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Abstract

Technical Note

IntroductIon

In the last decades, flow cytometry immunophenotyping has 
become the method of choice for the differential diagnosis of 
reactive and neoplastic hematologic disorders.[1] Routinely, 3–10 
or more single tube combinations of monoclonal antibodies are 
used to characterize the different cellular populations in a wide 
range of biological specimens including blood, bone marrow 
tissue, body fluids, and lymph nodes.[2] This technology can be 
performed on solid tissues, but a single‑cell suspension needs 
to be prepared previously. The initial step in flow cytometry 
analysis is data acquisition, where several tens of thousands 
of cells are measured in a few seconds and stored as very 
large sets of digitalized data. As an example, a file containing 
information on six parameters, when performed on 6 × 104 cells, 
creates a data set containing 3.6 × 105 coded numbers.[3] With 
the continuous discovery of new cell markers and the trend to 
more targeted therapies, it is conceivable that these number 
will increase exponentially. To manage such quantities of data, 
a computer is physically connected to the flow cytometer, and 
specialized software handle the digital interface. Through 
the adjustment of a series of physical conditions by the flow 

cytometer operator (e.g., voltage and compensation) appropriate 
acquisition is achieved. The compiled data are usually written 
and read in the form of the Flow Cytometry Standard (FCS) 
files, which are organized in the form of a large matrix of 
intensities over wavelengths versus events.[4] Almost every 
event will be a single cell, with rare occasional doublets (pairs 
of cells which pass the laser closely together). For each event, 
the measured fluorescence intensity indicates the amount of 
fluorescent‑tagged antibodies directed to specific biomarkers, 
and therefore, a proxy for the amount of such biomarker in 
one cell. The ultimate interpretation of flow cytometry data is 
typically performed on a series of two‑dimensional plots, where 
an experienced operator selects subpopulations of interest and 
interprets distributional patterns through visual examination.[5] 
The analysis can be time-consuming and subjective, sometimes 
involving intuition rather than standardized statistical inference. 
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Depending on expertise, a certain cell population can be 
misidentified, overestimated or underestimated. The problem 
is compounded by the limited number of tagging fluorophores 
that can be analyzed simultaneously due to overlapping 
spectra, although the recent development of mass cytometry 
may greatly overcome this issue in the future.[6] Finally, there 
is a cost related side. Medicare reimbursement of each flow 
cytometry professional interpretation with 16 markers or more 
(CPT code 88189) was proposed to be $92.6 in 2017.[7]

Although flow cytometry interpretation is generally performed 
on series of two‑dimensional image plots, it should be 
imagined in a multi‑dimensional space where each dimension 
corresponding to a biological marker. Thus, every sample 
could be projected onto an n‑dimensional space where each 
dimension is represented by a specific antigen. This fact 
encouraged researchers in search of mathematical analyses 
that can scale highly multidimensional data without significant 
impact on computation time.[8] Among these are cluster 
analysis,[9] principal component analysis,[10] and support vector 
machines.[11]

Genetic programming is a framework for the development 
of executable programs using evolutionary computing 
methods.[12] It relies on flexible optimization methods 
inspired by the theory of evolution of natural systems. 
Many different problems from different domains have 
been successfully tackled using evolutionary computing 
including routing of telecommunications networks,[13] design 
of protein sequences,[14] and image‑processing tasks such 
as edge detection, film restoration, face recognition, and 
Earth‑observing satellite multispectral data.[15] Multispectral 
image analysis and feature extraction coupled to evolutionary 
computing have been tested on microscopic images from 
histologic sections of ovarian serous carcinoma[16] and urine 
cytology specimens with urothelial carcinoma.[17]

The present study describes a method for the interpretation of 
flow cytometry data applying genetic algorithms.

Methods

Flow cytometry data procurement
FCS files were downloaded from dataset #FR‑FCM‑ZZYA (AML, 
FlowCAP II), currently maintained in the public website www.
flowrepository.org.[18] The dataset identifies each patient 
with a number and the assignment “normal” or “AML.” For 
each patient, there are eight FCS files, which correspond to 
acquisitions from eight separate tubes containing specified 
antibody combinations (tube #1 is an isotype control and #8 
is unstained).

Transformation of Flow Cytometry Standard files 
into Tagged Image File Format (TIFF) file folders
Flow cytometry data contained in FCS files was transformed 
into TIFF image files and stored in individual folders 
(one per patient) using R freeware with addition of “prada” 
library,[19] “tiff” library[20] and the following command script:

>sampdat <‑readFCS(“\\Users\\Desktop\\FlowRepository_
aml\\A.fcs”)

>fdat <‑exprs (sampdat)

>tiff (filename=”\\Users\\Desktop\\aml_secondbatch\\benign\\
temp.tif”, width=553, height=552)

>plot (fdat [, “D”], fdat[, “E”], pch=”.”, xlab=””, ylab=””, 
log=”y”, axes=NULL)

>dev.off()

>img<readTIFF(“\\Users\\Desktop\\aml_secondbatch\\
benign\\temp.tif”, native=TRUE)

>writeTIFF (img, “\\Users\\Desktop\\aml_secondbatch\\
benign\\B\\B_C.tif”, compression=c(“none”), reduce=TRUE)

where,

“A” defines the flow cytometry tube in the patient dataset,

“B” is the patient number in the repository,

“C” is an assigned sub index that identifies each TIFF file in 
the right sequential order,

“D” and “E” selects the flow cytometry channels in the tube.

Each folder contained six two‑dimensional TIFF image files 
in the following sequential order:

TIFF image file #0: CD34‑PC5 vs Forward Scatter

TIFF image file #1: CD117‑PE vs Forward Scatter

TIFF image file #2: CD45‑ECD vs Forward Scatter

TIFF image file #3: CD117‑PE vs HLA DR‑FITC

TIFF image file #4: CD117‑PE vs CD34‑PC5

TIFF image file #5: CD20‑PC7 vs Forward Scatter.

Transformation of TIFF files into Flexible Image Transport 
System metafiles
The grayscale TIFF image files contained in each patient 
folder were stacked together into six‑dimensional image cube 
metafiles where each data plane pixel of x, y location is aligned 
in a third dimension z. This was achieved by transforming 
the TIFF image files into one Flexible Image Transport 
System (FITS) metafile using Interactive Data Language (IDL) 
5.6 (Research Systems, Inc., Boulder CO) software. FITS 
files are a standardized data format widely used in astronomy 
for the analysis of hyperspectral images.[21] A FITS metafile 
consists of a sequence of one or more Headers and Data Units. 
A header is composed of ASCII card images usually read in a 
string array variable. The header describes the content of the 
associated data unit, which might be a spectrum, and image 
or tabular data in ASCII or binary format.

Training
An overview of the process is summarized in Figure 1. FITS 
metafiles were transformed into training files by means of the 
graphical user interface ALADDIN.[22] ALADDIN allows the 



Figure 1: Experimental design. Training: Six bi‑dimensional flow cytometry 
plots obtained from normal patients and acute myeloid leukemia patients 
were stacked together into Flexible Image Transport System image cubes. 
Specific regions of the cube were assigned the “feature” or “nonfeature” 
condition by mean of a graphical user interface and introduced into the 
evolutionary computing system that generates a linear mathematical 
algorithm with highest fitness to the training cohort
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user to manually create training files by assigning the “true” 
or “false” condition to selected areas of the image cube using 
the region of interest selection tool. The training files were 
then introduced in the LINUX version of GENIE.[23,24] Before 
starting the training process, the evolutionary parameters 
were set as follows: number of algorithms per generation: 40; 
maximum number of genes in each algorithm: 20; allowed 
number of generations: 350; backend classifier: Fisher; 
crossover mechanism: single point; crossover rate: 0.9; 
crossover type: standard; elite fraction: 0.1; fitness metric: 
Hamming; mutation parameter rate: 0.3; mutation rate: 0.6; 
selection method: Tournament 3; thresholding: intelligent.

Two separate training sessions were run using four FITS files 
from acute myeloid leukemia patients (the first four listed in 
the repository corresponding to patients 5, 7, 9 and 26) and 
four FITS files from normal patients (the first four listed in the 
repository corresponding to patients 1, 2, 3, and 4).

In one training session, the right halves of the image cubes 
from acute myeloid leukemia patients were assigned “true” or 
“feature” condition, while the right halves of the image cubes 
from normal patients were selected as “false” or “nonfeature.” 
A second training session was run using the same four FITS 
files as the first session, but inverting the selection, meaning 
that the right halves of the image cubes from acute myeloid 
leukemia patients were assigned “false” or “nonfeature” 
condition and the right halves of the image cubes from normal 
patients were assigned “true” or “feature” condition.

Testing
Testing was performed by applying the learned algorithms to 
FITS metafiles of the testing cohort. The results are expressed 
in the form of binary image arrays where each pixel is assigned 
value 1 or “true” and 0 or “false” by the algorithm. The 

performance of each algorithm can be estimated by observation 
of the result images. Quantification of the results was also 
attempted by calculating the number of pixels assigned value 
1 by the algorithm or combination of algorithms, using IDL®.

Statistical analysis
Receiver operator characteristics (ROC) curves were created in 
Excel Analyze‑it software® (Leeds, UK). Combined sensitivity 
and specificity were calculated using increasing levels of 
numerical cutoff value.

results

Training
The first training session was run to generate an algorithm that 
identifies the right half portion of the image cubes from acute 
myeloid leukemia patients as “true.” After 350 iterations, GENIE 
produced the best algorithm coined “018830” with fitness for the 
training set of 830.126, where 1000 represents perfect fitness.

The sequence of algorithm 018830 is:

[MEAN rD2 wS1 2 1] [IFLTE rD3 rD4 rD4 rS1 wS2] [ADDP 
rS2 rD2 wS0] [MEAN rD3 wS2 4 3] [IFLTE rS2 rD0 rD3 
rS0 wS1] [QTREG rS1 wS2 wS0 wS1 0.04] [QTREG rD0 
wS0 wS3 wS1 0.07] [RANGE rS2 wS0 7 3] [ASF_CLOP rS2 
wS1 7 3] [DILATE rS3 wS2 10 6].

Algorithm 018830 is a combination of four neighborhood 
operators (Mean, Range, Dilate and Alternating Sequential 
Filter Close/Open), one logical operator (If Less Than Else), 
one basic mathematical operator (Add Planes) and one region 
size related statistical operator (QTREG).

Every operation in the sequence appears sequentially listed 
between brackets. For instance, the first operator MEAN 
reads data plane 2 (CD45 vs. Forward Scatter) and smooths 
the data plane with a round (structure element specified by the 
number 1 at the end of the gene) 2 × 2 kernel (specified by 
the preceding number 2). The resulting data plane is written 
in scratch plane S1. Finally, a Fisher Discriminant[25] applies 
a linear combination of the scratch planes followed by a 
threshold to produce the binary answer plane.

The second training session was run to generate an algorithm 
that identifies the right half portion of the image cubes from 
normal patients as “true.” After 350 iterations, GENIE 
produced the best algorithm coined “025886” with fitness for 
the training set regions of 870.188.

The sequence of algorithm 025886 is:

[QTREG rD0 Ws2 wS1 wS0 0.05] [ASF_CLOP Rs2 
Ws2 10 4] [ERODE rD1 wS0 4] [ASF_CLOP rS0 
wS0 10 0] [OPENCLOSE rS2 wS2 7 0] [SOBELGRAD rD5 
wS1] CLOSEOPEN rS1 wS1 9 0].

Algorithm 025886 is a combination of one region size 
related statistical operator (QTREG) and four neighborhood 
operators (Alternating Sequential Filter Close/Open, 
OpenClose, Erode and Sobelgradient).



Figure 3: Image result processing to quantify the performance of 
algorithms 018330 and 025886. Normal subject #10 (left) and acute 
myeloid leukemia subject #151 (right) are as examples. The first step 
consists of applying algorithm 018330 to a Flexible Image Transport 
System metafile, creating a result image shown on top. The second step 
consists of masking the left side of those result images (that corresponds 
to an area in the Flexible Image Transport System metafile that had never 
been seen by the algorithms). In Step 3, algorithm 025886 is applied to 
the same original Flexible Image Transport System metafile. Lastly, those 
pixels classified as “feature” by both algorithms 018330 and 025866 
are masked
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For a more detailed description, Supplementary Text 1 lists the 
IDL code of the operators used by both algorithms.

Testing
FITS metafiles obtained from all patients in the repository 
(except those used in the training session) were used for testing. 
It consisted 312 normal patients and 39 acute myeloid leukemia 
patients. The algorithms assign a weighted value from 0 to 255 
to every pixel of the GENIE result image, which is then reduced 
to a binary array by a thresholding parameter. Representative 
examples of result images obtained after applying algorithms 
018330 and 025866 to testing patients are shown in Figure 2. 
Result images from all testing patients using algorithms 018330 
and 025866 can be seen in Supplementary Figures 1 and 2, 
respectively. Algorithm 018330, applied to FITS metafiles 
from most acute myeloid leukemia patients, generates binary 
images with a larger proportion of white (feature) pixels on 
the right side when compared to normal patients, which show 
a higher proportion of black (nonfeature) pixels on that area. 
This is consistent with the fact that algorithm 018330 was 
trained using the right half of the training FITS metafiles. This 
was done to facilitate a more coherent algorithm, focused on 
fewer number or less contradictory features. As expected, 
algorithm 018330 underperforms on those areas of the FITS 
metafiles that had never been exposed to, such as the left 
half and the area of the background that surrounds the flow 
cytometry plot. On the other hand, algorithm 025866, applied 
to FITS metafiles from acute myeloid leukemia subjects, 

results in a larger proportion of black pixels on the right side. 
Within the IDL® environment, the left side of the result images 
was masked and the total number of white pixels used as a 
measure of category assignment (normal vs. AML). The image 
results of every subject generated by each algorithm were also 
combined, to mask those pixels in the array that were classified 
as “feature” by both 018330 and 025866. The underlying 
process is exemplified in Figure 3 for one normal and one AML 
subject. The numerical results of the entire testing cohort for 
algorithms 018330 alone, 025866 alone and both algorithms 
combined can be seen in Figure 4a,‑c, respectively. When 
the numerical data are used to differentiate between acute 
myeloid leukemia and normal patients, algorithm 018330 alone 
achieves an area under the ROC curve of 0.849 [Figure 5a], 
while in algorithm 025866 alone is of 0.842 [Figure 5b]. Both 
algorithms combined produced an area under the ROC curve 
of 0.912 [Figure 5c].

dIscussIon

The present study describes a novel approach in the analysis 
and interpretation of flow cytometry data using genetic 

Figure 2: Representative result planes obtained by applying mathematical 
algorithms 018330 and 025886 to flow cytometry Flexible Image 
Transpor t System files from normal subjects #6, #83, #11 and 
#167 (left) and acute myeloid subjects #33, #103, #219 and #314. 
Result planes from all normal and acute myeloid leukemia subjects are 
shown in Supplementary Figures 1 and 2, respectively
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algorithms. Here, the Linux version of GENIE[23] was used 
to classify flow cytometry data from normal patients and 
acute myeloid leukemia patients. The learning process 
follows the classic evolutionary paradigm: a population of 
candidate image‑processing linear algorithms is randomly 
generated, and the fitness of each individual assessed. 
After fitness has been assigned, modification of the fittest 
members of the population follows via selection, crossover 
and mutation and the step is repeated.[26] Fitness evaluation 
and reproduction with modification are iterated until some 
stopping condition is satisfied (for example, a candidate 
solution reaching a predetermined score is found). The 
system relies on commercially available IDL® software 
for the more computationally intensive fitness evaluation. 
One advantage of genetic algorithms is that in general, 
they do not require additional measures to reduce data 
dimensionality as it happens to other computer learning 
systems such as support vector machines.[27] The process 
makes the use of a graphical user interface, which facilitates 
the hematopathologist‑machine interaction, and in this way, 
specific areas of the multidimensional space could be oriented 
and/or selected by the operator for training.

Using a small training cohort of eight cases (four normal 
patients and four acute myeloid leukemia patients), the artificial 
intelligence system was capable of classifying a cohort of 
351 patients (312 normal and 39 acute myeloid leukemia) 
with an area under the receiver characteristics curve of 0.912.

Although the distinction between these two conditions is 
not considered a challenging problem for the practicing 

hematopathologist most of the time, testing it on a less 
disputable task provides a more suitable introduction of the 
technique.

The potential impact that the varying technical conditions 
used by different laboratories may have on the efficiency 
of a given algorithm is not known. One common limitation 
of genetic algorithms is their tendency to overfitting, which 
stresses the importance of a careful selection of training 
features. Furthermore, the algorithms are dimensionally 
restricted, which means that the future incorporation of new 
markers to the panel may need that the system be re‑trained. 
The learning application carries out its classification, not in 
a context of disease or population identification, but rather 
spectral/spatial image analysis requiring a way to translate 
it back for clinical usefulness. Here, the number of pixels 
classified by the machine as “feature” was intuitively counted 
to “measure” the results. However, other characteristics in the 
result planes may prove in the future to be more efficient for 
each specific task. One should also consider that the image 
processing operators (or genes) available to the algorithm 
were originally created for remote‑sensing applications. More 
appropriate mathematical operators can presumably be written 
in IDL or C, and implemented within this environment.

The cases used here fit  only into two categories 
(AML and normal), when hematopathology practice most 
commonly involves multi‑class decision making. This is a 
common problem of most artificial intelligence systems, in that 
they infer binary solutions. Multi‑class resolution is usually 
achieved through decomposition into binary classification 

Figure 4: Quantification of result images generated by algorithm 018330 alone (a), algorithm 025886 alone (b) and both algorithms combined (c) in 
312 normal patients and 39 acute myeloid leukemia subjects

c

ba
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steps, in the form of “one versus all (winner takes all)” or 
one versus one (max wins voting),” and this requires the 
development of complex hierarchical structures. It is possible 
that the algorithms described here could misclassify when 
faced with an unintended tasks. An example would be for 
algorithm 018330 to classify cases of acute lymphoblastic 
leukemia as “acute myeloid leukemia present.” This problem 
could be resolved by generating a second algorithm that 
differentiates between these two entities.

The original flow cytometry data were obtained running the 
standard lymphoma/leukemia 24 marker panel which does not 
include myeloperoxidase. The inclusion of such marker could 
probably increase the efficiency of the assay, although this needs 
to be proven. In theory, the system does not intend to identify 
a population positive for one or more markers (such as CD34 
or CD117) but to score a multidimensional composite. For 
example, based on reading the sequences, algorithm 018830, 
trained to look for acute myeloid leukemia patients, makes 
use of all markers in some way (every data plane except D1). 
Meanwhile algorithm 025886, trained to look for normal 
subjects, uses data planes with only CD34, CD117, CD20 and 
forward scatter information only (D0, D1, and D5).

It remains to be addressed what are the capabilities of this 
technique in the accurate detection of intermediate states 
such as myelodysplastic syndromes or the assessment of 
posttreatment minimal residual disease. The incorporation of 
cell density information in addition to population distribution 
may be useful in the task. The images generated by the 
R‑Prada platform in this study lack pixel depth (meaning every 
pixel is 0 or 1). This is because hematopathologists routinely 
use 1‑bit format imagery to interpret the data. However, it is 
conceivable cell density information in the form of grayscale 
data could be clinically useful. The common 16‑bit image file 
conveys a dynamic range of 65,535.[28]

Some possible ways to improve the performance of this model are 
permitted. One option involves retraining a new algorithm with 
increasing number of training files, perhaps selecting examples 
containing features that were missed by the preceding algorithm. 
Acute myeloid leukemia is known to show high variability of 
antigenic expression depending on lineage and differentiation,[29] 
which may require the use of more than just one algorithm. As 
shown in this manuscript, two separate algorithms, trained to 
perform opposite tasks, were later combined using a simple 
logical script written in IDL, increasing the accuracy over the 

Figure 5: Receiver operating characteristics curve of algorithm 018330 alone (a), algorithm 025886 alone (b) and both algorithms combined (c) in 
312 benign patients and 39 acute myeloid leukemia subjects

c

ba
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testing cohort. This brings up the possibility of developing 
“cognizant” algorithms capable of classifying over FITS 
metafiles built from result images of lower‑order algorithms, 
trained on specific features (abstract thinking).

In the recent years, there has been a surge in the development 
of diverse computational methods applicable to flow cytometry 
data. A good example of this effort is represented by the “Flow 
Cytometry: Critical Assessment of Population Identification 
Methods (FlowCAP) project,” where different methods 
are compared through specific challenges.[30] One of these 
challenges, termed FlowCAP‑II, involved the identification of 
cell populations that can discriminate between acute myeloid 
leukemia positive (n = 43) and healthy donor (n = 316) patients. 
That same flow cytometry data were used for this study. In the 
FlowCAP‑II challenge, 25 different algorithms were tested, 
showing F‑measures between 0.46 and 1.00. However, it is not 
known how these would perform under more robust statistical 
evaluation such as ROC analysis. In the FlowCAP‑II study, 
half of the total data was used for training purposes, whereas 
in this pilot work, the training cohort represents approximately 
2% of the patients.

The flow cytometry data from normal and acute myeloid 
patients used in this work were obtained through the public 
web‑based https://www.flowrepository.org. This website, 
provided by The International Society for Advancement 
of Cytometry, supports the storage, annotation, analysis, 
and sharing of flow cytometry datasets.[31] The datasets are 
annotated in compliance with the Minimum Information about 
Flow Cytometry Experiment (MIFlowCyt) standard, which 
greatly facilitates third‑party interpretation of the data. The 
dataset used in this study (FR‑FCM‑ZZYA) has a MIFlowCyt 
score of 97.12%. Research studies, like the one presented here, 
reaffirm the notion that sharing flow cytometry data through 
web‑based public repositories allows for the exploration of 
alternative approaches, perhaps not previously envisioned by 
the original publisher, and this should be strongly encouraged.

conclusIon

The present work describes a method that applies evolutionary 
machine learning with genetic algorithms to the interpretation 
of flow cytometry data. The results from an initial attempt with 
flow cytometry data from normal and acute myeloid leukemia 
patients showed great discriminative power and hold great 
promise.
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