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New mechanism for glutamate hypothesis in epilepsy
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A commentary on

TREK-1 and Best1 channels mediate fast
and slow glutamate release in astrocytes
upon GPCR activation
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151, 25–40. doi: 10.1016/j.cell.2012.09.005

Epilepsy is a broad range of neurological
conditions that are manifested as seizures.
Two major hypotheses—glutamate and
potassium—have been proposed for the
mechanism of epilepsy development
(Fisher et al., 1976; During and Spencer,
1993). Although both hypotheses have
some evidence to support, the relative
contribution of potassium and glutamate
to epilepsy has not been determined.

Glutamate is a major excitatory neuro-
transmitter in the brain and an immedi-
ate precursor for GABA in neurons and
glutamine in astrocytes. Glutamate is dif-
ferentially compartmentalized and metab-
olized via different enzymes by astrocytes
and neurons and exogenous and endoge-
nous glutamate is handled distinctively
by them (McKenna, 2007). Elevated lev-
els of glutamate have been reported in
human brain tissues and animal models of
epilepsy, and it is known that glutamate-
induced excitotoxicity causes the neuronal
death in epilepsy (Haglid et al., 1994;
Coulter and Eid, 2012 for detail).

The glutamate-glutamine cycle is a
major recycling mechanism of glutamate
and GABA in the brain. A glutamate
degrading enzyme, glutamine synthetase
(GS) has been shown to be deficient
in astrocytes in the epileptogenic hip-
pocampal formation in a subset of
patients with temporal lobe epilepsy
(TLE) (Eid et al., 2004). This GS defi-
ciency leads to increased glutamate levels
in astrocytes as well as elevated con-
centrations of extracellular glutamate.

Rats chronically infused with methion-
ine sulfoximine, a GS inhibitor, showed
increased glutamate in astrocytes (Perez
et al., 2012).

Increased glutamate release from neu-
rons and astrocytes and/or impaired
removal of glutamate in the extra-
cellular space (e.g., synaptic cleft) could
raise glutamate level. Glutamate clear-
ance is mainly performed by glutamate
transporters that move glutamate and
potassium across the plasma membrane
(Had-Aissouni, 2012). The astroglial
sodium-dependent glutamate transporter-
1 (GLT-1 a.k.a. EAAT2) is the major
glutamate uptake molecule in the brain,
and either malfunction and/or down-
regulation of GLT-1 could cause elevated
glutamate level. The fact that GLT-1 null
mice are epileptic supports GLT-1 involve-
ment for increased glutamate (Tanaka
et al., 1997). However, findings of GLT-1
level in animal models and human TLE
are not consistent, and they do not seem
to fully explain the elevated glutamate
(Mathern et al., 1999; Crino et al., 2002;
Proper et al., 2002; van der Hel et al.,
2005). It is evident that astrocytes are
potential sources of the excessive gluta-
mate in TLE, however, the mechanism(s)
for glutamate release from astrocytes has
been controversial; either vesicular exocy-
tosis or channel/transporter-mediated and
whether calcium is involved or not (Tian
et al., 2005).

A recent study demonstrating two dif-
ferent modes of glutamate release in astro-
cytes provides a new way of thinking
for epilepsy: TREK-1, a two-pore potas-
sium channel, can be responsible for
fast glutamate release induced by GPCR
(G-protein coupled receptors) activation
and Bestrophin-1 (Best1), a calcium acti-
vated anion channel for slow release
(Woo et al., 2012). To detect released
glutamate from astrocytes, a technique

called “sniffer-patch” was used: electro-
physiological recording of HEK293T cells
expressing a non-desensitizing mutant
(GluR1-L497Y) of AMPA receptors were
co-cultured with dissociated hippocam-
pal astrocytes. An agonist peptide for
PAR1 (protease-activated receptor 1) was
applied to activate G-protein in astrocytes.
Thus, glutamate released from astrocytes
can be measured via AMPA receptor cur-
rents. Differential subcellular localization
of these two channels also raises the pos-
sibility of distinct mode of their opera-
tions in epilepsy. TREK-1 is preferentially
expressed at cell bodies and processes of
astrocytes, while Best1 is present close to
synapses. It remains to be seen whether
their expression and localization in the
brain is altered in epilepsy.

The involvement of TREK-1, which
was identified as a potassium channel,
here is particularly interesting. The potas-
sium hypothesis of epilepsy was pro-
posed about a half century ago (Green,
1964; Fisher et al., 1976) and inactiva-
tion mutations of several potassium chan-
nels cause human and rodent epilepsies
(Benarroch, 2009). Impaired spatial potas-
sium buffering by astrocytes will result
in stronger and prolonged depolarization
of glial cells and neurons in response to
activity-dependent potassium release, and
may thus contribute to seizure generation
in this particular condition of human TLE
(Hinterkeuser et al., 2000). TREK-1 null
mice have increased seizure susceptibility
to systemic kainate administration. Is the
pore of TREK-1 permeable both to potas-
sium and glutamate? Is there any selective
mechanism of TREK-1 for one molecule
over the other depending on the activat-
ing signals? The answers to these questions
may aid in dissecting the relative contri-
bution of these two molecules to hyper-
excitability and epilepsy. As for Best1,
the question is whether enhanced calcium
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signals in astrocytes directly affect Best1’s
function in epilepsy models (Heurteaux
et al., 2004; Ding et al., 2007). Therefore,
it will be very intriguing to examine the
workings of TREK-1 and Best1 in animal
models and human TLE.
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