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Abstract: This work presents an experimental study related to the mechanical performance of a special
design spring fabricated with a superelastic shape memory alloy (SMA-SE). For the experimental
testing, the spring was coupled in a rotor machine, aiming to attenuate the mechanical vibration when
the system went through a natural frequency without any external power source. It was verified that
the reduction in instabilities stemmed from the better distribution of vibration force in the proposed
device, as well as the damping capacity of the spring material. These findings showed that the
application of the M-Shape device of SMA-SE for three different cases could reduce vibration up to
23 dB when compared to the situations without, and with, 1.5 mm of preload. The M-Shape device
was shown to be efficient in reducing the mechanical vibration in a rotor system. This was due to the
damping capacity of the SMA-SE material, and because the application did not require any external
source of energy to generate phase transformation.

Keywords: shape memory alloys; passive dampers; mechanical vibrations; rotor system; experimental;
superelasticity

1. Introduction

Shape memory alloys (SMAs) are a class of metallic materials that have two specific
characteristics: shape memory effect (SME) and superelasticity (SE). SMA-MEs have the
ability to fully recover an apparently plastic deformation introduced in a lower-temperature
phase (martensite) by heating it to a temperature high enough to promote a reverse trans-
formation of the material (from martensite to austenite).

SMA-SE is related to the ability of the material to undergo large reversible deforma-
tions. This is associated with a phase transformation (from austenite to martensite) induced
by an applied mechanical loading and, after load withdrawal, the recovery of the original
shape without the occurrence of excessive plastic deformation. These effects are associated
with a phase transformation induced by temperature or mechanical stress in SMA, called
thermoelastic martensitic transformation [1–4]. Further, each phase of this material has
different properties; for example, austenite has high stiffness and low damping, while
martensite has low stiffness and high damping.
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Figure 1A shows the SMA-ME phenomena, with a modified shape in the martensitic
phase due to an external load. Mechanical loading forces the martensite variants to reorient
(detwinning) into a single variant, leading to large macroscopic inelastic strain (from
twinned martensite to detwinned martensite). When the load is withdrawn, the material
remains in a detwinned state and the inelastic strains are not recovered (steps 2–3). For
recovery, it is necessary to heat the material so that the transformation from detwinned
martensite phase to austenite phase can occur. After recovery, as the material cools, it
returns to the twinned martensite phase without residual deformation.
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Figure 1B illustrates the full phase transformation, from the austenite phase to the
detwinned martensite phase, which is directly produced in SMA–SE with the application
of an external load in segments (steps 1–2–3). This process is associated with large inelastic
strains, which are recovered upon unloading (steps 3–4–1) due to the reverse transformation.
The complete load–unload cycle results in a hysteresis curve, where the area inside these
curves represents the dissipated mechanical energy in the cycle [3–7].

The ability of an SMA to return its original state after some deformation, and the
difference in the stiffness and damping of each involved phase, is the reason for the extensive
studies on the use of this class of material in order to reduce vibration in rotor systems [8,9].
For this application, both effects (SME and SE) have been frequently used. SMA-ME has
been used in many types of designs, such as helical springs [9–13], wires [14,15], and
special designs [16]. For SMA-SE, the number of applications has also been growing lately—
particularly, applications in helical springs [17–19], wires [2,20–23], and special designs [24].

However, applications with SMA-ME are limited because it is thermally active, re-
quiring an external source of energy to provoke material phase change through heating
and cooling. In addition, the thermally active material exhibits a low-frequency response
(up to 10 Hz), as reported in the literature [9]. Moreover, SMA-ME requires additional
equipment. In order to change the temperature of the SMA-ME device, a control system
is required to precisely activate the heating process, while a cooling system is required
to recover the previous phase of the material. In order to improve the efficiency of this
controller, it is usually necessary to add a timer to change the temperatures of the device to
achieve the complete phase transformation or use an efficient piece of equipment to execute
the process, which increases the cost. Differently, SMA-SE is activated by mechanical stress
and is capable of operating in a frequency range that exceeds 10 Hz, without the need for
an external power source. Moreover, under test conditions, this type of effect responds
faster when submitted to mechanical stress than SMA-ME [4].

Therefore, knowing the characteristics of SMA-SE and focusing on new types of
spring designs, following the simulations carried out in our previous work [25] and as a
compliment to the existing research, this paper describes an experimental study on the
mechanical performance of a spring device with an innovative special design (M-Shape)
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made of SMA-SE. Our intention is to reduce mechanical vibrations in a rotor system for
different applications.

2. Materials and Methods
2.1. Design of Bending Spring M-Shape Device

The bending spring design (M-Shape) shown in Figure 2A [26] focused on obtaining a
larger contact area with the bearing to provide stability for the rotor system acceleration
and create a better way to distribute the force applied by the ball bearings and shaft, as
illustrated in Figure 2B.
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Figure 2. (A) M-Shape device of SMA-SE; (B) distribution of the forces on the M-Shape device.

Due to its geometry, this device has a low stiffness. This is an important characteristic
because high stiffness levels can reduce the instabilities, changing the natural frequency
of the system [27], or, as a result, changing it during the application [9,13]. The vibration
attenuation due to stiffness shifting is not within the scope of this paper.

This M-Shape device was based on the bending spring design presented in our previ-
ous work [25,26]. It has fewer curves to facilitate fabrication and to avoid major changes in
the phase transformation temperatures of the SMA-SE material, which mainly depend on
its composition and history (fabrication process, heat treatments, and others) [4,7,28].

2.2. Fabrication of the M-Shape Device

A NiTi plate (ASTM F2063-2000) with a thickness of 0.3 mm (produced by Sunrise
Titanium Technology Co. Ltd., Shaanxi, China) with 55.57% of Ni was used to manufacture
the M-Shape device with the dimensions shown in Figure 2A. The first step was cutting
the NiTi plate, with the dimensions shown in Figure 3, using an electric discharge cutting
machine (EDM).
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Figure 3. Strips of NiTi SMA-SE.

Then, a heat treatment (500 ◦C for 60 min with cooling by natural convection), as
indicated by the manufacturer of the NiTi plate, was applied for homogenization and stress
relief [29]. Following this, a rolling process with reduction steps of 10% was conducted
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in order for the NiTi strips to reach sizes of 0.25 mm. Between each step, another heat
treatment (450 ◦C for 20 min, with cooling by natural convection to relieve stress) was
applied. These experimental procedures were proposed so as not to compromise or cause
only minimum damage in the microstructure of the material. The aim was to keep the
material’s superelasticity and not significantly change its phase transformation temperature.
Moreover, according to the literature [30,31], rolling increases plastic deformation resistance
as well as the superelastic effect, characteristics that benefit specific applications. To reach
the requested thickness, two steps were needed, as shown in Table 1.

Table 1. Steps of the rolling process.

Step Ts (mm) 10% of Thickness (mm) Tf (mm)

1 0.30 0.03 0.27
2 0.27 0.02 0.25

The next step was setting the shape into the M-Shape design. In this procedure, the
NiTi strip was placed inside the metallic mold (Figure 4A), which was fixed with bolts; cold
formed before heating at 500 ◦C for 30 min; and cooled by natural convection [32–34]. The
M-Shape device of SMA-SE, as shown in Figure 4B, was then obtained.
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2.3. Steady Experiment with the M-Shape Device

Measurements of the electrical resistivity as a function of temperature (ERFT) (Figure 5)
were conducted using a Huber® CC-902 refrigeration bath circulator in order to obtain and
compare the differences in the phase transformation temperatures of the NiTi strip and M-
Shape device. Two samples were used: (a) the NiTi strip with the heat treatment proposed by
the manufacturer and (b) the SMA-SE manufactured M-Shape device proposed in this work.
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Figure 5. Schematic of the ERFT experiment.

The temperatures were acquired by welding four copper wires in each of the samples
(1), and connecting them with a previously programmed DC power supply (3) attached in
the electrical interface (4). A K-type thermocouple (5) was attached to the sample (1) and
linked in the signal conditioner (6) and then to an acquisition system (7). Both samples were
conditioned in the refrigeration bath circulator (2). Conditioning took place by thermal
cycling from −60 ◦C to 100 ◦C in steps of 3 ◦C/min, following experimental procedures as
reported in the literature [35,36].

2.4. SEMD (System for Estimation of Material Damping) Experiment

The damping capacity and the effective stiffness of the M-Shape device were analyzed
by dynamic testing in SEMD (System for Estimation of Material Damping) developed in
our research group [37]. In this experiment, Figure 6, a displacement is applied, using the
shaker (item 9), directly in the SDOF (Single Degree of Freedom) system (item 6), which has
1.485 kg, without the SMA-SE device. Following, the M-shape device (item 4) was placed
in the position presented in Figure 6, and the same procedure was applied.

The difference between the damping of the SDOF system with and without the SMA-
SE device under test, provides an estimate of the material damping, through the experi-
mental FRF receptance curves, and Nyquist diagram. All details about the procedure of the
SEMD are presented in the literature [37].
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2.5. Dynamic Experiment with the M-Shape Device–MTS

Prior to attaching the M-Shape devices in the rotor system, the device was assembled
in the support bearing. Then, a dynamic experiment was performed in a universal testing
machine (MTS 810 100 kN), as shown in Figure 7.
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The M-Shape device was fixed on the support bearing using the pressure of the bearing
with the shaft. Additionally, acrylic plates were applied on each side of the support bearing to
avoid axial displacements (Y axis). Three physical situations were tested: (a) without preload,
(b) with a 1.0 mm preload (displacement), and (c) with a 1.5 mm preload (displacement).
These values were defined based on previous work [25,27]. In order to make it easier to
assemble the support bearing with the M-Shape device, steel bushing with a ball bearing was
used to apply the selected preloads in the rotor system, as shown in Figure 8.
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Experiments were conducted with 100 cycles, with displacements of 2 mm from
peak to peak at a 1 Hz frequency (Z-axis). Results were reported as curves of force vs.
displacement in order to compare the hysteretic loop for each case.

2.6. Rotor System with the M-Shape Device of SMA-SE Applied

The M-Shape device was assembled in the support bearing. This system was placed
in the rotary machine (Figure 9) to reduce mechanical vibrations due to passage through
the natural frequency in passive form.
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This rotor system had the following parts: a motor WEG W22 plus with 3 kW power,
a variable-frequency drive inverter WEG® µline® with a maximum rotation of 3600 RPM
(60 Hz), a disk, a shaft, and a support bearing. The parameters of this system are described
in Table 2. In this table, ∅In represents the inner diameter and ∅Out is the outer diameter.

Table 2. Experimental bench parameters.

Mass (kg) ØIn (mm) ØOut (mm) Length (mm) Width (mm)

Shaft 0.4816 – 12.50 414.00 –
Disc 1.4335 26.00 150.00 – 11.00

Support
Bearing 2.096 37.00 – 79.00 25.00

In order to obtain the displacements, three proximity sensors (SKF CMSS 665) were
inserted in the following locations: two in the highest vibration point in the shaft, near the
disk, and another used as a tachometer, as shown in Figure 10. A K-type thermocouple was
also attached to the M-Shape device to track temperature changes during the rotor system
run up.
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Figure 10. Sketch of the rotor system coupled with a sensor.

Experiments were performed under three experimental conditions—i.e., without and
with preloads of 1.0 mm and 1.5 mm in the support bearing with the M-Shape device. An
acceleration from 0 to 50 Hz over 500 s (0.1 Hz/s) was applied to the rotor system. This
acceleration was chosen because the system should not pass through its natural frequency
quickly, which can be a solution to avoid high amplitudes. The average results were
obtained in five experiments for each preload.

The experiments were also conducted with temperatures stabilized in a range, after
the expected self-heating suffered by the device according to each applied stress level.
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This difference between the starting temperatures corroborates the values reported in the
literature [3,7,37], which shows that the temperature in the material increases with a higher
applied stress. However, the analysis of the self-heating of SMA-SE devices is not part of
the scope of this study. The results were individually shown and compared to each other,
aiming to determine the system’s differences in attenuation.

3. Results and Discussions
3.1. Bending Spring Characterization

After the fabrication of M-Shape bending springs following the steps shown in the
methodology, ERFT measurements were performed in order to identify the temperatures
of phase transformation of the SMA-SE material, as shown in Figure 11 and Table 3. In
Figure 11, M, A, and R represent martensite, austenite, and R-phase, respectively, and the
subscripts s and f correspond to the initial and final transformation temperatures (TT).
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Figure 11. Electrical resistance as a function of the temperature. (A) NiTi strip and (B) M-Shape
device of NiTi.

Table 3. Temperatures of phase transformation of the SMA-SE.

Phase Temperature Ms (◦C) Mf (◦C) Rf (◦C) Rs (◦C) As (◦C) Af (◦C)

NiTi Strip–(A) −35.19 −23.14 19.48 28.70 20.63 30.39
M-Shape of NiTi–(B) −31.32 −17.31 26.55 39.22 28.09 40.53

Upon analysis, Figure 11 and Table 3 reveal that after the fabrication (rolling and
shape setting), the material’s phase transformation temperatures were affected in a range
of approximately 10 ◦C according to the specialized literature [4,7,28]. Consequently,
the NiTi bending spring does not have the full damping capacity of the superelastic
effect in environment temperatures, which should be an issue for passive applications.
However, according to Patoor et al. [7], the damping capacity of SMA-SE depends on the
excitation frequency, amplitude, temperature, and the difference between the operating
and transformation temperatures. In general, there are three distinguished situations of
damping with SMA-SE: at temperatures higher than the Ms it has a small damping capacity,
at temperatures below the Mf the damping capacity is increased, and at temperatures above
the As the maximum damping capacity is achieved [7].

The stress generated due to the vibrations of the rotor system leads to device self-
heating, reaching temperatures above the Af, which corroborates the findings of Reis
et al. [37]. Self-heating happens in the forward transformation (from austenite to marten-
site), which is exothermic, different from the reverse transformation (from martensite to
austenite), which is an endothermic phase transformation followed by the absorption of
thermal energy [7].
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3.2. SEMD Experiment with the M-Shape Device

Dynamic tests with the M-Shape device in SEMD were performed to analyze the
hysteresis damping (hs), loss factor (η), and effective stiffness (Ks). The experimental
procedure adopted was that described by Reis et al. [37], and the results obtained are
shown in Figure 12 and Table 4.
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Table 4. Hysteresis damping, stiffness, and loss factor obtained from SEMD.

A
SDOF without

M-Shape Device

B
SDOF with

M-Shape Device
Unit

hs 289.25 1485.7 N/m
hsma

a - 1196.45 N/m
Ks 18,381 33,014 N/m

Ksma
b - 14,633 N/m

ηs 0.0156 0.1313 -
ηsma

c 0.1157 -
a—hsma = (B − A) with row hs. b—Ksma = (B − A) with row Ks. c—ηsma = (B − A) with row ηs.

Here, the hsma is the hysteresis damping of the M-Shape device, Ksma is the stiffness
of the M-Shape device, and ηsma is the loss factor of the M-Shape device.

Upon analysis of Figure 12, it can be verified that there was a drop of −14 dB in the
amplitude values of the FRF in comparison to the same situation without the M-Shape
device. Furthermore, the hysteresis damping was obtained by analyzing the Nyquist
plot. An approximate 80% increase in damping was achieved with the use of this device,
as observed by the reduction in the Nyquist’s circle of the experiments, and in Table 4,
with and without the M-Shape device. This is taken as an indication that the proposed
bending-spring can be used as a damper and effectively reduces vibrations.

3.3. Dynamic Test with M-Shape Device Applied in the Support Bearing

After the identification of the temperatures of phase transformation and defining
the necessary preloads, dynamic tests were performed with the support bearing with the
M-Shape device. The hysteresis loop of each case was determined, without and with a
preload of 1.0 mm and 1.5 mm (see Figure 8).

Figure 13 shows the hysteresis loop that was obtained for the M-Shape device tested
under the three previously defined conditions according to Patoor et al. [7]. Additionally,
calculating the areas of each one of the curves, it can be noticed that the difference between
the cases with a preload of 1.0 mm and without is 45%, and that between the preloads of
1.5 mm and 1.0 mm is 18%. These results are in agreement with the literature [25,27], where
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it was shown that, at a 1.0 mm displacement, martensitic transformation was initiated in
the bending springs. Furthermore, it was shown that the hysteretic loop increases with
further addition in amplitude. In summary, as the preload applied in the M-shape device
increases the damping, it will be able to reduce undesirable vibrations.
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Figure 13. Force versus amplitude for dynamic test with the M-Shape device applied in the
support bearing.

3.4. The M-Shape Device Applied in the Rotor System Analysis

The experimental results obtained with the superelastic SMA bending springs applied
in a rotor system were analyzed under three situations: without preload, and with two
different preloads (1.0 mm and 1.5 mm). Consequently, the curves of amplitude vs. time,
temperature analyses, FRF, and spectrograms were obtained. All were presented on the
same scale and in the following sections.

3.4.1. SMA-SE M-Shape Device without Pre-Load

For this setup, experiments were performed without the preload in the ball bear-
ing (item A in Figure 8). Figure 14 shows the different transient results obtained in the
experiments without preload.
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Figure 14A,B shows that the temperature of the M-Shape device does not reach the
Af temperature. Therefore, the SMA material could not reach the full damping capacity
of the superelastic behavior. This happened because the vibration transmitted from the
system to the bending spring was insufficient for the SMA material to start the martensitic
transformation. Despite this condition, Figure 14C,D show high amplitudes and levels of
energy in the natural frequency region, which is at about 25 Hz.

These results show that, in the area of the highest amplitude, the temperature of the
M-Shape device started to increase, indicating the need for a higher vibration amplitude,
which is not desirable, or for some load to be applied for the martensitic transformation
to occur.

3.4.2. SMA-SE M-Shape Device with Pre-Load of 1.0 mm

For the experiment in the SMA–SE M-Shape device preloaded, a 1.0 mm preload was
applied with the ball bearing, as shown in item B in Figure 8. In Figure 15 is illustrated the
different transient results obtained in the experiments with a preload of 1.0 mm.
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Figure 15. Curves for the SMA-SE M-Shape device with a pre-load of 1.0 mm: (A) amplitude × time;
(B) temperature × time; (C) FFT; (D) spectrogram.

Figure 15A,B indicate that, because the applied preload added to the amplitude of the
vibration, the temperature of the M-Shape device reached the final austenitic temperature
of transformation (Af). This behavior proved that the device is capable of displaying an
increase in damping capacity of the superelastic effect in this setup, as shown previously in
Figure 13. In addition, the increase in temperature led to the same behavior observed in the
experiment without the preload, where temperature started to rise in the natural frequency
region (~25 Hz) of the rotor system. As a consequence of the preload, the amplitude
was reduced by approximately 50%, as seen in Figure 15C. Compared with Figure 14C,
increments in temperature occurred which were in concordance with those reported in the
literature [4,7,28,37].

Analyzing the results presented in Figure 15D and comparing them with those in
Figure 14D, it can be verified that the density of energy around the natural frequency
(between 200 s and 300 s) decreased, as expected, due to the increase in the damping
capacity of the material superelastic behavior.

3.4.3. SMA–SE M-Shape Device with Pre-Load of 1.5 mm

For the experiment with the preloaded SMA-SE M-Shape device, a 1.5 mm preload
was applied with the ball bearing, as shown in Item C in Figure 8. In Figure 16, the different
transient results obtained in the experiments with a preload of 1.5 mm are illustrated.
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Figure 16. Curve for the SMA-SE M-Shape device with pre-load of 1.5 mm: (A) amplitude × time;
(B) temperature × time; (C) FFT; (D) spectrogram.

Upon the analysis of Figure 16B, it is evident that, as in the previous experiment,
with the application of a 1.5 mm preload, the M-Shape device was able to reach the Af
temperature and display superelastic behavior and, as shown in Figure 13, was expected to
have more hysteresis damping. This led to a 65% decrease in the amplitude of the rotor
system, as illustrated in Figure 16C, as compared with the results obtained in the previous
experiment with a 1.0 mm preload.

Figure 16D confirms this decrease as occurring in the area of the natural frequency.
The amount of energy shows few densities, which differs from the cases without and with
a 1.0 mm preload. Figure 17 depicts the FRF of the system in all three setups. Upon the
analysis of this figure, it is evident that, for the test with the highest preload (1.5 mm)
vs. that without preload, the amplitude of vibration was reduced by about 23 dB in the
resonance zone (~25 Hz).

Sensors 2022, 22, x FOR PEER REVIEW 14 of 17 
 

 

 

Figure 16. Curve for the SMA-SE M-Shape device with pre-load of 1.5 mm: (A) amplitude × time; 

(B) temperature × time; (C) FFT; (D) spectrogram. 

Upon the analysis of Figure 16B, it is evident that, as in the previous experiment, with 

the application of a 1.5 mm preload, the M-Shape device was able to reach the Af temper-

ature and display superelastic behavior and, as shown in Figure 13, was expected to have 

more hysteresis damping. This led to a 65% decrease in the amplitude of the rotor system, 

as illustrated in Figure 16C, as compared with the results obtained in the previous exper-

iment with a 1.0 mm preload. 

Figure 16D confirms this decrease as occurring in the area of the natural frequency. 

The amount of energy shows few densities, which differs from the cases without and with 

a 1.0 mm preload. Figure 17 depicts the FRF of the system in all three setups. Upon the 

analysis of this figure, it is evident that, for the test with the highest preload (1.5 mm) vs. 

that without preload, the amplitude of vibration was reduced by about 23 dB in the reso-

nance zone (~25 Hz). 

 

Figure 17. FRF of the system with and without preload. 

This result plays an important role in the vibration field, because it shows that the 

application of preloads approximates the M-shape device of the full martensite 

(A) 

(B) 

(C) (D) 

Figure 17. FRF of the system with and without preload.

This result plays an important role in the vibration field, because it shows that the
application of preloads approximates the M-shape device of the full martensite transforma-
tion, increasing the damping capacity and leading to reduced vibration in the rotor system.
In summary, the system does not need to vibrate at a high level to initiate the martensitic
transformation in the bending spring, and then to begin the reduction in instability. In
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systems with low-level vibrations, the M-Shape device with the right preload will increase
hysteretic damping in the rotor system and, consequently, reduce instabilities.

4. Conclusions

This paper presents a special design for a bending spring, which is a 0.72 g M-Shape
device manufactured with SMA-SE alloy and applied in a rotor system. The strategy is to
reduce the mechanical vibrations while the mechanical system passes through the natural
frequency. Before the M-Shape device application in the rotor system, static and dynamic
experiments were performed in order to identify the temperatures of phase transformation
and demonstrate the capability of the damping capacity of this material. From the analysis
of the result, it can be concluded that:

(a) In the SEMD experiment, proposed by [37], the addition of the M-Shape device of
SMA-SE in the SDOF system was able to attenuate the amplitude of the movement by
14 dB. With only 0.048% of the mass of the system, the proposed device added 80% of
hysteresis damping, increasing from 289.25 N/m to 1485.7 N/m, demonstrating an
excellent damping capability.

(b) In the dynamic experiments, an increase in the preload applied in the device of SMA-
SE provoked the enhancement of the damping capacity, corroborating the results seen
in the literature.

(c) At a maximum fixed preload (1.5 mm amplitude), the M-Shape device was able to
attenuate the vibrations by −23 dB as applied in the rotor system, when compared
with the setup without a preload.

(d) The application of superelastic SMA materials in passive control can be effective to
achieve better responses of vibration attenuation without reducing the performance of
the rotor system, confirming the innovative aspect of the proposed SMA-SE M-Shape
device.
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