FS dataset (Figure 1), indicating that the reduced amount of 
S2 bands (n = 12) compared to the FS bands (n = 172) did not deteriorate model perfor-
mance. This was confirmed in the GPR-BAT, where band removal kept R2 and RMSE val-
ues relatively stable—or even improved them—until the number of five bands was 
reached, after which the model performance dropped strongly (Figures 3 and S4). This 
indicated that GPR was able to predict the traits used in this study optimally using five 
spectral bands. A similar finding was reported for chlorophyll and LAI by [86], who found 
these traits to be optimally estimated using four to ten spectral bands. Ref. [47] found that 
reducing bands improved estimation of mass-based N (in mg g−1), but in contrast found 
the number of bands to be around 100. 

Another reason for the good performance of the ML methods on the S2 dataset may 
be that these methods cope better with the broad bandwidth of certain S2 bands (Table 2), 
especially for certain NIR and SWIR bands. The effect of the broad bandwidth of the S2 
sensor could also be observed in the band importance rankings. Especially in the case of 
ChlAB, where the S2 dataset exhibited the same important bands in the VIS range as the FS 
dataset, but aggregated to the four VIS bands of S2 (Figure 2). In contrast, the hyperspec-
tral FS data showed good performance on the narrowband NRIs compared to the broad 
bands found on the S2 satellite. It is therefore possible to predict certain traits such as 
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ChlAB and LAI using only two narrow bands of the spectrum. This also shows that, de-
pending on the user and the trait of interest, input variables can be reduced, saving on 
computation time or sensor cost. 

4.5. Spectral Regions for Trait Estimation 
In the multivariate global sensitivity analysis (GSA, Figure 5), the LAI was shown to 

be the most dominant variable for the spectral reflectance measurements, which confirms 
findings of other studies conducting GSA [65,88,99]. These studies, however, found LAI 
to be most important in the short-wave infrared (SWIR) region, which is a finding we 
could not confirm in this study, where the red edge (RE) and especially the near-infrared 
(NIR) regions were most important for the LAI estimation (Figures 2, 4 and 5). Since most 
studies employing the GSA used simulated data from RTMs, direct comparison to the 
real-world spectral datasets is difficult, but nevertheless very important. The GSA emula-
tor performance measures found in this study were much lower than the emulator per-
formed on a simulated RTM [88], but can be considered adequate for real-world data, with 
an NRMSE of 11.72%. The lower performance can be attributed to the full dataset contain-
ing different crop species and growth stages. Although the same FS and lab equipment 
were used to obtain the data of the three original datasets (Section 2.1), different people 
collected the data. This may have added additional variation in the dataset. Other effects 
such as different crop varieties, effects of biotic (pests and diseases), and abiotic stresses 
(nutrient and water limitation), or presence of weeds in monocrop stands may cause ad-
ditional noise compared to simulated data. Such effects can never be fully avoided in real-
world spectral data. Despite these limitations of the real-world dataset, the overall GSA 
regions for ChlAB, LAI and Nconc showed similar regions as obtained with RTM data 
[65,88,99], indicating both the validity of RTM and the applicability of the real-world da-
taset used for this study. 

Univariate analyses also found the RE and NIR regions to be important for LAI esti-
mation [52,53,55,56]. In the GSA, Nconc was shown to be dominated by the other traits, with 
only the visible (VIS), RE and SWIR region showing low sensitivity (Figure 5). This was 
also found in the GSA of the RTM-based studies [65,88]. 

For the ChlAB trait, the RE region around 700 nm and the red region around 600 nm 
were the most important. The RFR and GPR-BAT exhibited contrasting results in band 
importance with the GPR-BAT exhibiting the far SWIR region around 2400 nm to be of 
high importance for ChlAB. Ref. [47] also found the far SWIR region at 2250 nm to be im-
portant for ChlAB in a GPR-BAT analysis. 

4.6. Important Bands for Plant N Estimation 
In the univariate spectral region analysis on the FS dataset, the VIS region at 400 nm, 

the RE region at 740 nm and the SWIR region at 2000 nm were shown to be the most 
influential for sensing Nconc (Figures 2 and 4). The importance of the RE regions in plant 
Nconc estimation has been shown previously [20,24,31,100]. The VIS region for plant-N-
related traits has also been shown to be important [47], but to a lesser extent. The im-
portance of the SWIR region for mass-based plant N estimation has been shown previ-
ously [35,46]. Since large proportions of leaf N are bound in proteins [3], which exhibit 
high spectral absorption in the SWIR region [5,38], the importance of the SWIR bands for 
Nconc was expected. For area-based plant N, the SWIR regions were found to be important 
as well [46]. This finding was only partially confirmed in this study, where the spectral 
regions of interest for LAI*Nconc were primarily observed in the RE and NIR regions and 
only partially in the early SWIR region around 1650 nm in the GPR-BAT analysis for both 
the FS and the S2 dataset (Figure 4). 

In the multivariate GSA on the S2 dataset, sensitivity for Nconc was even lower than 
that observed for the FS dataset (Figure 5). In the univariate band analysis, the S2 dataset 
for the Nconc trait showed the RE bands of S2 and the NIR bands to be the most important, 
very similar to the FS dataset. Ref. [59] also reported the S2 NIR band in conjunction with 
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the S2 red band to be the most important for Nconc in winter wheat. The importance of the 
S2 SWIR bands for Nconc was mentioned by [101]. Ref. [24,60] both estimated area- (kg ha−1) 
and mass-based N (%) in winter wheat and highlighted the use of the three S2 RE bands 
[60] and a combination of NIR and RE bands [24]. Ref. [34] also used area-based N meas-
urements (g m−2) and reported the importance of the S2 RE bands. The LAI*Nconc was also 
shown to be sensitive in the RE and NIR region for the S2 dataset, a result that is compa-
rable to the literature [24,34,60]. 

4.7. Field Spectrometer Data for Satellite Data Simulation 
The simulation of satellite data based on FS data has been evaluated in previous stud-

ies [24,34,59,101]. Of these, [24,34] performed simulation of S2 bands using an FS with 
wavelength up to 1000 nm. In this study, the spectral range was extended to 2500 nm, 
which was beneficial for mass-based N estimation due to the importance of the SWIR 
bands covering the protein-specific regions of N. Studies using true satellite imagery and 
FS data have obtained similar results in remote sensing plant N (mass- or area-based) and 
concluded similar spectral bands of interest for these traits [32,60,102], highlighting the 
robustness of the simulation approach followed in this study. 

Simulation of satellite data allows modeling interactions of important crop traits and 
the remotely sensed signal without the need for expensive, large-scale field experiments 
and worries about satellite pixel site or mixed pixel effects. This is especially important 
for small-structured agricultural systems such as those found in Switzerland and southern 
Germany, where field sizes are small and inhomogeneous (e.g., with respect to trees 
within the field, hedges, and soil differences). Intercrops are often grown in the crop cycle 
between the main crops and have little coverage in national census databases. Therefore, 
prediction of crop traits on crop unspecific datasets is very important, particularly if eco-
logical measures are an integral part in the agro-ecosystem policy fostering inter- or mixed 
cropping. Such cropping practices will cause more mixed pixels. It can be assumed that 
such practices will become more important and will increase in the future with Swiss and 
EU regulatory encouragement of ecological landscape measures [103]. A large CSL would 
be interesting for ‘end users’ such as governmental institutions to develop monitoring 
products, strategies and policies on an agro-ecosystem level. For such applications, a CSL 
including multiple crop species and varieties and information from different growth 
stages is sufficient to estimate plant-N-related traits as was shown in this study. This is an 
important step for possibly allowing derivation of valuable information on N flows such 
as the in- and output in agro-ecosystems supporting the identification of regional hotspots 
and support decisions and measures for mitigation. 

4.8. Outlook on Remote Sensing of Plant N 
ChlAB and LAI are estimated robustly through remote sensing techniques currently 

in use [30,34,78,104]—a finding confirmed in this study. This comes as no surprise, as the 
S2 satellites were designed for vegetation monitoring [34]. Future work is needed in the 
domain of remote sensing plant N. Especially in small-scaled agricultural systems, the use 
of FS mounted on tractors [32,40] and unmanned aerial vehicles (UAVs) [20,105] has been 
proposed as an effective solution for data collection for plant N prediction and modeling. 
Based on such data, ML methods can be used more efficiently, or alternatively, advanced 
modeling techniques such as deep learning could be applied. These approaches already 
show promising performance for plant N estimation [49,60] but are heavily dependent on 
large quantities of data. An additional benefit of more data collection would be the crea-
tion of more specific (e.g., crops, growth stages, climate zones, etc.) datasets forming a 
CSL to allow better simulation of satellite sensors, advancing the modeling of N-related 
crop traits. Such a CSL would directly address the bottleneck of the small crop-specific 
data subsets in this study. These small subsets resulted in variations of ML performance, 
leading to unreliable prediction. Such datasets hold great potential, as the information 
about the plant morphology and growth stage would be included in them. A crop-specific 
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CSL would be especially important for agronomists developing models for farmers which 
need the highest possible model accuracy for crop monitoring for management decisions 
such as N fertilization. 

5. Conclusions 
In this study, we showed the performance of parametric and nonparametric methods 

for two nitrogen (N) related traits: (1) the mass-based N measure, Nconc, and (2) an area-
based N measure, LAI* Nconc on a diverse real-world spectral library. Estimation of plant 
chlorophyll was shown to be robust, with few spectral bands in the red region around 600 
nm and the red edge (RE) region around 700 nm, irrespective of whether a broadband 
satellite or narrowband hyperspectral field spectrometer (FS) was used. Plant chlorophyll 
was especially well estimated using normalized ratio indices (NRIs). The leaf area index 
(LAI) was estimated with good performance for both the ground-based FS and the satel-
lite-based Sentinel-2 (S2) datasets containing single crops and the dataset containing a 
mixture of crops. LAI was better predicted using machine learning (ML) methods than 
NRIs. The estimation of Nconc was most successful using the ML algorithms random forest 
regression (RFR) and Gaussian processes regression (GPR) for both the hyperspectral FS 
and the S2 dataset. Hyperspectral devices achieved the best estimation results in the visi-
ble (VIS) region at 400 nm, especially in the RE region around 740 nm and the SWIR region 
around 2000 nm. The broadband S2 sensor needs the SWIR bands for good estimation 
performance. The ML algorithms were shown to be capable of estimating Nconc in the mul-
tiple crop dataset. Scaling the Nconc with LAI approximated the area-based plant N meas-
ure N uptake (NUP) and improved the prediction of crop N status by including the plant 
biomass signal. However, the separation of the biomass signal remains a challenge, and 
further research is needed. We therefore strongly recommend intensifying the data collec-
tion of plant-N-related traits and spectral measurements, as well as sharing available da-
tasets and/or spectral libraries in order to monitor N in agro-ecosystems on a regional or 
even national scale. Such systems would facilitate more intelligent monitoring and deci-
sion support systems for agricultural policies and eventually precision farming. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-
4292/13/12/2404/s1. Figure S1. Location of the measurements where data was sampled for this paper; 
Figure S2. Detailed BBCH stages of the dataset; Figure S3. Climate diagram showing average tem-
perature and precipitation for the region where the data was collected; Figure S4. RMSE values of 
the traits as a function of the number of spectral bands obtained using the Gaussian processes re-
gression - band analysis tool (GPR-BAT) with the sequential backward band removal (SBBR) algo-
rithm applied; Figure S5. Performance of the emulator (Canonical Correlation Forest) on the full FS 
dataset with 20 PCA and 80/20% train/test set split; Figure S6. Performance of the emulator (Canon-
ical Correlation Forest) on the S2 resampled full dataset with 20 PCA and 80/20% train/test set split; 
Figure S7. R2 values between the trait of interest and the normalized ratio indices (NRI’s) using all 
possible band combinations of the full field spectrometer dataset; Figure S8. R2 values between the 
trait of interest and the normalized ratio indices (NRI’s) using all possible band combinations of the 
full Sentinel-2 resampled dataset; Figure S9. R2 values for prediction on the test set for 100 iterations 
of random train/test set splits. Train/test set splits were performed by stratification by crop and date 
combinations; Figure S10. Median centred RMSE values for each trait & dataset combination for the 
same 100 iterations of random train/test set splits as found in appendix figure 1; Table S1. The da-
taset contains the following 11 Crops. 
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