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Individualizing physiological models to a patient can enable patient-specific monitoring
and treatment in critical care environments. However, this task often presents a unique
“practical identifiability” challenge due to the conflict between model complexity and
data scarcity. Regularization provides an established framework to cope with this conflict
by compensating for data scarcity with prior knowledge. However, regularization has
not been widely pursued in individualizing physiological models to facilitate patient-
specific critical care. Thus, the goal of this work is to garner potentially generalizable
insight into the practical use of regularization in individualizing a complex physiological
model using scarce data by investigating its effect in a clinically significant critical
care case study of blood volume kinetics and cardiovascular hemodynamics in
hemorrhage and circulatory resuscitation. We construct a population-average model
as prior knowledge and individualize the physiological model via regularization to
illustrate that regularization can be effective in individualizing a physiological model
to learn salient individual-specific characteristics (resulting in the goodness of fit to
individual-specific data) while restricting unnecessary deviations from the population-
average model (achieving practical identifiability). We also illustrate that regularization
yields parsimonious individualization of only sensitive parameters as well as adequate
physiological plausibility and relevance in predicting internal physiological states.

Keywords: individualization, physiological model, regularization, practical identifiability, volume kinetics,
cardiovascular hemodynamics, hemorrhage, resuscitation

INTRODUCTION

Clinical care automation has been a domain of interest for a few decades by virtue of its
potential for error-free and vigilant performance of routine and low-level patient monitoring
and treatment tasks (Hemmerling et al., 2010; Salinas et al., 2011; Dussaussoy et al., 2014;
Rinehart et al., 2015; Brogi et al., 2017; Hundeshagen et al., 2017; Pasin et al., 2017), yet realizing
this potential is contingent upon establishing the safety and the performance characteristics of
clinical care automation. Patient physiology models built upon physical principles (hereafter called
physiological models) can facilitate the development (Jin-Oh et al., 2012; Bighamian et al., 2014;
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Jin et al., 2018) and the testing (Kovatchev et al., 2009; Ortiz et al.,
2010; Brown et al., 2015) of clinical care automation capabilities.
However, individualizing physiological models (which can enable
the systematic development and the testing of patient-specific
clinical care automation) presents formidable challenge due
to the conflict between model complexity and data scarcity.
That is, physiological models are complex and involve a large
number of unknown patient-specific parameters that frequently
exhibit interaction properties, whereas clinical data pertaining
to an individual patient are scarce in both quantity and quality.
For example, blood pressure (BP) can increase in response to
an increase in cardiac output (CO) and an increase in total
peripheral resistance (TPR), but routine clinical measurements
often provide only BP which does not offer sufficient information
to uniquely determine CO- and TPR-related model parameters.
In fact, such a conflict appears to be a main obstacle in
characterizing a wide range of mechanistic models in physiology
as well as in broader fields of biology and physics, which has
been called the sloppiness property (Transtrum et al., 2010, 2015;
Machta et al., 2013; White et al., 2016) or lack of practical
identifiability (Raue et al., 2009; Maiwald et al., 2011) in different
contexts. If not properly addressed, such conflict may yield a
physiological model suffering from non-unique and physically
irrelevant parameter values as well as poor individual-specific
internal (i.e., unmeasured) state predictions.

The existing body of work has addressed the practical
identifiability challenge mainly in two ways: (i) by modifying the
model structure or parameterization toward more simplified or
lumped models and (ii) by utilizing some form of regularization
(or more generally, prior knowledge) to additionally inform the
modeling procedure and effectively reduce the complexity of
the model search space. Analyzing and modifying the model
structure has particularly strong precedents in physiological
modeling, where effective tools such as variation-based sensitivity
analysis (Sobol, 2001; Saltelli et al., 2008, 2010) and profile-
likelihood (Raue et al., 2009, 2014; Maiwald et al., 2016) methods
are used to assess the appropriateness of a model structure and
the importance of model parameters with respect to given data.
While useful in informing potential modifications to the model
structure and parameterization (Machta et al., 2013; Mattingly
et al., 2018), many of these tools are formalized on a pre-
determined level of data availability, making them less powerful
if data availability varies (which is quite common in clinical
scenarios). Regularization is an established framework to cope
with conflicts between model complexity and data scarcity,
by which one can potentially compensate for the scarce data
available to individualize a physiological model based on prior
knowledge. To date, the notion of prior distribution (Toni et al.,
2009; Gelman et al., 2013) and its closely related counterpart in
regularization (Benning and Burger, 2018) have been pursued in
a wide range of deterministic and stochastic modeling problems
to incorporate additional information into the modeling problem
and control the complexity of the model search space (Davidian
and Giltinan, 2003; Tivay et al., 2019; Zhang et al., 2019).

The goal of this work is to garner potentially generalizable
insight into the role of regularization in individualizing a
complex physiological model using scarce data by studying

its effect in a clinically significant critical care case study of
blood volume (BV) kinetics and cardiovascular hemodynamics
in hemorrhage and circulatory resuscitation. We construct a
population-average physiological model as prior knowledge
and individualize the physiological model via regularization
to elucidate how regularization enables the physiological
model to capture salient individual-specific characteristics
(leading to the goodness of fit to individual-specific data)
while restricting unnecessary deviations from prior knowledge
(achieving practical identifiability). We also analyze how
regularization affects the plausibility and the relevance of the
physiological model under varying levels of scarcity in individual-
specific data in terms of its parameter values and internal
state predictions.

This paper is organized as follows: section “Cardiovascular
Hemodynamics in Hemorrhage and Circulatory Resuscitation”
outlines the physiological model and the experimental data
used in the case study. Section “Materials and Methods”
describes a step-by-step procedure for applying regularization to
individualize the physiological model. Section “Results” presents
the results, which are discussed in section “Discussion”. Section
“Conclusions” concludes the paper with suggested future work.

CARDIOVASCULAR HEMODYNAMICS IN
HEMORRHAGE AND CIRCULATORY
RESUSCITATION

Credible physiological models of BV kinetics and cardiovascular
hemodynamics have the potential to facilitate the development
and the testing of circulatory resuscitation devices and algorithms
(Parvinian et al., 2018). Prior work has reported a wide
spectrum of physiological models (in terms of scale and
detail) to represent volume kinetics (Hahn, 2010; Bighamian
et al., 2016) and cardiovascular hemodynamics (Moss et al.,
2012; Bighamian et al., 2018) in response to stimuli. In
some cases, these physiological models were also analyzed for
practical identifiability (Moss et al., 2012; Marquis et al., 2018;
Pathmanathan et al., 2019; Pironet et al., 2019). In this work,
we employ an extended and enhanced version of a physiological
model reported in our prior work (Bighamian et al., 2018), which
concerns the effect of hemorrhage and circulatory resuscitation
on the changes in BV kinetics and cardiovascular hemodynamics.

Model Description
The physiological model is composed of component
mathematical models that represent BV kinetics, cardiovascular
function, and BP regulation, all at the systems level (Figure 1).

The BV kinetics model is a lumped-parameter model that
simulates the effect of fluid gain, blood loss, and inter-
compartmental fluid exchange on changes in BV. In this model,
the time rate of change in BV (1VB) can be described by the
following differential equation:

1V̇B (t) = u (t)− v (t)− uex (t) (1)

where u, v, and uex, respectively, denote the rate of external
fluid gain (e.g., fluid resuscitation), external fluid loss (e.g.,
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FIGURE 1 | Physiological model of blood volume kinetics and cardiovascular hemodynamics in response to hemorrhage and circulatory resuscitation.

hemorrhage and urinary output), and internal fluid exchange
between BV and interstitial tissue compartments. The rate of fluid
exchange is macroscopically modeled as a control input signal
that regulates BV to a target value rBV as follows:

uex (t) = −Kp [rBV (t)−1VB (t)] (2)

where Kp is the controller gain and rBV represents the target
change in BV, which is computed according to the history of
external fluid gain and loss as follows:

rBV (t) =
1

1+ αu

t
∫
0
u (τ) dτ−

1
1+ αv

t
∫
0
v (τ) dτ (3)

where the ratio 1
1+au determines the fraction of the total external

fluid gain that eventually remains within the BV compartment
(with the rest shifted to the interstitial tissue compartment),
and the ratio 1

1+av determines the fraction of the total fluid
loss that is not compensated for by a refill from the interstitial
tissue compartment. In our prior work, we demonstrated that
the macroscopic expressions above can reproduce BV kinetic
responses to volume perturbations with crystalloid, colloid, and
blood (Bighamian et al., 2016, 2018).

The cardiovascular function model is built to compute CO
from BV based on the CO–venous return equilibrium principle
(Guyton et al., 1975) and the left ventricular (LV) pressure–
volume relationship (Lankhaar et al., 2009). The details of such
a derivation can be found in our previous work (Bighamian et al.,
2018), which yields the following model relating BV to CO:

CO (t) =
HR(t)

A+ A
EsHR (t)TPR(t)

log
(
−

γk
B
TPR (t)CO (t)

+
γ

BCs
VB (t)−

γ

BCs
ηVB0 + 1

)
(4)

where HR (t) is the heart rate, TPR(t) is the TPR associated
with the arterial circulation, Cs is the systemic capacitance, Es
is the left ventricular elastance, A and B define the shape of

the LV pressure–volume loop, γ represents the approximate
proportionality constant between central venous (PCV ) and LV
end diastolic (PLVED) pressures (γ ≈ PLVED/PCV ), k denotes the
ratio between the resistance to venous return and TPR (k =
RVR/TPR), VB0 is the initial BV, and η represents a proportional
relationship between VB0 and the unstressed BV VBU : VBU =

η VB0 .
The BP regulation component of the model approximates the

regulatory mechanism in the body that monitors the discrepancy
between a pre-specified, intrinsic mean arterial BP (MAP) set
point (MAPtarget) versus the subject’s actual MAP (MAP(t)) and
adjusts TPR (and accordingly, the resistance to venous return)
to maintain MAP near the set point level. This component is
modeled with the following equations:

MAP (t) = CO (t)TPR (t) = CO (t) [TPR0 +1TPR(t)] (5a)

1ṪPR (t)+ pTPR1TPR (t) = kTPR
[
MAPtarget −MAP (t)

]
(5b)

where TPR0 is the initial value of TPR, which can be found
from the initial value of CO and MAP (TPR0 = MAP0/CO0),
kTPR is the gain of MAP regulation, and pTPR represents the
speed of MAP regulation. Due to the relatively short time period
(180 min) associated with the dataset as well as the presumably
maximal level of short-term BP regulation responses due to large
initial hemorrhage, the full mechanistic details of BP regulation
mechanisms (e.g., the long-term aspects associated with the
responses of the renin–angiotensin–aldosterone and anti-diuretic
hormone systems) are not considered, and the collective short-
term effects of BP regulation mechanisms are macroscopically
expressed by Eq. 5.

Experimental Dataset
The experimental measurements acquired from animals in an
array of prior work (Rafie et al., 2004; Vaid et al., 2006; Marques
et al., 2017) were used as data in this case study. A total of N = 23
sheep constituted the population considered in this study. The
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data included the time series sequences of BV, CO, and MAP
acquired from these sheep subjects. In each sheep, initial BV was
measured using a dye concentration method. Then, subsequent
changes in BV were measured with hemoglobin dilution after
correction for the loss of red blood cells. CO was measured with a
flow probe placed on the pulmonary artery. MAP was measured
with arterial catheterization. These signals were measured at 5-
min intervals during a measurement period of 180 min. Each
sheep was subjected to a large initial hemorrhage (25 ml/kg; see
“H” at 0–15 min in Figure 4) followed by resuscitation (see “I”
at 30–180 min in Figure 4) and subsequent minor hemorrhages
(5 ml/kg; see “H” at 50–55 and 70–75 min in Figure 4). Fluid
resuscitation was performed by previously developed closed-loop
control algorithms (Rafie et al., 2004; Vaid et al., 2006; Marques
et al., 2017) designed to maintain MAP. Hemorrhage and fluid
resuscitation yielded diverse BV, CO, and MAP responses in the
datasets, which is appropriate to analyze the role of regularization
in individualizing the physiological model (Table 1).

MATERIALS AND METHODS

In this section, we present a procedure for applying regularization
to the physiological model outlined in section “Cardiovascular
Hemodynamics in Hemorrhage and Circulatory Resuscitation”.
Special emphasis is given to the construction of prior knowledge,
which involves the choice of a regularization function employed
in individualizing the physiological model. Then, data analysis
details are presented.

Individualizing the Physiological Model
Given the data associated with an individual subject i, the inputs
given to the subject (i.e., hemorrhage and fluid resuscitation) are
denoted byUd

i = {u (t) , v(t)}, while the outputs of the subject are
denoted by a vector Yd

i . For instance, in case BV, CO, and MAP
data are available in the individual i, then Yd

i is defined as:

Yd
i =

[
BVd

i
(
t1, . . . , tnBV

)
COd

i
(
t1, . . . , tnCO

)
MAPdi

(
t1, . . . , tnMAP

)]
(6)

where Xd
i
(
t1, . . . , tnX

)
is a row vector containing

the measurements of X at times
(
t1, . . . , tnX

)
. The

nominal noise covariance matrix associated with Yd
i is

6 = diag
(
σ2
BV InBV , σ

2
COInCO , σ

2
MAPInMAP

)
.

TABLE 1 | Range of blood volume (BV), cardiac output (CO), and mean arterial BP
(MAP) responses at important time instants during the experimental protocol
[mean (SD), N = 23].

Time (min) BV (L) CO (L/min) MAP (mmHg)

Baseline pre-hemorrhage (t = 0) 2.37 (0.44) 4.40 (0.96) 91.22 (10.60)

Immediate post-hemorrhage (t = 15) 1.83 (0.44) 2.23 (0.83) 52.33 (16.73)

Start of resuscitation (t = 30) 1.86 (0.41) 2.21 (0.79) 53.17 (10.71)

End of resuscitation (t = 180) 2.22 (0.58) 4.67 (1.15) 82.80 (6.31)

To obtain model predictions Yi(θ,Ud
i ) corresponding to the

elements of the data vector Yd
i , the model equations in section

“Cardiovascular Hemodynamics in Hemorrhage and Circulatory
Resuscitation” are numerically solved given the inputsUd

i and the
vector of lumped model parameters θ, which is defined as follows
(see Appendix Table A1 for details and ranges):

θ =

[
αu αv Kp A

A
Es

γk
B

γ

BCs
η kTPR pTPR MAPtarget

]
(7)

The problem of individualizing the physiological model can
be formulated as solving the following maximum a posterioi
estimation problem (Gelman et al., 2013):

θ̆i = arg max
θ

P(θ|Ud
i ,Y

d
i ) = arg max

θ
P(Yd

i |U
d
i , θ)P(θ)

= arg min
θ

[
− log P

(
Yd
i |U

d
i , θ

)
− log P(θ)

]
= arg min

θ
[J1 (θ)+ J2 (θ)] (8)

where θ̆i is the vector of model parameters associated with
the individual i, J1 (θ) = − log P

(
Yd
i |U

d
i , θ

)
corresponds to the

likelihood of the individual-specific data with respect to the
model output, and J2 (θ) = − log P(θ) is a regularization term
that corresponds to prior knowledge P (θ) about the parameter
values. Assuming that P

(
Yd
i |U

d
i , θ

)
is a Gaussian distribution

due to noise on the output measurements, we can set J1 (θ) as
the covariance-weighted mean-squared output errors:

J1(θ) =
[
Yi

(
Ud
i , θ

)
− Yd

i

]
6−1

[
Yi

(
Ud
i , θ

)
− Yd

i

]T
(9)

In case there is no informative prior knowledge about the
probability distribution of the model parameters, J2 (θ) in Eq. 8
does not depend on θ and is effectively removed. However, in
that case, the optimization problem in Eq. 8 is likely to become
ill-posed and suffer from practical identifiability challenges when
the physiological model is too complex relative to the available
individual-specific data (which is frequently the case).

The main idea to address the practical identifiability problem
in the absence of sufficient individual-specific data is to construct
an appropriate prior distribution P(θ) to additionally inform the
modeling problem. This prior distribution can be constructed
based on the prior knowledge about plausible parameter ranges
as well as heterogeneous data from a population of individuals.
In this work, we formulate a prior in the shape of a Laplace
distribution of the following form:

P (θ) ∝
nθ∏

m=1

exp

(
−

∣∣θm − θ̄m
∣∣

bm

)
→ J2 (θ) = λ

nθ∑
m=1

1
bm

∣∣θm − θ̄m
∣∣

(10)
where θm is the m-th element in θ, θ̄m is the m-th element of the
mode of the distribution θ̄, λ is the regularization weight, and bm
is a normalization factor for θm, which reflects prior knowledge
about reasonable and/or physiological ranges for the model
parameter [i.e., given physiological upper

(
θ̂m

)
and lower

(
θ̌m

)
bounds on θm, we set bm = (θ̂m − θ̌m); see Appendix Table A1
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for θ̂m and θ̌m associated with the physiological model in section
“Cardiovascular Hemodynamics in Hemorrhage and Circulatory
Resuscitation”]. Equation 10 is a form of L1-regularization
(Bach et al., 2011; Jenatton et al., 2011), which represents the
inter-individual variability observed in the population data by
compressed parametric deviations from a mode denoted by θ̄.
This representation may be possible if the studied physiological
modeling problem has the sloppiness property (Machta et al.,
2013; Transtrum et al., 2015), i.e., a wide range of parameter
sensitivities, implying compressibility (see section “Role of
Regularization in Individualizing Physiological Models” for more
details as far as our case study is concerned).

Having Eq. 10, the problem of constructing the prior reduces
to determining the parameters λ and θ̄ from heterogeneous
population data. Techniques exist in the field of non-linear
mixed-effects modeling (Davidian and Giltinan, 2003) and
system identification (Pan et al., 2018) that can deal with
such problems, often with comparable results (Kataria et al.,
1994; Hahn et al., 2011). In this work, we define θ̄ as the
solution to the following maximum-likelihood optimization
problem based on the population data from L = N − 1
individuals:

θ̄ = arg min
θ

L∑
i=1

[
Yi

(
Ud
i , θ

)
− Yd

i

]
6−1

[
Yi

(
Ud
i , θ

)
− Yd

i

]T
(11)

Note that the population-based modeling problem in Eq. 11 is
supposedly less susceptible to practical identifiability challenges
than the individualization problem in Eq. 8 by virtue of the larger
amount of heterogeneous data available from the population. The
resulting model with θ̄ will hereafter be called the population-
average model, which is intended to represent an aggregated and
sensible model of typical physiological behavior.

The regularization weight λ serves as the relative scaling
factor between the spread of the prior in Eq. 10 and the
spread of the likelihood in Eq. 9. To find an appropriate
individual-specific weight λ∗i , we adopt an approach related to
the L-curve method (Hansen, 1992; Hansen and O’Leary, 1993).
The weight λ∗i may be estimated by solving the optimization
problem in Eq. 8 for a range of λ ∈ [0 λmax] and plotting
the resulting values for the goodness of fit cost J1(θ) and
the deviation distance D(θ) = J2(θ)/λ (Figure 2). An initial
increase of λ from zero tends to decrease D by compressing
parametric deviations from θ̄ in low-sensitivity directions. This
increases J1, but the extent is not large relative to the decrease
in D since the effect of restricting low-sensitivity (i.e., sloppy)
deviations on J1 is, by definition, small. This trend continues
until λ reaches a critical value. However, beyond this critical
value, sensitive deviations also become restricted, leading to a
substantial increase in J1 relative to the decrease in D. The
appropriate λ∗i can be chosen as the value of λ in between these
regime changes (Figure 2).

In sum, individualizing a physiological model via
regularization can be performed in two steps: (i) constructing
a prior (regularization function) from heterogeneous data
measured in a population by solving Eq. 11 and (ii)

FIGURE 2 | Typical trend of the goodness of fit metric J1 and the deviation
distance D with respect to λ in individualizing physiological models.

individualizing the physiological model with regularization
using scarce individual-specific data by solving Eq. 8 (Figure 3).

Data Analysis
We applied the individualization procedure outlined in section
“Individualizing the Physiological Model” to the physiological
model outlined in section “Cardiovascular Hemodynamics
in Hemorrhage and Circulatory Resuscitation”. In particular,
we constructed an appropriate regularization function and
individualized the physiological model under varying levels of
scarcity in the individual-specific data. To enable the data analysis
with relatively small sample size, we performed a leave-one-out
type of data analysis (details follow).

We individualized the physiological model under three levels
of increasing data scarcity: (i) case 1, in which the physiological
model was individualized given BV, CO, and MAP data, (ii)
case 2, in which the physiological model was individualized
given CO and MAP data, and (iii) case 3, in which the
model was individualized given only MAP data. We considered
these data scarcity scenarios for two investigational reasons:
(i) comparison of the physiological models individualized with
and without the use of regularization in the three cases may
offer insight into how regularization affects the parameter values
in response to varying data scarcity and (ii) analysis of the
prediction errors for unmeasured internal states (i.e., BV in
case 2 and BV and CO in case 3) with and without the
use of regularization may offer insight into how regularization
affects the physiological plausibility and the relevance of the
physiological model under data scarcity.

For each animal subject, we analyzed the data pertaining
to the rest of the L = 22 animal subjects with the maximum-
likelihood method in Eq. 11 to derive a population-average
physiological model, characterized by θ̄, that predicts BV, CO,
and MAP responses to hemorrhage and fluid resuscitation
inputs. Then, we individualized the physiological model to
the (excluded) animal via regularization by solving Eq. 8
with Eq. 10 as the regularization function. We selected the
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FIGURE 3 | Individualizing physiological models with scarce data via regularization. In the first step, a prior (regularization) is constructed from heterogeneous data
measured in a population by solving Eq. 11. In the second step, the physiological model is individualized with regularization using scarce data by solving Eq. 8.

appropriate value of λ for each individual subject as described in
section “Individualizing the Physiological Model” (Figure 2). We
repeated individualizing the physiological model in this way for
the three dataset scarcity cases. For comparative analysis, we also
individualized the physiological model to each animal without
using regularization for all the three data scarcity scenarios.

With the goal of assessing the plausibility and the relevance of
the physiological models, we compared the models individualized
with and without regularization as well as the population-
average model. We devised two quantitative error metrics for this
purpose: (i) output prediction error e1, defined as the normalized
root-mean-square error (RMSE) between model-predicted and
measured output signals (among BV, CO, and MAP) explicitly
used for individualizing the physiological model and (ii) state
prediction error e2, defined as the normalized RMSE between
model-predicted and measured internal state signals not used in
individualizing the physiological model. For example, in case 3,
e1 is the normalized RMSE associated with MAP:

e1 =
1

Nn1/2
MAP

∑N

i=1[
1

σMAP
‖ MAPi

(
t1, . . . , tnMAP

)
−MAPdi

(
t1, . . . , tnMAP

)
‖2

]
(12)

while e2 is the normalized RMSE associated with BV
and CO:

e2 =
1

N(nBV + nCO)1/2

∑N

i=1

[(
1

σ2
BV
‖ BVi

(
t1, . . . , tnBV

)
−BVd

i
(
t1, . . . , tnBV

)
‖

2
2 +

1
σ2
CO
‖ COi

(
t1, . . . , tnCO

)
−COd

i
(
t1, . . . , tnCO

)
‖

2
2

)1/2
]
(13)

We employed the Wilcoxon signed-rank test in conjunction with
the Bonferroni correction to assess the statistical significance of
the difference in these metrics between the models.

A numerical simulation of the physiological model was
performed using MATLAB R©’s ODE solvers in the Simulink R©

environment. The numerical optimization was performed
using MATLAB R©’s Optimization Toolbox. Data analysis and
visualization was performed using the seaborn and the matplotlib
libraries in Python.

RESULTS

Table 2 shows the output (e1) and the internal state (e2)
prediction errors associated with the population-average model
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TABLE 2 | Output and state prediction errors associated with population-average
model as well as individualized models with and without the use of regularization
[mean (SD), N = 23].

Population
average

Individualized/no
regularization (λ = 0)

Individualized/
regularization

Case 1: individualizing the physiological model with BV, CO, and MAP
(individualized/regularization, λ = 0.10(0.06))

BV (L) 0.26 (0.19) 0.10 (0.03) 0.10 (0.04)

CO (L/m) 1.31 (0.80) 0.34 (0.18) 0.34 (0.17)

MAP (mmHg) 17.1 (8.88) 7.23 (2.01) 7.40 (2.05)

e1 0.25 (0.14) 0.08 (0.02)† 0.08 (0.02)†

Case 2: individualizing the physiological model with CO and MAP
(individualized/regularization, λ = 0.16(0.13))

BV (L) 0.26 (0.19) 0.29 (0.21) 0.25 (0.18)

CO (L/m) 1.31 (0.80) 0.30 (0.18) 0.32 (0.15)

MAP [mmHg] 17.1 (8.88) 6.94 (2.20) 7.92 (2.42)

e1 0.30 (0.19) 0.09 (0.03)† 0.10 (0.03)†

e2 0.15 (0.15) 0.16 (0.17) 0.14 (0.14)

Case 3: individualizing the physiological model with MAP
(individualized/regularization, λ = 0.22(0.17))

BV (L) 0.26 (0.19) 0.43 (0.35) 0.27 (0.18)

CO (L/m) 1.31 (0.80) 13.0 (18.0) 1.19 (0.94)

MAP (mmHg) 17.1 (8.88) 4.85 (1.43) 7.48 (3.03)

e1 0.24 (0.13) 0.07 (0.02)† 0.10 (0.04)†

e2 0.26 (0.15)* 2.08 (2.83) 0.24 (0.20)*

*p < 0.016 compared to the individualized model without the use of regularization.
†p < 0.016 compared to the population-average model.

and the individualized models (both with and without the use
of regularization), while Figure 4 presents the measured versus
the model-predicted output and internal state signals associated
with the population-average and the individualized physiological
models. Figure 5 presents the representative behaviors of
the output prediction error (e1), the internal state prediction
error (e2), and the parametric deviation distance (D) with
respect to the regularization weight λ in an individual subject.
Figure 6 presents the regularized parametric deviations from
the population-average model with respect to varying degrees
of data scarcity.

DISCUSSION

With the long-term goal of advancing the future development
and the testing of clinical care automation based on physiological
models, we sought to investigate the role of regularization
in individualizing a physiological model using scarce data.
Our findings from the case study of blood volume kinetics
and cardiovascular hemodynamics in hemorrhage and
circulatory resuscitation suggest that regularization can
be effective in individualizing the physiological model to
capture salient individual-specific characteristics and restrict
unnecessary deviations from the population-average model.
Furthermore, regularization results in appropriately varying
parametric deviations to cope with the varying levels of
data scarcity, thereby securing the physiological plausibility

and the relevance of the individualized physiological model
(details follow).

Role of Regularization in Individualizing
Physiological Models
First, the use of regularization effectively maintained the
goodness of fit to individual-specific data while reducing
parametric deviations in insensitive directions. In all scenarios
associated with the three levels of data scarcity (see section
“Data Analysis”), the difference in e1 was small between the
physiological models individualized with and without the use of
regularization (Table 2 and Figure 4). In contrast, the parametric
deviations [in terms of the distance D(θ) = J2(θ)/λ averaged
across all the animals] were smaller when regularization was
employed (1.19 in case 1, 1.14 in case 2, and 0.30 in case 3)
than when it was not (1.87 in case 1, 1.89 in case 2, and 2.82 in
case 3). This suggests that regularization assists in individualizing
a physiological model to achieve an adequate level of goodness
of fit while restricting parametric deviations that may only
result in overfitting.

Second, the physiological model individualized with the use
of regularization exhibited improved physiological plausibility
and relevance in comparison with the one individualized
without the use of regularization in terms of the accuracy in
predicting internal state signals. In general, the goodness of fit
associated with BV and CO responses was deteriorated when
the corresponding measurement was removed in individualizing
the physiological model. Figure 4 shows that indeed (i) BV
prediction is deteriorated when BV data become unavailable
(case 1 → case 2 and case 3) and (ii) CO prediction is
likewise deteriorated when CO data become unavailable (case
2 → case 3). In case 2, e2 (i.e., BV prediction error) was
smaller when regularization was employed than when it was not
employed (p = 0.03) (Table 2). In case 3, e2 (i.e., BV and CO
prediction errors) was likewise smaller when regularization was
employed than when it was not employed (p < 0.01) (Table 2).
Interestingly, MAP prediction was notably improved as data
became more scarce when regularization was not employed [case
1 (7.23 mmHg) to case 2 (6.94 mmHg) to case 3 (4.85 mmHg),
all in terms of mean errors; see Table 2]. Thus, the large
deterioration in e2 may be attributed to overfitting to MAP
data. In conjunction with the finding above on the role of
regularization in restricting unnecessary parametric deviations,
this suggests that regularization improves the ability of the
individualized physiological model to predict the internal states
accurately by preventing the undesired over-tuning of model
parameters away from their population-average values. One
additional minor note is that BV prediction achieved with
regularization was comparable between case 2 and case 3. This
can be interpreted as follows: (i) both case 2 and case 3 did
not use BV data in individualizing the physiological model,
and regularization tended to reduce the BV component in the
physiological model to the population-average model (as can be
seen by the comparable BV prediction errors associated with
these models; see Table 2) and (ii) presumably CO data did not
provide much implications on the behavior of BV on top of the
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FIGURE 4 | Comparison of measured data with model outputs in all (N = 23) individualized models, with and without the use of regularization, in three cases of data
scarcity. Solid lines correspond to the mean response across all individuals and the shaded bands show the standard deviation of the response across all individuals.
The lines on the horizontal axis indicate the timings of hemorrhage and infusion in the experimental protocol.

prior knowledge [as can be seen by the BV prediction errors in
case 2 with and without the use of regularization (0.25 L and
0.29 L, both in terms of mean errors; see Table 2].

Third, the individualized physiological model exhibited
goodness of fit parametric deviation behavior with respect to
the regularization weight λ as anticipated in Figure 2, especially
in the case of very scarce data (case 3; see Figure 5). A sharp
initial decrease in D(θ) = J2(θ)/λ relative to a modest increase
in e1 was observed when λ was initially increased from zero.
Further increase in λ after a critical point caused e1 to largely
increase relative to a steady decrease in the parametric deviation
distance and eventually approach that of the population-average
model. In sum, an appropriate λ∗i could be selected as outlined
in section “Individualizing the Physiological Model” (λ∗ = 0.15).

Interestingly, there appeared to be a notable link between
the behaviors of D(θ) and e2: e2 initially showed a notably
decreasing trend similar to that of D(θ), which suggests that
regularization improves the ability of the individualized model
to predict internal states (Figure 5). For larger values of λ, e2
increased, which can be attributed to the restriction of sensitive
parametric deviations, degenerating the individualized model to
the population-average model.

Fourth, the physiological model individualized with the use of
regularization was associated with a significantly superior output
prediction error and a comparable internal state prediction error
in comparison with the population-average model (Table 2).
This suggests that regularization is effective in judiciously
individualizing sensitive model parameters to achieve desirable
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FIGURE 5 | Representative trends of the output prediction error e1, the internal state prediction error e2, and the parametric deviation distance in a subject with
respect to the regularization weight λ.

FIGURE 6 | Box and violin (density estimate) plots of regularized parametric deviations from the population-average values across all individualized models, with
respect to varying levels of data scarcity. (A) Case 1 (individualization with BV, CO, and MAP data). (B) Case 2 (individualization with CO and MAP data). (C) Case 3
(individualization with MAP data). Horizontal axis: normalized parametric deviations from the population-average values, where model parameters were normalized
according to their nominal range (bm’s in Eq. 10; see Appendix Table A1). Vertical axis: model parameters.

goodness of fit to individual-specific data while at the same time
capitalizing on prior knowledge (in the form of regularization)
to preserve the ability to adequately predict unmeasured
internal states.

Parametric Deviations in Relation to
Varying Data Scarcity
In our case study, regularization-induced deviations from
the population-average model showed two noteworthy trends.
First, with regularization, deviations tended to decrease as
the data became more scarce (Figure 6). In other words,
(i) regularization allowed meaningful deviations if ample data
were available so that the physiological model could be better

individualized by absorbing the individual-specific characteristics
represented by the data, whereas (ii) it restricted unwarranted
deviations if scarce data were available so that the physiological
model could fall back to the population-average model. This
can be viewed as a desirable behavior in that increasingly
leveraging the prior knowledge (i.e., the population-average
model) as the data scarcity increases is the intended effect of
regularization. In contrast, such a parametric deviation trend
was not observed when regularization was not used. The
opposite occurred instead: scarce data resulted in more aggressive
deviations from the population-average model (see the deviation
distance results reported in section “Role of Regularization
in Individualizing Physiological Models”), which consequently
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compromised the fidelity of the individualized physiological
models (e.g., its internal state prediction was deteriorated;
see Table 2). Second, regularization appeared to effectively
individualize those parameters relevant to the presented data.
For example, the most visibly deviated parameter in case 3
was the one associated with BP regulation (kTPR), which is
reasonable in that only MAP measurements were presented to
individualize the physiological model in case 3 (Figure 6C). The
parameters associated with both CV function (γ/BCs and η)
and BP regulation (kTPR and MAPtarget) were likewise visibly
deviated in case 2, in which CO and MAP measurements were
presented (Figure 6B). Finally, the parameters associated with
BV were likewise largely deviated (αv, in particular) when BV
measurements were presented in addition to CO and MAP
data (Figure 6A). One caveat is that, despite the presence
of these trends, the studied parameters belong to a complex
physiological system and it may not be possible to attribute each
parametric deviation completely to the availability of a specific
type of measurement.

Study Limitations
This work has limitations. First, this work investigated the
role of regularization in a specific case study. Hence, the
insights obtained from the case study may not be universally
true in all physiological modeling problems. In particular,
the legitimacy of the key assumption used to address the
adverse effect of scarce data on the quality of individualized
models (that the inter-individual variability observed in the
population data can be represented by compressed deviations
from a population-average model according to the Laplace
distribution in Eq. 10) may depend on the specificity of the
physiological modeling problem at hand. On the one hand,
such a compressed representation may indeed be valid in many
real-world physiological modeling problems with the sloppiness
property (Machta et al., 2013; Transtrum et al., 2015) (which
implies parameter-space compressibility). On the other hand,
regularization may not prove effective if the quality of the
data and the model structure are such that the majority of the
model parameters are associated with sensitive deviations (where
individualizing the physiological model requires deviations in all
the model parameters; in this case, regularization is not needed)
or insensitive deviations (where a population-average model
may suffice because of negligible inter-individual variability). In
any case, the validity of the “parameter-space compressibility”
assumption in a specific physiological modeling application can
be assessed based on model prediction errors and parameter
values in the individualized physiological models: the bias
introduced by the inadequacy of the assumption will manifest
itself as poor goodness of fit of the individualized physiological
model to the data, while a lack of compressibility will manifest
itself as estimated elements of θ̆i in Eq. 8 that all deviate from θ̄ in
Eq. 11. Second, regularization does not guarantee, and may even
prevent, the convergence of the physiological model to the “true”
individual-specific physiological model. Indeed its main purpose
is to minimize the deviations from the prior knowledge (i.e.,
population-average model). Thus, the quality of a physiological
model individualized with regularization, especially using highly

scarce data, hinges upon the quality of prior knowledge. Hence,
the physiological model individualized with regularization is
a candidate approximation to the ideal individual-specific
physiological model (which would be obtained with sufficiently
diverse and high-quality data obtained from an individual).
Taking these aspects into account, regularization may be viewed
as an effective tool to individualize a physiological model in
cases with a relatively complex model and scarce individual-
specific data.

CONCLUSION

We sought to garner potentially generalizable insight into the
role of regularization as prior knowledge in individualizing
physiological models using scarce data. The findings obtained
from a clinically significant case study illustrated that regularized
individualization creates physiological models equipped with
several desirable properties: (i) an adequate trade-off between
goodness of fit to scarce individual-specific data and deviation
from a population-average model, (ii) improved physiological
plausibility and relevance, and (iii) parametric deviations relevant
to the scarcity level of the data. Noting that regularization is not
prevalently used in the physiological modeling domain, future
work must be devoted to exploring the use of regularization in
individualizing a range of physiological models and developing
appropriate theory and novel structures for the regularization
functions based on appropriate physiological assumptions.
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APPENDIX

TABLE A1 | List of lumped parameters individualized in the physiological model with nominal upper bounds, lower bounds, and population-average values.

Model parameter Unit Lower bound (θ̌m) Upper bound (θ̌m) Population-average value (θ̄ )

αu (1) 0 6 4.29

αv (1) 0 6 2.28

Kp (1/min) 10−2 0.5 0.21

A (1/L) 0 0.3 0.23

A/Es (1/mmHg) 0 10−3 2.54 × 10−4

γk/B (1/mmHg) 0 10−4 3.62 × 10−5

γ/BCs (1/L) 0 0.1 2.43 × 10−2

η (1) 0.2 1 0.43

kTPR (1/L) 0 1 5.87 × 10−2

pTPR (1/min) 0 1 0.66

MAPtarget (mmHg) 40 100 70.1
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