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During visual search, attention is guided by specific
features, including shape. Our understanding of shape
guidance is limited to specific attributes (closures and
line terminations) that do not fully explain the richness
of preattentive shape processing. We used a novel
genetic algorithm method to explore shape space and to
stimulate hypotheses about shape guidance. Initially,
observers searched for targets among 12 random
distractors defined, in radial frequency space, by the
amplitude and phase of 10 radial frequencies. Reaction
time (RT) was the measure of “fitness.” To evolve
toward an easier search task, distractors with faster RTs
survived to the next generation, “mated,” and produced
offspring (new distractors for the next generation of
search). To evolve a harder search, surviving distractors
were those yielding longer RTs. Within eight generations
of evolution, the method succeeds in producing visual

searches either harder or easier than the starting search.

In radial frequency space, easy distractors evolve
amplitude x frequency spectra that are dissimilar to the
target, whereas hard distractors evolve spectra that are
more similar to the target. This method also works with
naturally shaped targets (e.g., rabbit silhouettes).
Interestingly, the most inefficient distractors featured a
combination of a body and ear distractors that did not
resemble the rabbit (visually or in spectrum). Adding
extra ears to these distractors did not impact the search
spectrally and instead made it easier to confirm a rabbit,
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once it was found. In general, these experiments show
that shapes that are clearly distinct when attended are
similar to each other preattentively.

Our visual system decomposes the light array falling
on our retina into separate features such as color,
orientation, stereo cues, motion, size, and shape. These
features are processed hierarchically by different areas
in the brain: with neurons in V1 processing lines
and orientations (Hubel & Wiesel, 1968) which are
integrated by neurons up the hierarchy where more
extended contours are processed (Jeffrey, Wang, &
Birch, 2002; Pasupathy & Connor, 1999) to still higher
areas that detect and recognize objects (Kourtzi &
Kanwisher, 2001). At some point along the path from
input to object recognition, there is a bottleneck. We
can detect the presence of some basic visual properties
like color and size across the entire visual field “in
parallel” but, in most cases, we cannot perform a similar
global search for a complex object like a rabbit or a
teapot. Treisman (1985) argued that some basic features
could be processed “preattentively,” whereas object
recognition required the “binding” of the features of
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Figure 1. The plus shape and the red square both “pop out”
among open blue square distractor items.

each object, a process that required selective attention
to the object.

Visual search experiments provide a classic line of
evidence that a feature is processed preattentively. When
a salient feature can be processed preattentively, it will
“pop out” in a search, more or less regardless of the
number of other, distracting items. Thus in Figure 1 it
is intuitively clear that the red item would pop out no
matter how many blue items were in the display. Color
serves as a basic, preattentive feature, and although
there are many complex details (Bauer, Jolicoeur,

& Cowan, 1996; D’Zmura, 1991; Nagy & Sanchez,
1990), we can describe the feature space for color quite
well.

Returning to Figure 1, it is also clear that the
time to search for a plus among boxes would depend
very little on the number of open squares in the
display (for an account of the small cost of a larger
number of distractors, see Ng, Lleras, & Buetti, 2018).
Whereas it is clear that the plus and the box differ
in shape, defining a feature space for shape is more
complex than for attributes like orientation or color.
An attribute like orientation can be described by a
circular one-dimensional space representing the angle
of orientation. Color can be described by any of several
three-dimensional spaces. Shape, in contrast, is not so
easily described. Indeed, it is unlikely that “shape” is
a single feature; it may be more of an umbrella term,
covering several attributes.

A number of aspects of shape have been identified
as supporting highly efficient search in the manner of
a simple color or orientation search. These include
properties like “closure” (Elder & Zucker, 1993). An
open “C” is easy to find among closed “O”’s (Treisman,
1985). The target “C” (or plus, above) might also be
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Figure 2. What are the visual primitives describing shape?

detected by presence of line terminations (Cheal &
Lyon, 1992; Taylor & Badcock, 1988) rather than by the
absence of closure. Other shape properties that serve
as candidate preattentive features include curvature
(Fahle, 1991; Wolfe, Yee, & Friedman-Hill, 1992),
curvature discontinuities or corners (Kristjansson &
Tse, 2001), Vernier offset (Fahle, 1991), and topological
status (Chen, 2005). Beyond that, it is clear that other
aspects of shape guide attention (e.g., Cheal & Lyon,
1992; Grunau, Dubé, & Galera, 1994; Pomerantz &
Pristach, 1989), but it is not entirely clear what those
might be.

Efforts have been made to parameterize the
shape feature space, for example, by using radial
frequency or RF patterns (Bell, Badcock, Wilson, &
Wilkinson, 2007). The RF pattern is a circle whose
radius is distorted by amplitude and radial frequency
combinations. RF patterns are usually used to represent
simple closed-contour shapes but complex shapes
approximating those in Figure 2 can be created by
combining different radial frequencies in the same way
that complex one- or two-dimensional patterns can be
produced as the sum of different sinusoidal gratings.

Additional work has taken a parts-based approach,
where the visual system represents shapes of
complex objects as a hierarchy of simpler parts. A
parts-based description allows for a decoupling of the
representation of shapes as individual parts from the
spatial relationship between these parts. Supporting
psychophysical work has shown that the visual system
represents shapes in terms of parts (Biederman, 1987;
Cave & Kosslyn, 1993). Hoffman & Richards (1984)
found an important cue for segmenting a shape into its
component parts is the presence of negative minima
of curvature along the bounding contour (regions
with negative curvature divide a shape into parts).
Evidence suggests these part boundaries are computed
preattentively (Wolfe & Bennett, 1997).

A complementary approach to parts-based shape
representation relies on shape skeleton and axes
representations. A shape skeleton is a geometric
model based off the medial axis of the shape. For
most shapes, the axes are organized in a hierarchical
fashion such that a set of parent axes describe the
coarse global geometry of the shape, while smaller
axes describe individual and smaller component parts.
Importantly, methods have been formalized to compare
the similarity between shape skeletons, providing a
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quantitative metric to compare shapes by (Sebastian,
Klein & Kimia, 2004; Ayzenberg & Lourenco (2019)).
A number of psychophysical results suggest a privileged
role for skeleton representations in human object
perception (Kimia, 2003; Kovacs, Fehér, Julesz, 1998,
Siddiqi et al., 2001, Wilder et al., 2011). Neuroimaging
studies have additionally shown sensitivity or coding
of medial axis or skeleton representations in visual
cortical areas (as early as V1 and V4), as well as areas
known to contribute to object recognition such as IT
(Lee, Mumford, Romero, & Lamme, 1998; Pasupathy &
Connor, 2002; Hung, Carlson & Connor, 2012).

Despite the many representations of shape available,
our understanding of the role of shape in visual search
is limited in part because it is not clear that any one
parameterization covers all shapes. Without a general
framework to describe shape, how can we discover basic
principles that might explain why one closed-curve
shape is easy to find among others? Prior visual
search work has tended to rely on the intuitions of the
experimenters to parameterize shape, and has focused
on easily-defined aspects of simple shapes, such as line
terminations and curvature. However, some aspects of
shape may not be so easily defined, so this approach is
unlikely to give a complete picture of how target shape
guides attention in visual search. Instead of starting
from predefined shape features, an alternative approach
might be to run a large-scale search experiment with
random shape targets and distractors and to explore the
resulting search data to try to automatically discover
what features make a search task easy or difficult.
However, this would be a massive undertaking, and
only a subset of the random target-distractor pairings
would likely give interesting results (see Huang, 2020
for one effort). In this work, we follow the feature
discovery approach, but we use an optimization
algorithm as a technique to more efficiently search this
space. Specifically, we use a genetic algorithm (GA)
method (Holland, 1992) in an effort to automatically
discover shape features that guide visual search. To
anticipate our results, the GA method succeeds in
generating easier and harder searches in an automatic
manner. It does not immediately clarify the basis of
visual search for shape, although it does support the
roles of similarity (Duncan and Humphreys, 1989) and
of part-based models of shape, described above.

GAs belong to a class of stochastic search
optimization techniques that are inspired by natural
selection, the biological process that drives evolution.
They exploit a fitness function to direct search to a
region of better (or worse) performance. A GA typically
starts with randomly sampled states. Successor states are
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generated by combining two parent states rather than
modifying a single state. A fitness parameter or score
guides how the population of states evolves; which items
have “offspring.” From one “generation” to the next,
states that are poor fits for the problem die out, whereas
the better states are selected and accepted to continue to
the next generation, in a survival of the fittest solution.
These offspring states acquire some “genes” (or
parameters) from one parent and some from the other,
with some small probability of “mutation” included

to allow for a heterogeneous population. Depending
on the parameters of the GA, the result of many

such generations is a final state or small population of
final states with high fitness. A key advantage of GA
compared to other stochastic optimization techniques
is that it makes very few assumptions about how the
state space is organized or how the “gene” parameters
are related to the fitness function.

In general, GAs have been used to solve complex
problems across different scientific fields such as
modeling global temperature changes, optimizing
the selection of financial portfolios, and improving
the abbreviation of psychological questionnaires
(Sahdra, Ciarrochi, Parker, & Scrucca, 2016; Sefiane
& Benbouziane, 2012; Stanislawska, Krawiec, &
Kundzewicz, 2012). GAs have also been used to
manipulate the difficulty of search displays (Van
der Burg, Cass, Theeuwes, & Alais, 2015). In their
experiment, observers started with a set of random
search displays made up of distractors comprised of
three orientations (0°, 10°, or 90°) and three colors
(red, green, or blue) and searched for a target that
was a red horizontal line. After completing this first
set of trials (or the first generation), the displays that
led to the fastest reaction times (RTs) were selected.
The distractors from these displays were allowed
to “mate,” exchanging features to produce a new
set of “offspring” distractors to be used in the next
set (or generation) of search trials. This process of
selecting the fastest search displays and allowing the
distractor features to propagate over the subsequent
generations led to a decrease in average RT over the
course of multiple generations. Over time, the displays
contained fewer red 10° targets, thus making search
for the red horizontal target easier. Interestingly, and
perhaps counterintuitively, the number of green and
blue horizontal lines increased over generations. One
would expect that these blue and green horizontal
lines should have impeded visual search, because these
distractors share a feature (orientation) with the target
line. However, this configuration led to faster search.
In the GA approach, the observers’ own behavior is
used to select the visual features that makes search easy
or hard. Van der Burg and colleagues’ findings show
that in conjunction search for color and orientation,
observers restrict their search to items with the same
color as the target, as opposed to items with the same
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orientation as the target. This suggests that the presence
of same-color distractors in the display is the greatest
limitation on search performance.

We use a similar approach to explore the feature
space of closed contours. Instead of an experimenter
selecting a small and potentially biased handful of
shape exemplars, an observers’ own performance as
measured by RT can guide exploration of combinations
of RF patterns that make search easy or difficult. By
comparing reaction time over generations, as well as the
“genome” of the distractors across generations, we can
“evolve” search displays based on observers’ behaviors
and at the same time quantify which local attributes are
propagated over generations.

In the context of our shape search problem, the
states are RF patterns, each with a unique combination
of radial amplitude and phase parameters. Initially, we
create distractors by randomly sampling this space; each
set of 12 RF pattern distractors is called a population.
Observers search for a target shape (which is also an RF
pattern) among each distractor in the population and
RTs are collected. The next generation of RF patterns
is produced by selecting the displays with the highest
or lowest reaction times. Pairs of RF patterns "mate"
by randomly recombining their amplitude and phase
parameters on each radial frequency. Occasionally,
these parameters may randomly "mutate”" to maintain
diversity in the distractor population.

We used RT as our fitness function to evaluate
performance and to select displays for evolution,
but other measurements could have been used in the
fitness function. For instance, we could have used a
more complex fitness function involving RT and eye
movements, but that would have not only made the
evaluation score more complex to interpret but also
may have required more experimental trials to converge
to the optimal solution. In any case, the use of RT as
the fitness function in this experiment and the use of
RF as the basis function should be seen as one way to
apply GA methods to the problem of shape search;
not the only way. As will be seen in the results, these
choices produce some interesting results, but they do
not “solve” the problem of visual search for shape.
Other aspects of that solution may be uncovered by
using other basis functions to create stimuli and other
fitness functions to measure responses to those stimuli.

In separate blocks, we have used the longest RTs or
the shortest RTs to define “fitness.” If, as in Van de Burg
et al. (2015), it is the fastest search displays that survive
in this “survival of the fittest” GA implementation, then
displays can evolve over time to produce significantly
faster, easier searches. However, one can also define
the slowest search displays as “fittest.” In this case,
the next generation of distractors is selected from
the slowest and most challenging search displays.
Propagating these shapes as distractors should lead
to slow and demanding searches. In the former case,

Aizenman et al. 4

we may identify shape features that distinguish targets
and distractors. In the latter case, we may identify
those distractor features that hide the target from
immediate detection. We approached parameterizing
the target and distractor shapes using radial frequency
and skeleton representations, as well as a method

of quantifying total curvature (perimeter’/area). By
looking at target-distractor differences over the course
of evolution, we can hope to determine whether some
shape parameters are more effective than others at
revealing the shape features that control search.

In Experiment 1, we use a genetic algorithm (Whitley,
1994) to modify the shapes of distractor items in a
search display to make search for a target shape easier
or harder. On each trial, observers search for the target
shape in an array of homogeneous distractor shapes.
At the start of the experiment, these distractors are
randomly generated according to rules described below.
Each of the distractor types is used during a block of
search trials in which the RT required to find the target
1s measured. At the end of the block, the distractors
are ranked in order of the RTs they produced. Based
on the RTs, the distractors producing the longest (for
evolve hard) or shortest (for evolve easy) search times
are used to produce a new “generation” of distractor
types. The distractors that survive are allowed to
“mate” and to produce new distractors. The mating
process shuffles the parental “genes” and is subject to
some rate of mutation. This process is repeated over
multiple generations in order to create new populations
of distractor shapes that result in either slower or faster
search for the target shape.

Since the evolution is driven only by search times,
there is no constraint on what shape features the genetic
algorithm can learn to make the search harder or
easier. It is also not guaranteed that the final generation
distractors for a particular target shape will all be
similar to each other, either within or across observers.
Analyzing the distribution of evolved “hard” and
“easy” distractor shapes may yield some insights into
what kinds of features guide search for shape, since we
expect the genetic algorithm process to enhance these
features when evolving harder distractors and suppress
these features when evolving easy ones.

Methods

Data were collected from 12 participants (eight
females, four males, mean age 26.5 years). All observers
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had normal or corrected to normal vision and passed
the Ishihara color test. All experimental procedures
were approved by the Brigham and Women’s Hospital
Institutional Review Board, and all participants gave
informed consent and were paid $10 an hour. The
number of observers was chosen based on prior
search experiments of this sort. This experiment

is essentially exploratory, meaning that we cannot
estimate effect sizes. However, over many years of visual
search experiments, we can estimate that the standard
deviation of the slopes of an RT x set size function for
a given task will be about 0.3 of the slope. For RTs, the
standard deviation is about 0.4 of the RT. Detecting a
1.5x change in slope, for example, with p = 0.05 and
power = 0.95 requires 11 observers.

Apparatus and stimuli

Experimental sessions were carried out on a 24” iMac
2009 computer (model A1225) with a resolution of 1920
x 1200 pixels, with a 60 Hz refresh rate. Experiments
were written in Matlab 7.10 (The MathWorks) using
the Psychophysics Toolbox (Brainard, 1997; Pelli,
1997). Observers were placed so that their eyes were 57
cm from the monitor. At this viewing distance, 1 cm
subtends 1° of visual angle (°).

In each trial participants were shown 16 or 24 items
in a circular array on the screen and a target was always
present. In every trial, one item was the target and all
other items shown were homogenous distractors rotated
to different orientations. Participants were asked to find
a target amongst the distractors and to click on the
target as quickly as possible. There was a blue fixation
target at the center of the array, and at the start of every
trial the mouse cursor was relocated to the center of
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the display. There were four different types of targets,
each tested separately. As shown in Figure 3, these were
a high frequency (HF) target, a low frequency (LF)
target, a bumpy brick (BB) target, and a twisted plus
(TP) target. Figure 3 also shows each target’s amplitude
spectrum. To reduce the effects of low-level features
like luminance (which might differ across filled shapes
because of differences in area), targets and distractors
were displayed as green outline contours (RGB = 83,
187, 121) on a black background.

The experiment consisted of eight blocks: four
target types by Evolve-Easy or Evolve-Hard evolution.
Within each of the experimental blocks there were eight
“generations” of 24 trials each. Within a “generation,”
each of the 12 distractors was tested twice in a
generation, once in a set size of 16 and once in a set
size of 24 in a homogeneous search, meaning each
display contained identical distractor items (an example
display is shown in Figure 4). The set sizes were run
sequentially (12 trials at set size 16, followed by 12 trials
at set size 24) with the order of distractors randomized
within each set size. After each generation of 24 trials,
the distractor pool “evolved” based on the distractors
that had led to the fastest search (Evolve-Easy) or the
slowest search (Evolve-Hard).

The target and distractor shapes were radial
frequency patterns: sums of sinusoidal variations of the
outline of a circle with a radius of 30 pixels. Only the
first 10 spatial frequencies were used to build the shapes.
Higher frequencies have zero amplitude. Each target
had non-zero amplitude on two to four frequencies; the
amplitudes and relative phases of the target shapes are
given in Figure 3.

The distractor shapes were defined by their 10
amplitudes and phases, plus an additional 10 binary
values which could turn a given frequency “on” or “oft”
by setting its amplitude to zero. This binary vector was
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Figure 3. Examples of the four target types. Shown next to each target is their associated amplitude spectra and relative phase.
Frequencies (1-10) are shown on each of the x axis, amplitude as a proportion of radius is shown on one y axis, relative phase on the
other. The abbreviations associated with each target type are additionally shown.
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Figure 4. Examples of the search array for set size of 16 items.
Note the color of the targets has been changed from green
(used in the experiment) to white for the sake of visibility. The
target is the “twisted plus” item with four lobes. Note that it is
not particularly easy to find, although it is easy enough to
identify, once attended.

included to help make the distractor shape distribution
more similar to the target shapes, which had zero
amplitude on most frequencies. For the first generation
of each experiment block, an initial set of 12 distractor
shapes were created by assigning random amplitudes
and phases to each of the 10 frequencies. Amplitude
was chosen from a uniform distribution randomly
from the range 50-150, and was then divided by the
frequency value (thus, frequency 2’s initial amplitude
range is 25-75, frequency 3’s initial amplitude range is
16.7-50, etc.) This approximates the 1/f rule for the
Fourier spectra of real scenes (Black, Hurst, & Simaika,
1965). Phase was randomly selected from a uniform
distribution from 1-360 degrees.

The initial sets of distractors were randomly
generated, but distractors on subsequent generations
were created using the genetic algorithm. On blocks
where the evolution type was set to Evolve-Easy, the
three distractors (or “parents”) that produced the
fastest search times (mean RT) were selected to create
the next generation of distractors. This new pool of
12 distractors consisted of the three parents plus nine
“offspring” generated by randomly mixing parents’
“genomes,” which are 30-clement vectors consisting
of amplitudes, phases, and on/off binary values for
each of the 10 frequencies that defined the radial basis
pattern shapes. An offspring genome was created by
randomly selecting two parent genomes and crossing
them over, so that each element in the offspring genome
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has a 50% probability of coming from either parent.
The formula for the amplitude and phase of a given
frequency as a function of the two parent genomes
can be found in Appendix A. A mutation rate of .02
was included so that each of the 30 elements had a
2% chance of undergoing a random change. Changes
included randomly turning a frequency on or off (i.e.,
changing the binary value from 0 to 1, or 1 to 0),
increasing or decreasing amplitude by a factor of 2, or
changing phase to a uniform random value between

1° and 360°. This mutation rate allows for some noise
in the evolution process to help prevent the algorithm
from evolving toward a local minimum. A similar
process was used in the Evolve-Hard condition, except
the three trials that had led to the slowest search times
were selected and crossed over. Instead of averaging the
response times for each distractor as in the Evolve-Easy
condition, we used a weighted sum of the mean RTs
and slope of the RT x set size function (slope — 0.15 x
mean RT), as the RT x set size function is the standard
measure of search difficulty. This process was used to
promote distractors to produce a more difficult search.
A schematic for this process is shown in Figure 5. The
new “evolved” distractors were then presented in the
next generation after which the same evolution process
occurred. This cycle continued for eight generations of
24 trials each.

Observers participated in one experimental session.
Each observer was presented with a block of eight
generations of 24 trials each for each of the four
stimulus types shown in Figure 3 with separate blocks
of Evolve-Easy trials and Evolve-Hard trials. Order
of target type and evolution type (easy or hard) was
counterbalanced across observers.

Results

If the GA method for distractor evolution works,
distractor shapes should evolve over time to increase
or decrease the difficulty of search. Figure 6 shows
the average RT as a function of generation for eight
generations in each evolution condition and for each
set size. It is clear that the RTs in the Evolve-Easy
and Evolve-Hard conditions start in the same place
in generation 1 and then diverge under the different
evolutionary pressures. In the Evolve-Easy conditions,
RTs become shorter. In the Evolve-Hard conditions,
they become longer. For each of the four target
types. A 2 (evolution condition) x 4 (target type)
repeated-measures analysis of variance (ANOVA) on
the mean RTs from the first generation shows a main
effect of target type (F(3,33) = 18.65, p < 0.001, nZ, =
0.63). Some targets are intrinsically easier to find than
others. There was no significant effect of evolution
direction on first generation RTs (F(3,33) = 2.51, p
= 0.14), and the interaction between target type and
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Figure 5. Schematic for the “Evolve-Hard” evolution process in selecting the fittest distractors to propagate to the next generation.
The “Evolve-Easy” process was identical except that the distractors with the lowest mean RT were selected and crossed over.
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Figure 6. Average RT in msec by generation. Green lines correspond to the evolution direction set to increase the efficiency of the
search (Evolve-Easy), while red corresponds to increasing the difficulty of the search (Evolve-Hard). Error bars in all plots correspond
to standard error of the mean.

evolution direction was significant (£(3,33) = 3.45, p = the four target shapes. Any comparison quantifying
0.03, ’720 = .24). In the first generation, Evolve-Hard differences in RT as a function of evolution between
and Evolve-Easy distractors are all randomly generated, target types must take this into consideration.

so we expect the search times in the Evolve-Hard Figure 7 shows the change in average RT between the
and Evolve-Easy conditions to be similar. However, first and last generation for each target and evolution

the baseline difficulty of the search task varies across direction for each observer. On average, RTs in the
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Figure 7. The average difference in RT between generation one
and generation eight for all conditions. Red and green points
correspond to individual observers in the Evolve-Hard and
Evolve-Easy condition, respectively. The dotted line represents
an RT difference of 0, or no change in RT over eight generations.
Data points would be expected to fall on this line if there was
no evolution over generations. Error bars correspond to
standard error of the mean.

Evolve-Hard condition increased between the first and
last generation, while RTs in the Evolve-Easy condition
decreased. A 2 (evolution condition) x 4 (target type)
repeated measures ANOVA of these RT differences
shows a main effect of evolution direction (F(1,11) =
163.99, p < 0.001,n7, = .94) which suggests that the
GA method achieves the goal of producing harder
distractors in the Evolve-Hard condition and easier
distractors in the Evolve-Easy condition. There is
also a main effect of target type (F(3,33) = 26.73, p <
0.001,1726 =.71), but no significant interaction (£(3,33)
= 2.47, p < 0.08), which may reflect how close the
initial generation’s average RTs were to ceiling or floor
performance.

The next question is how the features of the
distractor shapes change with evolution, and how this
corresponds to changes in RT over generations. Figure 8
shows examples of Evolve-Hard and Evolve-Easy
evolution for the TP target for one, illustrative observer.
The evolutionary paths of four distractors are shown.
The result seems intuitively reasonable, but note that the
“hard” distractors would not be mistaken for the target.
They are quite different shapes, but they are shapes
that hide the target (as in Figure 4). We quantified
the similarity between target and distractor shapes
by using several shape parameterization methods
including skeleton representations, perimeter’/area
(a measure of total curvature), and radial frequency
representations. If any one of these metrics provides
a meaningful measure of human shape similarity, the
target distractor difference of the metric should change
over generations in a way that is consistent with the
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Figure 8. Sample Evolve-Easy and Evolve-Hard evolutionary
trajectories in the search for a “twisted plus” target.

direction of RT changes — RT should increase or
decrease with target-distractor similarity.

To compute the skeleton representation for the
targets and distractors tested, we used the bwmorph
function in MATLAB, which generates skeletons
derived from morphological thinning. The number of
iterations was set to infinity. We quantified the similarity
between the shape skeletons of target and distractor
shapes for each generation using the skeleton similarity
metric from Ayzenberg and Lourenco (2019). Briefly,
this method calculates the mean Euclidean distance
between each point on the distractor skeleton and the
closest point on the target skeleton following maximal
alignment. In order to measure the total curvature of
targets and distractors, we computed perimeter’/area
for each target and distractor. We also measured
the similarity between distractors and the target as
the distance (L2 norm) between their radial Fourier
amplitude spectra.

Figure 9 shows the results of these analyses for
the Twisted-Plus target. Across these different shape
parametrization techniques we found that in general in
the Evolve-Hard conditions, distractors tend to become
more similar to the target and in the Evolve-Easy
conditions, distractors tend to become less similar to the
target. However, the LF target shows the opposite result
(please see appendix B for details on these analyses).

If more generations were included, instead of limiting
the genetic algorithm to 8 generations, would we see a
more robust evolution? Appendix C shows a follow-up
study that tests whether adding more generations (up
to 20) changes these findings. The results suggest that
our initial decision of including eight generations is
appropriate, because the majority of the evolution
occurs in earlier generations.
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Discussion

The results from Experiment 1 show that a genetic
algorithm can be used to manipulate the difficulty
of a visual search task for a target defined by shape.
This method evolves distractors over a series of
generations by using observers’ RTs as a measure
of fitness, and recombining elements from the most
successful distractors to produce harder (or easier)
distractor shapes. The changes in RT over generations
seem to reflect changes in the similarity between the
distractors and the target. The change in similarity
can be seen in each of the shape parameterization
techniques tested (shape skeletons, total curvature,
and Fourier amplitude spectrum). When the algorithm
is tasked with making the search more difficult, it
generally produces distractors more similar to the
target, and when the goal is to make the search
easier, it produces distractors less similar to the
target.

Results, like those shown in Figure 8 give some insight
into the preattentive representation of shape. The TP
target has several properties that could be candidate
as features. For instance, it is roughly symmetric and
has four main lobes. However, the algorithm does not
seem to create symmetrical distractors or distractors
with exactly four main parts. Instead, the distractors
that mask the presence of the target are shapes with
multiple lobes or parts of similar size. The number of
those parts seem relatively unimportant even though,
once we attend to one of these distractors, it is clear
that it cannot be a “twisted plus.” When evolving
in the easy search direction, the algorithm seems
to be eliminating these parts or making them less
pronounced.

As shown in Appendix B, the LF target seems to
be a somewhat different story. Note that the LF target
has a unique feature not found in the other targets—an
internal loop that occurs when the radii over some
part of the circle are negative. Visual inspection of

the final generation of Evolve-Hard and Evolve-Easy
distractors for this target suggests that the presence or
absence of a loop was an important feature which the
genetic algorithm sought to reproduce in the distractor
set. The hard distractors for the LF target usually have
internal loops, and the easy distractors usually do not
have internal loops. The loop feature is not particularly
well represented in the Fourier amplitude spectrum of
a shape: a very high amplitude on any frequency, or
any combination of frequencies, can produce internal
loops in these RF shapes. The significance of loops
would be consistent with Chen’s emphasis on the role
of topological status in search (Chen, 2005). The items
with loops would be categorically topologically different
from items without loops.

In Experiment 1, our genetic algorithm evolved
distractor shapes to increase or decrease the difficult
of search for a target shape by making the Fourier
amplitude spectra of the distractor shapes more similar
(Evolve-Hard) or less similar (Evolve-Easy) to the
target’s amplitude spectra. Perhaps observers were, in
effect, searching for specific radial frequencies. Spatial
frequencies can serve as basic features in search (Davis,
Kramer, & Graham, 1983), so perhaps observers can
search for a specific radial frequency in the same way.
Indeed, if simple, single frequency stimuli were used,
we would expect some ability to guide search based
on the number of “bumps” on the outline of the
shape (Reijnen, Wolfe, & Krummenacher, 2013). In
Experiment 2, we use the genetic algorithm approach
to investigate whether the mix of radial frequencies
in the target shape act as guiding features for visual
search.
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There is some evidence that radial frequency patterns
are processed by dedicated channels in the early visual
system, with separate channels for each of the first few
frequencies which may appear in as early as area V2
(Bell, Wilkinson, Wilson, Loffler, & Badcock, 2009;
Loffler, 2008; Salmela, Henriksson, & Vanni, 2016).
This suggests that the presence or absence of particular
frequencies in a shape could be processed quite early in
parallel across the visual field and allow a target with a
unique radial frequency to “pop out” among distractors
which do not contain that frequency. Alternatively, in
a shape search task, as opposed to a bump counting
task, the presence or absence of a few specific
frequencies may not be sufficient to guide attention to a
target.

To address this question, we repeated the search task
with the four simple shape targets from Experiment
1 and used the genetic algorithm to evolve distractor
shapes that made the target harder or easier to find.
Unlike the prior experiments, the algorithm was
constrained to include the target’s radial frequencies in
the easy distractors, and it was not allowed to include
these frequencies in the hard distractors. If the target’s
radial frequencies are, in fact, the guiding features in the
shape search task, this would cripple the evolution of
both easy and hard search. If shape search is based on
higher-order shape properties (e.g., frequency, size, and
number of parts on a shape), then the algorithm should
still be able to evolve hard and easy distractors, perhaps
by evolving frequencies near the target frequencies.

Methods

Data were collected from 12 new participants
(eight females, four males, mean age 25.9 years). All
observers had normal or corrected-to-normal vision
and passed the Ishihara test for color vision. All
experimental procedures were approved by the Brigham
and Women’s Hospital Institutional Review Board, and
all participants gave informed consent and were paid
$10 an hour.

Apparatus and stimuli

Experiment 2 was identical to Experiment 1, except
that some elements of the distractor genomes were
set to fixed values in the initial generation and could
not be modified in any subsequent generations. In
the Evolve-Easy blocks, the frequencies which were
non-zero in the target shape (e.g., two and six for the BB
target) were always “on” in the distractor genomes and
always had the same amplitudes as the target shape (the
phases, however, were initialized to random values and
could be changed over generations). In the Evolve-Hard
blocks, the frequencies which were non-zero in the
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target shape were always “oft” in the distractor shapes
and had zero amplitude.

Results

Figure 10 shows the RTs as a function of generation
for each of the four stimulus types. It is clear from the
figure that different target shapes produced different
results in response to the constraints on the rules for
evolution of distractors.

Evolving to make the task easier was possible in all
cases. However, searches for the LF and HF targets
could not be made significantly more difficult if the
distractors were constrained not to contain target
frequencies. A 2 (evolution condition) x 4 (target type)
repeated-measures ANOVA of the RTs in the first
generation shows a main effect of target type (F(3,33)
= 12.4, p < 0.001,n% = .529), a main effect of evolution
direction (F(1,11) = 79.3, p < 0.001,n% = .88), and an
interaction between target type and evolution direction
(F(3,33) =108, p < 0.001,1726 =.49). As in Experiment
1, these results suggest that there are baseline differences
between the search times for the four targets, but in this
experiment, there is also an initial baseline difference
between the Evolve-Hard and Evolve-Easy conditions.
For all four targets, the first generation search times in
the Evolve-Easy condition are longer than search times
in the Evolve-Hard condition. This can be explained
by the frequency constraints: the first-generation
distractors are required to match the target on certain
frequencies in the Evolve-Easy condition and forced
not to match the target on certain frequencies in the
Evolve-Hard condition. This seems to result in an initial
set of “Easy” distractors that are generally harder than
the initial “hard” distractors, although the extent to
which these groups are different varies across target
type.

As in Experiment 1, we measured evolution by
measuring the difference in RT between generation one
to generation eight, shown in Figure 11. A 2 (evolution
condition) x 4 (target type) repeated measures ANOVA
of the difference in RT shows a significant main
effect of evolution direction (F(1,11) = 79.3, p <
O.OOl,nzG = 0.88, a significant effect of target type
(F(3,33)=124,p < O.OOl,nzG = 0.529), and a significant
interaction (F(3,33) = 10.8, p < 0.001,n% = 0.49). This
suggests that the genetic algorithm is able to produce
different distractors in the two evolution conditions,
resulting in different changes in RT between the first
and last generations.

A one-way repeated measures ANOVA with target
type as a factor for the easy condition RT differences
reveals no significant difference between target types for
the Evolve-Easy condition (£(3,33) = 0.22, p = 0.90).
All the Evolve-Easy conditions produce similar results.
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The average RT difference for Evolve-Easy blocks,
across target types is —855 msec, suggesting that the
genetic algorithm is still able to generate distractors that
make the search task easier, even when these distractors
are forced to contain target frequencies. A one-way
repeated measures ANOVA with target type as a factor
for the Evolve-Hard condition RTs shows a significant

difference between target types for the Evolve-Hard
condition (F(3,33) = 8.33, p < 0.001,n7. = 0.43). As
noted, this reflects the inability of the algorithm to
make search for the LF and HF targets harder under
the constraints of Experiment 2. Post hoc one-sample
t-tests show that the RT difference in the Evolve-Hard
condition is significantly different from zero for the BB
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and TP targets (#(11) =3.41,p < 0.01; #(11) =4.85p <
0.001). However, the RT difference in the Evolve-Hard
condition is not significantly different from zero for the
HF or LF targets (#(11) = 0.49, p = 0.63; #(11) = 1.13,
p =0.28).

Evolution can make all of these search tasks easier.
However, it fails to make the low and high frequency

targets harder to find. Figures 12 and 13 give some
insight into why this is the case. These figures show
sample eighth-generation distractors for three observers
each in the Evolve-Easy and Evolve-Hard conditions.
Figure 12 shows results for the BB target. Even
though the algorithm is constrained not to use the
target frequencies in the Evolve-Hard condition, it
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creates other bumpy distractors that, although they do
not look like the brick, manage to hide it in search.
The easy distractors evolve either to a less bumpy
blob or, in the case of Observer 2, to a shape that
appears to have two parts, again suggesting a role for
topology or a parts-based description. Note that each
observer’s distractors evolve to quite a distinct shape.
The algorithm finds different solutions on different
runs.

In Figure 13, we see sample results from the LF
target. Here the algorithm could make search easy by
adding relatively sharp protrusions to the otherwise
smooth, low frequency target. Again, the algorithm
finds different solutions for different observers. In
contrast, constrained not to use the low frequencies
that define the low frequency target, the algorithm is
unable to make search for that target more difficult. RT
is essentially unchanged over the generations because
the algorithm fails to eliminate the radial symmetry or
sharp points that seem to distinguish the distractors
from the target.

Graphs of target-distractor similarity over
generations for each target type and evolution condition
are shown in Appendix D. The similarity analysis
suggests the RT findings are best explained by the
radial frequency amplitude distance measurements.
The skeleton distance measures showed no change in
distractors over generation, and the total curvature
distance measure failed to explain key RT findings.

Discussion

These results suggest that, although observers
are searching for a target shape defined by a few
radial frequencies, the efficiency of their search is not
based entirely on the presence or absence of those
specific frequencies in the distractors, but on a range
of frequencies. It is possible to find distractors that
include the target’s radial frequencies but nevertheless
produce a fast, easy search. And it is possible (although
more difficult) to find distractors that exclude the
target’s radial frequencies but nevertheless produce a
slow search. This suggests that the individual radial
frequencies present in the search target are not the
primary features guiding attention in this shape search
task (Wolfe & Horowitz, 2004).

Of course, the presence or absence of the target’s
component frequencies in the distractors will have
some effect on the difficulty of the search. This
can be seen in the first block of the search task:
randomly-generated distractors that contain the target’s
radial frequencies generally produce slower search
times than randomly-generated distractors that exclude
the target’s radial frequencies. As in Experiment 1,
search times seem to be related to the overall similarity
between the target and distractor shapes’ amplitude
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spectra: the initial “easy” distractors are more similar to
the target (and thus produce slower search) whereas the
initial “hard” distractors are dissimilar from the target
(and thus produce a faster search).

Similarity in amplitude spectra may also explain
why it was more difficult to evolve “hard” than
“easy” distractors. When the distractors cannot
include the target frequencies, some paths to target-
distractor similarity are blocked. Nevertheless, as shown
in Figure 12, properties of shape like “bumpiness” can be
generated in various different ways to make distractors
that behave as though they are similar to the target
even without the target frequencies. Going in the other
direction, even when the distractors are forced to include
the target frequencies, it is still possible to produce
dissimilar distractors by evolving high amplitude on
other frequencies. These findings were best captured by
the radial frequency target-distractor difference metric
rather than a skeleton or curvature metric.

The previous experiments used meaningless abstract
shapes as targets and distractors. In Experiment 3
we investigate whether the same genetic algorithm
approach can be used to generate hard or easy
distractors for a semantically meaningful natural shape
target. Natural shapes have very different statistics
from radial basis patterns (Schmidtmann & Fruend,
2019), and representing a natural shape as a radial
basis pattern generally requires more than 10 radial
frequencies. However, Experiment 2 suggests that it is
possible to hide a target among distractors that do not
include those spatial frequencies, so it might be possible
to hide a natural shape among simpler radial basis
pattern distractors.

Methods

Data were collected from 12 new participants
(eight females, four males, mean age 27.4 years). All
observers had normal or corrected-to-normal vision
and passed the Ishihara test for color vision. All
experimental procedures were approved by the Brigham
and Women’s Hospital Institutional Review Board, and
all participants gave informed consent and were paid
$10 an hour.

Apparatus and stimuli

The search task was similar to previous experiments,
but there was only one target, a rabbit silhouette.
This shape was chosen because it was a recognizable
object which could be represented as a radial basis
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Figure 14. Rabbit target and sample easy and hard distractors. Graph shows RT as a function of generation for the Evolve-Easy and
Evolve-Hard conditions in two set sizes. Error bars correspond to standard error of the mean.

pattern. The rabbit shape is defined by 360 points along
its circumference, so an exact representation of this
target requires 359 radial frequencies. An example of
the rabbit shape target is shown in Figure 14. As in
previous experiments, participants searched for this
target over eight blocks in each of two conditions
(Evolve-Easy and Evolve-Hard) with the order of
conditions counterbalanced across observers.

Results

Figure 14 shows the average RT over generations
split by evolution direction and set size. A 2 (evolution
direction) x 8 (generation) repeated measures ANOVA
shows a main effect of evolution direction (F(1,11)
= 30.18, p < 0.001, nZ = 0.73). There is no main
effect of generation (F(1,11) = 0.21, p < 0.65) but
there is a significant interaction between evolution
direction and generation (F(1,11) = 18.21, p =
0.001,1726 = 0.62) because Evolve-Hard becomes slower
whereas Evolve-Easy becomes faster. A post-hoc
t-test over the first generation RTs shows there is
no significant difference between Evolve-Easy and
Evolve-Hard RTs in the first generation (#(11) =
0.48, p = 0.64). This is expected, because the initial
distractors in both evolution conditions are random.
However, a t-test over RTs in generation 8 shows

a significant difference between Evolve-Easy and
Evolve-Hard RTs (#(11) = 9.67, p < 0.0001). As

with semantically meaningless stimuli, the genetic
algorithm approach is able to evolve easy and hard
distractors for a semantically meaningful natural shape
target.

The sample distractors in Figure 14 give some
intuition about what is evolving in this experiment.
The bunny is an elongated blob with ears. The hard
distractors seem to capture those aspects of the shape
while looking nothing like a rabbit. The easy distractors
tend to be too radially symmetric or too smooth to
interfere with search for the rabbit target.

In this case, the effects of evolution seem to be best
captured by the shape skeleton measure from Ayzenberg
and Lourenco (2019). This may be intuitively clear from
inspection of Figure 14, where it seems that the hard
distractors have a main axis and a part or two whereas
the easy distractors lack that main axis. The effects of
evolution were not obvious in differences in target and
distractor amplitude spectra or total curvature (Details
of this analysis are shown in appendix E).

Discussion

Although the genetic algorithm is able to create hard
distractors for the rabbit silhouette target, search times
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in the final generation of the Evolve-Hard condition
remain faster (average 1512 msec) than the search
times in the final Evolve-Hard generation of any of the
abstract shape targets (the fastest of these, target TP,
had a final average RT of 1971 msec in the Evolve-Hard
condition). This may be partly due to the fact that the
distractors did not contain the higher radial frequencies
present in the rabbit shape. So, whatever result the
algorithm creates over the first 10 frequencies, the
higher frequencies always remain uniquely present in
the rabbit and may aid search. It is all the more striking,
therefore, how the genetic algorithm finds shapes that
make it harder to find the rabbit.

Rabbit search efficiency is not based on semantic
meaning of the rabbit target. The distractor shapes that
effectively hide the rabbit don’t particularly resemble
rabbits, and it’s unlikely that any of them would be
labeled “rabbits” by a naive observer. The part structure
of the distractors appears to be relevant in the search
for the rabbit, whereas the semantic meaning (“Rabbit”)
is not. The distractors that most effectively hide the
rabbit shape target seem to have roughly replicated the
target components of a larger “body” and one or more
narrow ear-like tufts. It is unclear whether a single part
of the item (e.g., a rabbit-like body or rabbit-like ears,
alone) is sufficient to effectively hide the rabbit target.
Alternatively, the part-whole relationship of these
items (a blob with ears) could be the critical factor that
makes these distractors effective. One way to address
this issue is to create distractors with extra “ears.” If
the ears are the critical feature, multi-eared objects
might be particularly effective distractors. If the holistic
configuration of rabbit-like body plus rabbit-like ears is
important, then ear-enriched distractors might be more
easily disregarded, and search might be easier. We test
this hypothesis in a final experiment.

Methods

Data were collected from 12 participants (nine
females, three males, mean age 20 years). All observers
had normal or corrected-to-normal vision and passed
the Ishihara test for color vision. All experimental
procedures were approved by the Brigham and
Women’s Hospital Institutional Review Board, and all
participants gave informed consent and were paid $10
an hour.

Apparatus and stimuli

To create distractors with extra parts, we randomly
selected 10 of the Evolve-Hard distractors that were
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Figure 15. Stimuli for both search conditions in Experiment 4.

effective in slowing search for the rabbit target. We
manually added extra “ears” to each of these distractors
by copying the narrow ear-like tuft parts from other
distractors and pasting these onto the “body” of the
distractor. Additionally, 10 different Evolve-Hard
distractors were chosen to use unaltered as distractors.
The Evolve-Hard and the ear-enhanced distractors are
shown in Figure 15.

The size and orientation of all items in the search
displays were randomly jittered to prevent the rabbit
from being detected as an item of specific size or specific
orientation. Orientations were constrained to £25° to
ensure that the rabbit always appeared to be upright,
even when tilted.

Procedure

The two distractor conditions, Evolve-Hard and
Ear-Enhanced, were shown in separate blocks, with
block order counterbalanced across observers. Each
block consisted of 20 practice trials, followed by 300
experimental trials. On each trial, observers searched
for the rabbit silhouette target among a homogeneous
array of distractors with set size 8, 12, or 16 items. The
rabbit target was present in 50% of trials. Observers
indicated whether the target was present or absent by a
keypress.

Results

Average search slopes were computed from the
mean RTs of each observer. RTs greater than 10,000
msec were excluded from analysis as were RTs from
the practice trials. Figure 16 shows average RT by
set size for target-present and target-absent trials in
each distractor condition. As can be seen in the figure,
the Ear-enhanced condition produces faster, but not
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more efficient search. A comparison of the search
slopes reveals that the Evolve-Hard and Ear-Enhanced
distractors produced similarly inefficient search.
Figure 16 shows that adding extra “ears” reduced
RTs. This effect appears to be additive, without an
effect on the slope of RT x set size functions. A 2
(distractor condition) x 3 (set size) repeated measures
ANOVA over RT for target present trials shows a main
effect of distractor condition (F(1,11) = 11.96, p =
0.005, nZ = 0.521), a main effect of set size (F(2,22)
= 40.10, p < 0.001, 7 = 0.79), with no interaction
(F(2,22) = .85, p = 0.44, nZ = 0.07). A 2 (distractor
condition) x 3 (set size) x repeated measures ANOVA
over RT for target absent trials falls short of showing
a main effect of distractor condition (F(1,11) = 4.09,
p = 0.07, nZ = 0.521), shows a main effect of set
size (F(2,22) = 41.73, p < 0.001, nZ = 0.79), with
an interaction falling short of statistical significance
(F(2,22) = 0.325, p = 0.058, nZ = 0.23). Paired t-tests
comparing target present RT x set size slopes for
evolved hard distractors (mean slope = 30.76) and
ear-enhanced distractors (mean slope = 30.99) did not
find a significant difference between the two (#(11) =
.06, p = .95). Paired ¢-tests comparing target absent RT
x set size slopes for evolved hard distractors (mean
slope = 109.4) and ear-enhanced distractors (mean
slope = 79.54) did not reach significance (#(11) = 1.83,
p = 0.05). As ever, target absent conditions facilitate a
longer search duration than target present conditions.

Discussion

The effect of adding extra “ears,” or narrow
elongated parts, to the blob with ears distractors
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reduced RTs while having little effect on the slope of
RT x set size functions. Although there are many ways
to interpret visual search data of this sort, one standard
interpretation of this pattern of results would be to
argue that the addition of extra ears did not affect the
search process but speeded the final decision stage.
That is, both sets of distractors produced a relatively
inefficient search, consistent with serial selection of
one candidate rabbit after the other. On target present
trials, when the rabbit is eventually selected, the decision
that the selected item is the target is faster when the
distractors have extra ears. Absent trials are sensitive
to the time required to make a present response (Chun
& Wolfe, 1996; Moran, Zehetleitner, Miiller, & Usher,
2013), and, as a consequence, the absent RTs are also
somewhat shorter for multi-ear distractors.

If extra ears had made it easier to reject distractors,
then the slopes of RT x set size functions would be
expected to be shallower. Similarly, if observers were
making faster decisions about each distractor during
search, one would expect to see a shallower slope for the
multi-ear distractors. The lack of a slope effect suggests
that attention is not being guided by the number of
ears. Targets with one or two ears do not pop-out
among distractors with four or more. It is possible that
there would be a search asymmetry here. Targets with
more of an attribute are often easier to find than targets
with less (Treisman, 1985; Wolfe, 2001). Thus it could
be that multi-eared distractors would pop-out from
amongst rabbit or rabbit-like distractors.

Overall, these results are consistent with an account
in which guidance to the rabbit silhouette is difficult
among distractors that are composed of a body plus
ears, even supernumerary ears. The speed with which
one can make a final response about the presence or
absence of a rabbit depends on the similarity of the
target and the attended distractors, but this effect does
not influence the aspects of the search process that
depend on the number of items in the search display.

What have we learned from these experiments?

The method works as intended

These experiments show that a GA can be used to
increase or decrease the difficulty of a visual search
based on an observers’ own behavior, even with a
relatively noisy metric of evolutionary fitness such as
RT. These studies suggest that GAs can be used to
make search more or less efficient. These experiments
can be thought of as a proof of concept, showing
that the GA method has promise. We have by no
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means exhausted the possibilities here. It is certainly
possible that another set of “genes” would produce
different, novel results. Radial frequency descriptors are
convenient because they are easy to parameterize, but
they generate only a fairly restricted set of shapes (fairly
schematic rabbits—yes; trees, Swiss cheese, or Chinese
characters—not so readily). Other descriptors like, for
example, medial-axis skeletons (Ayzenberg & Lourenco,
2019) or parameters derived from an object-recognizing
neural net (Kreiman, 2017) might produce interesting
and quite different results. Hung, Carlson & Connor
(2012) used an adaptive shape sampling approach to
demonstrate that macaque monkey IT encodes medial
axis shape, which suggests that focusing on medial-axis
skeletons may be a promising future direction for more
complex shapes.

Even within the radial frequency space, different
evolutionary rules might produce different results. For
instance, asexual reproduction might produce different
trajectories of evolution. A richer family of shapes
might yield different guiding shape features. Hiding
a rabbit did not require higher radial frequencies,
but would that be true if we tried to hide a simple
square or an “X”? Our algorithm was initialized by
randomly selecting 10 amplitudes and dividing each by
the respective frequency to approximate the spectrum
of natural scenes. It’s unclear whether the decision to
approximate the 1/f rule for the Fourier spectra of real
scenes (Black, Hurst, & Simaika, 1965) influenced the
pattern on shape evolution. In short, the basic success
of the GA method suggests that a range of follow-on
experiments could produce useful results.

Radial frequencies are a useful but not a
comprehensive description of shape

As noted above, radial frequencies can be used to
generate a range, but by no means the full range of
shapes and the GA method can manipulate radial
frequencies to make easier and harder searches for
specific targets. Experiment 2 forced distractors to
include or exclude the radial frequencies of the target.
The results of evolution found that it was possible to
find difficult distractors for some target shapes but not
others. When the target was defined by a few discrete
frequencies, search could be made difficult by evolving
distractors to include other, neighboring frequencies.
Search could be made easy by evolving distractors
that were quite simple blobs among targets with more
apparent “parts.” However, when the target was defined
by a range of high or low frequencies, it was not
possible to make the search harder when distractors
could not include the same frequencies as the target.
High-radial-frequency distractors simply could not
hide low-radial-frequency targets or vice versa. This
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result is reminiscent of classic spatial frequency channel
psychophysics in which high frequency targets were not
masked by low frequency noise and vice versa (Legge &
Foley, 1980).

A radial frequency-based GA suggests a role for
part-whole accounts of shape

Experiments 3 and 4 revealed the GA’s ability to hide
a semantically meaningful shape like a rabbit-silhouette
target, even though the rabbit includes high frequency
components not present in the distractors. Interestingly,
the distractors that most effectively hide the rabbit do
not have the appearance of a rabbit. Moreover, a shared
radial frequency account does not seem to do very much
work in explaining what makes some rabbit searches
harder than others. Instead, the GA appears to have
“discovered” evidence for accounts of shape that focus
on the part structure of shapes. The primary apparent
similarity among the best rabbit-hiding distractors is
that they all seem to be comprised of a combination
of a larger, elongated body-like part and one or more
narrow ear-like parts. The exact contours of the “body”
and placement of the “ears” on that body do not seem
to be critical. Again, there is no requirement that the
distractor look like a rabbit. Adding extra “ears” to
the distractor shape (Experiment 4) does not seem to
influence the search process but does seem to make it
easier for observers to decide when they have found a
target rabbit.

In order to parameterize the target and distractor
shapes, and to describe target-distractor similarity
with evolution, three metrics were used - a shape
skeleton similarity metric, a measure of total curvature
(perimeter®/area), and a Fourier amplitude distance
measure based on the radial frequency spectrum. Given
that the experiments manipulated radial frequency, it
is, perhaps, not surprising that the Fourier amplitude
measure succeeded in capturing the evolution from easy
to hard or vice versa in, for example, Experiment 1. It
is more interesting that it failed to explain the changes
that produced distractor shapes that hid the rabbit
target (Experiments 3, 4). The skeleton similarity metric
better described these distractor changes, presumably
because skeletons capture the part-whole structures
that evolved when we tried to hide the rabbit.

The results are consistent with the existence of
two types of “Template” in search

Finally, these findings illustrate something important
about the role of templates in visual search. A
search target like a rabbit or a “twisted plus” must
be represented in the mind of the observer. These
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representations are often called “templates.” There
is considerable discussion of templates in current
search literature. Several terms are used, essentially
interchangeably. Template names include the search
template (Rajsic, Ouslis, Wilson, & Pratt, 2017), the
memory template (T. Kristjansson, Thornton, &

Kristjansson, 2018), the target template (Bravo & Farid,

2016), and the attentional template (Yu & Geng, 2019).
The current results serve as an illustration that these
terms actually refer to two different types of templates
(Wolfe, 2020; Wolfe, 2021). Return to the “twisted
plus” for an example. How do we guide attention

to a “twisted plus” target? Apparently, for search
purposes, it is defined as something like a “roughly
round (not elongated) thing with bumps.” Search for
this target is difficult when distractors are roughly
round and bumpy, while search is easy when distractors
are elongated, smooth, or both. We could speak of a
“guiding template” that embodies this definition of the
target of search. Once an item is selected, however,
this guiding template is not adequate to identify the
target as, specifically, the twisted plus. There must be

a second “target template” that contains the precise
representation of the target. This is the representation
that allows you to distinguish your child from other
children or your small red car from other small red cars.

This point may be made most clearly by Experiment
4. In both the regular and extra ear conditions, the
distractors appear to match the rough guiding template
of elongated body plus ears. Search is inefficient
because target and distractors share the features of
that guiding template. Neither type of distractor
matches the target template that identifies This Specific
Rabbit. The mismatch is greater for the extra ear
distractors, allowing positive identification of the target
to occur more quickly in the extra ear condition. The
two-template idea is a different way to account for
the ability to hide a target with distractors that, once
attended to, look nothing like the target. The target
is hidden in search if distractors match the guiding
template. It is identified when selected, if the target
matches the target template.

If a target has a specific orientation, the guiding
template will have a rough, one-dimensional
representation of that orientation. It would have
a three-dimensional representation of the target’s
color. The guiding representation of the target’s
shape may be of quite a high dimensionality. The
results of the present experiments point to frequency
dimensions, part-whole/ skeletal dimensions, as well as
the topological dimensions that made it easy to find
a target with an internal loop. It may be that there is
no single description that combines all of these into a
unified description of shape. This venture into using a
GA to study shape in search did not reveal any such new
representation. These experiments did demonstrate that
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GA’s can be used in this quest. Other implementations
of GAs have been used to optimize stimuli (Verma

& McOwan, 2009), optimally simulate human search
behavior (Zhang & Eckstein, 2010), and to explore
which features constrain search performance in a search
display (Van der Burg, Cass, Theeuwes, & Alais, 2015).
Future work using GAs may extract more information
about the shape feature space that undergirds guidance
of attention by shape information.

Keywords: visual search, shape perception, genetic
algorithm, attention, evolution
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