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Abstract 

Background: Genome‑wide association studies (GWAS) were performed at the sequence level to identify candidate 
mutations that affect the expression of six major milk proteins in Montbéliarde (MON), Normande (NOR), and Holstein 
(HOL) dairy cattle. Whey protein (α‑lactalbumin and β‑lactoglobulin) and casein (αs1, αs2, β, and κ) contents were 
estimated by mid‑infrared (MIR) spectrometry, with medium to high accuracy (0.59 ≤ R2 ≤ 0.92), for 848,068 test‑day 
milk samples from 156,660 cows in the first three lactations. Milk composition was evaluated as average test‑day 
measurements adjusted for environmental effects. Next, we genotyped a subset of 8080 cows (2967 MON, 2737 NOR, 
and 2306 HOL) with the BovineSNP50 Beadchip. For each breed, genotypes were first imputed to high‑density (HD) 
using HD single nucleotide polymorphisms (SNPs) genotypes of 522 MON, 546 NOR, and 776 HOL bulls. The resulting 
HD SNP genotypes were subsequently imputed to the sequence level using 27 million high‑quality sequence variants 
selected from Run4 of the 1000 Bull Genomes consortium (1147 bulls). Within‑breed, multi‑breed, and conditional 
GWAS were performed.

Results: Thirty‑four distinct genomic regions were identified. Three regions on chromosomes 6, 11, and 20 had very 
significant effects on milk composition and were shared across the three breeds. Other significant effects, which 
partially overlapped across breeds, were found on almost all the autosomes. Multi‑breed analyses provided a larger 
number of significant genomic regions with smaller confidence intervals than within‑breed analyses. Combinations 
of within‑breed, multi‑breed, and conditional analyses led to the identification of putative causative variants in several 
candidate genes that presented significant protein–protein interactions enrichment, including those with previously 
described effects on milk composition (SLC37A1, MGST1, ABCG2, CSN1S1, CSN2, CSN1S2, CSN3, PAEP, DGAT1, AGPAT6) 
and those with effects reported for the first time here (ALPL, ANKH, PICALM).

Conclusions: GWAS applied to fine‑scale phenotypes, multiple breeds, and whole‑genome sequences seems to be 
effective to identify candidate gene variants. However, although we identified functional links between some candi‑
date genes and milk phenotypes, the causality between candidate variants and milk protein composition remains to 
be demonstrated. Nevertheless, the identification of potential causative mutations that underlie milk protein compo‑
sition may have immediate applications for improvements in cheese‑making.
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Background
In cattle, milk protein composition is mostly influenced 
by genetic factors [1–4] and is of interest because it 
determines cheese-making properties [5]. Bovine milk 
protein composition can be predicted at a large scale by 
analyzing mid-infrared (MIR) spectra, which is routinely 
performed [6, 7]. Combined with cow genotyping, this 
technique may open avenues to investigate the genomic 
regions that influence milk protein composition. In a pre-
vious genome-wide association study (GWAS) based on 
the bovine 50  K single nucleotide polymorphism (SNP) 
array, we highlighted numerous genomic regions with 
very significant effects on milk protein composition in the 
three main breeds of French dairy cattle: Holstein (HOL), 
Montbéliarde (MON), and Normande (NOR) [8]. How-
ever, because the 50  K SNP array contains only a small 
fraction of the total number of genomic variants, we were 
not able to directly pinpoint candidate mutations.

In Run4 of the 1000 bull genome reference popula-
tion, a database containing more than 56 million SNPs 
and small insertions/deletions (InDel) was constructed 
by analyzing whole-genome sequences (WGS) from 1147 
bulls representing 27 different breeds, including 288 
HOL, 28 MON and 24 NOR bulls. These data can then 
be used to impute WGS from experimentally or routinely 
obtained 50  K SNP genotypes [9]. In this way, imputed 
WGS can be obtained for a large number of animals and 
in particular, those with phenotypes.

Since WGS contain almost all the genomic variants, they 
should contain the causal mutations for a given trait and, 
thus they provide a much higher GWAS resolution. How-
ever, due to the long-range linkage disequilibrium that 
exists within dairy cattle breeds, the resolution of within-
breed GWAS is often limited. For causal mutations that 
are shared among breeds, a multi-breed model can be used 
to refine regions that harbour quantitative trait loci (QTL). 
This approach takes advantage of the historical recombi-
nation events that have occurred in each breed, resulting 
in linkage disequilibrium over shorter distances and better 
resolution [10].

Here, we report the results of a GWAS at the sequence 
level for six major milk protein contents, namely 
α-lactalbumin and β-lactoglobulin and αs1, αs2, β, and κ 
caseins from HOL, MON, and NOR cows. The results of 
within-breed, multi-breed, and conditional analyses, that 
fit the most significant variant in addition to other tested 
variants, are examined together in order to pinpoint 
potential candidate variants in each genomic region.

Methods
Animals, phenotypes, and genotypes
For this study, we did not perform any animal experi-
ment, thus no ethical approval was required. Details on 

the animals and milk analyses are in Sanchez et  al. [8]. 
Briefly, MIR spectra were obtained for 848,068 milk sam-
ples from 156,660 cows of the three main French dairy 
breeds: Montbéliarde (MON), Normande (NOR), and 
Holstein (HOL). These spectra were used to predict milk 
protein content (PC) and milk protein composition with 
the equations derived as described by Ferrand et al. [7]. 
More details about the method and the calibration popu-
lation used are in Sanchez et al. [4]. The contents of the 
six main milk proteins (αs1-CN, αs2-CN, β-CN, κ-CN, 
α-LA, and β-LG) were predicted in g/100  g protein. 
Total casein content and total whey protein content were 
also analyzed (Σ-CN and Σ-WP, respectively). In order 
to adjust phenotypes for non-genetic effects, a within-
breed mixed model was applied to test-day data using the 
GENEKIT software [11]. This single-trait repeatability 
model included genetic, permanent environmental, and 
residual random effects, as well as herd ×  test-day, par-
ity  ×  stage of lactation, year  ×  month of calving, and 
spectrometer × test month fixed effects. We applied this 
model to data from the first two lactations that included 
at least three test-day records across lactations during 
the study period. Then, test-day data were corrected for 
all non-genetic effects included in the model and aver-
aged per cow. Thus, for each trait and each cow, a sin-
gle phenotype was defined and subsequently used in 
GWAS analyses. In total, 293,780, 58,594, and 72,973 
test-day records were analyzed, which corresponded to 
44,959 MON, 12,428 NOR, and 14,530 HOL cows, i.e. 
an average of 6.5, 4.7, and 5.0 test-day records per cow, 
respectively.

Among these cows, 8010 were genotyped with the 
Illumina BovineSNP50 BeadChip (Illumina Inc., San 
Diego). We applied the following quality control filters: 
the individual call rate had to be higher than 95%, the 
SNP call rate higher than 90%, the minor allele frequency 
(MAF) higher than 5%, and genotype frequencies had to 
be in Hardy–Weinberg equilibrium with P  >  10−4. The 
final dataset included between 37,332 and 41,028 SNPs 
(Table 1), depending on the within-breed or multi-breed 
population considered, for 7907 cows (3032 MON, 2659 
NOR, and 2216 HOL) with phenotypes.

Imputation to whole‑genome sequences
The 50 K SNP genotypes of the 7907 cows were imputed 
to whole-genome sequence (WGS) using FImpute soft-
ware, which accurately and quickly analyzes large data-
sets [12]. A two-step approach was applied in order to 
improve the accuracy of results: from 50 to 777 K high-
density (HD) SNPs, and then, from imputed HD SNPs 
to WGS [13]. All imputations were performed separately 
for each breed using either a breed-specific (from 50  K 
to HD SNPs) or a multi-breed (from HD SNPs to WGS) 
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reference panel depending on the targeted density [14]. 
In each MON, NOR and HOL breed, imputations to the 
HD SNP level were performed using a within-breed ref-
erence population that included respectively 522 MON, 
546 NOR, and 776 HOL bulls that had been genotyped 
with the Illumina BovineHD BeadChip (Illumina Inc., 
San Diego, CA). Around 550,000 SNPs were retained in 
each breed after removing SNPs that failed in the quality 
control filters, as described above for the 50 K (Table 1). 
WGS variants were imputed from HD SNP genotypes 
using WGS variants of the 1147 bulls from Run4 of the 
1000 Bull Genomes consortium; these bulls represent 27 
cattle breeds (see Additional file  1: Table S1), with 288 
HOL, 28 MON, and 24 NOR individuals [9]. The pro-
tocol used was defined in the “1000 bull genomes” con-
sortium [9]. Whole-genomes of all individuals were 
used for 2  ×  100  bp paired-end sequencing using Illu-
mina sequencing-by-synthesis technology and sequence 
reads were further filtered for quality and subsequently 
aligned to the UMD3.1 reference sequence, as previ-
ously described [9, 15]. Small genomic variations (SNPs 
and InDel) were detected using SAMtools 0.0.18 [16]. 
Raw variants were further filtered to produce 27,754,235 
autosomal variants [15]. Filtered variants were subse-
quently annotated with the Ensembl variant effect predic-
tor (VEP) pipeline v81 [17] and effect of the amino acid 
changes was predicted using the SIFT tool [18].

Precision of imputation from HD to sequence was 
assessed by comparing imputed genotypes with those 
obtained by re-genotyping a subset of the same cows with 
a custom chip. This additional information was not used 
in the imputation process. Two datasets were available: 
(1) a group of 168 Holstein cows that were genotyped 
with the first version (V1) of the EuroG10k Illumina chip, 

with 721 additional markers; and (2) a group of 2142 
Montbéliarde cows that were genotyped with the fourth 
version (V4) of the same EuroG10k chip containing 3082 
additional SNPs. Only SNPs with good technical qual-
ity (call rate  >  95%, validation of the clusters by visual 
inspection, within-breed allelic frequency not signifi-
cantly different across chip versions) were used. Imputa-
tion accuracy was measured by the squared correlation 
between true and imputed genotypes and by the geno-
typic and allelic concordance rate.

In order to remove SNPs with the lowest accuracies of 
imputation, only variants with a MAF higher than 0.02 
were retained for further association analyses. Thus, 
about 11 million variants were included in each within-
breed analysis and around 13 million were included in 
multi-breed analyses (Table 1).

Whole‑genome sequence association analyses
We performed single-trait association analyses between 
all the polymorphic variants and the nine measured milk 
protein composition traits: PC, α-LA, β-LG, αs1-CN, 
αs2-CN, β-CN, κ-CN, Σ-CN, and Σ-WP (Table 2).

All association analyses were performed using the 
mlma option of the GCTA software, which applies a 
mixed linear model that includes the candidate variant 
[19]:

where y is the vector of pre-adjusted phenotypes, aver-
aged per cow; µ is the overall mean; b is the additive fixed 
effect of the candidate variant to be tested for association; 
x is the vector of imputed genotypes coded as 0, 1, or 2 
(number of copies of the second allele); u ∼ N(0,Gσ2u) 
is the vector of random polygenic effects, with G the 
genomic relationship matrix (GRM), calculated by using 
the HD SNP genotypes [20], and σ2u the polygenic vari-
ance, estimated based on the null model (y = 1µ+ u + e) 
and then fixed while testing for the association between 
each variant and the trait; and e ∼ N(0, Iσ2e) is the vec-
tor of random residual effects, with I the identity matrix 
and σ2e the residual variance. Within-breed, the number 
of test-day records did not differ very much across cows, 
thus, the residual variance was assumed to be constant 
across cows.

For multi-breed association analyses, Model (2) was 
applied by adding a fixed breed effect v to Model (1), 
with W as the incidence matrix relating phenotypes to 
breed effect (three levels), and x, b, u, and e as defined 
previously:

The Bonferroni correction was applied to the thresholds 
in order to account for multiple testing. A very stringent 

(1)y = 1µ+ xb+ u + e,

(2)y = Wv + xb+ u + e.

Table 1 Features of  the Montbéliarde (MON), Normande 
(NOR), Holstein (HOL), and multi-breed populations

Number of MON NOR HOL Multi‑breed

Phenotyped cows 44,959 12,428 14,530 71,917

Total test‑day 
records

293,780 58,594 72,973 425,347

Test‑day records per 
cow

6.5 4.7 5 5.9

Genotyped cows 3032 2659 2216 7907

Polymorphic 50 K 
SNPs

37,332 37,690 39,158 41,028

Polymorphic HD 
SNPs

548,185 549,359 553,712 586,749

Polymorphic 
sequence variants

15,957,336 14,809,860 15,116,501 18,366,748

Sequence variants 
(MAF ≥ 2%)

11,755,172 11,445,432 11,592,432 13,534,013
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correction was used, which considered all 13 million tests 
as independent. Therefore, the 5% genome-wide thresh-
old of significance corresponded to a nominal P value of 
3.7 ×  10−9 (−log10(P) =  8.4). QTL regions were identi-
fied by grouping significant results that were located 
within the same 2 million base-pair (Mbp) interval in a 
single genomic region, regardless of the breeds or traits 
under study. QTL regions were determined by consid-
ering positions of variants included in the upper third 
of the peak. For a given trait in a given breed, when two 
consecutive QTL regions had overlapping confidence 
intervals, or when the distance between the limits of the 
confidence intervals was less than 1 Mbp, only the confi-
dence interval that presented the most significant results 
was retained.

Conditional association analyses
In the most significant QTL regions, conditional analy-
ses were carried out using the cojo option of GCTA [21] 
in order to conclude if multiple significant variants in 
a genomic region were due to LD with the same causal 
mutation or to the presence of multiple causal muta-
tions. Association analyses were performed by including 
in the model the most significant variant or the putative 
causal mutation as a fixed effect and by testing all vari-
ants that were not in strong LD with the conditional vari-
ant  (r2 < 0.9).

Annotation and protein interactions
Sequence-derived polymorphisms were extracted for 
candidate mutation regions from the corresponding VCF 
files [22]. All variants with a −log10(P) higher than 8.4 
and located within confidence intervals were annotated. 
To avoid missing important genes, confidence intervals 
were extended by 100 kb on each side.

In addition, functional protein–protein interactions 
(PPI) encoded by candidate genes were investigated, 
as well as gene ontology (GO) enrichment, using the 
STRING Genomics 10.0 database of protein–protein 
interaction (PPI) networks [23]. This database provides 
(1) known PPI from curated databases or experiments 
and (2) PPI predicted on the basis of gene neighborhood, 
gene fusions, gene co-occurrence, text mining in litera-
ture, co-expression, or protein homology. A global PPI 
network was constructed which retained only interac-
tions with a high level of confidence (score > 0.4).

Results
The results of imputation accuracy at the sequence level 
for SNPs used in the GWAS analyses (MAF ≥  2%) are 
in Table  3. Squared correlations between imputed and 
true genotypes in the validation set reached 76 and 84%, 
in Montbeliarde and Holstein breeds, respectively. This 
table also presents the overall results of concordance rate. 
Figure  1 shows the imputation precision according to 
MAF in the two breeds.

Among the 13 million tested variants, 71,755 had 
genome-wide significant effects (−log10(P)  ≥  8.4) in at 
least one within-or multi-breed analysis and for at least 
one milk protein composition trait.

Among these, 29,722, 27,787, and 30,988 were found 
in within-breed MON, NOR, and HOL analyses, respec-
tively. Some of these variants had significant effects in 
multiple breeds: 7343 in both MON and NOR, 8055 in 
NOR and HOL, 8068 in HOL and MON, and 3080 in all 
three breeds (Table 4; Fig. 2a).

For each trait, the number of significantly associated 
variants was relatively consistent between breeds. It was 
lower (from 193 to 2394) for αs2-CN, β-CN, αs1-CN, and 
PC; higher (from 8716 to 19,952) for β-LG, κ-WP, and 

Table 2 MIR predictions for milk protein composition in Montbéliarde (MON), Normande (NOR), and Holstein (HOL) cows

a Accuracy of MIR predictions  (R2 = coefficient of determination and RE = relative error) estimated by Ferrand et al. [7] for protein composition expressed as g/100 g 
milk
b g/100 g milk for protein content (PC) and g/100 g protein for other traits

Trait Accuracya Means ± standard  deviationsb

R2 RE MON NOR HOL

PC Protein content 1.00 0.73 3.4 ± 0.4 3.6 ± 0.4 3.3 ± 0.4

α‑LA α‑lactalbumin 0.59 14.4 4.07 ± 0.28 4.16 ± 0.36 4.27 ± 0.42

β‑LG β‑lactoglobulin 0.74 11.7 8.25 ± 1.12 7.94 ± 1.03 8.46 ± 1.17

αs1‑CN αs1‑casein 0.88 4.7 27.8 ± 0.55 27.8 ± 0.68 27.9 ± 0.69

αs2‑CN αs2‑casein 0.82 7.5 9.53 ± 0.30 9.89 ± 0.33 9.69 ± 0.39

β‑CN β‑casein 0.92 3.7 36.6 ± 0.88 36.2 ± 1.2 36.2 ± 1.2

κ‑CN κ‑casein 0.80 8.4 9.75 ± 0.60 9.87 ± 0.48 9.43 ± 0.58

Σ‑CN Sum of caseins 0.97 2.7 83.7 ± 0.94 83.7 ± 1.5 83.1 ± 1.4

Σ‑WP Sum of whey proteins 0.73 8.9 12.6 ± 1.1 11.9 ± 1.2 12.6 ± 1.3



Page 5 of 16Sanchez et al. Genet Sel Evol  (2017) 49:68 

Σ-CN; and intermediate (from 4110 to 8248) for α-LA 
and κ-CN. Among these variants, 0 (PC) to 2266 (β-LG) 
were shared among the three breeds. Multi-breed analy-
ses were more powerful, and detected a larger number 
of distinct variants with significant effects (34,248) than 
any of the within-breed analyses. However, the number 
of variants detected per trait was larger in one of the 
within-breed analyses than in the multi-breed analysis 
for PC, α-LA, β-LG, Σ-CN, and Σ-WP (Table  4), prob-
ably because of the long-range within-breed LD.

QTL regions were defined by merging the overlapping 
QTL regions obtained for the different traits and breeds 
and by grouping the corresponding significant results. 
Confidence intervals of these regions were defined as 
described in the Methods section. Thus, 34 QTL regions 
with significant effects on one or several milk protein 
composition traits were identified in within-breed and/
or multi-breed analyses (see Additional file 2: Table S2). 
Three of these, located on chromosomes 6, 11, and 14, 
had significant pleiotropic effects on almost all protein 
composition traits analyzed (see Additional file  3: Table 
S3), while most (31 QTL) generally affected only one trait 
(see Additional file 4: Table S4).

The 34 QTL were distributed on 17 of the 29 bovine 
autosomes, with one to seven QTL per chromosome. 
Almost all of them (31) were detected in multi-breed 
analyses while 11, 8, and 11 QTL regions were found in 
MON, NOR, and HOL within-breed analyses, respec-
tively. Four QTL regions, located on Bos taurus chro-
mosome BTA6 (two regions at 45.8–46.9 Mbp and 
85.2–87.4 Mbp), BTA11 (103.3 Mbp), and BTA20 (58.3–
58.4 Mbp), were detected in three breeds. One additional 
region on BTA29 at about 9.6 Mbp was common to 
MON and HOL, and another region on BTA14 at 1.7–1.8 
Mbp was common to HOL and NOR (Fig.  2b). The six 
QTL shared between two or three breeds had the most 
significant effects, along with one QTL detected only in 
the NOR breed on BTA2, at 131.8 Mbp (−log10(P) ≥ 20; 
P value < 10−13 after Bonferroni correction).

Multi-breed analyses led to the detection of a larger 
number of QTL regions than within-breed analyses: 14 
of the 31 QTL detected in multi-breed analyses were 
not found in within-breed analyses. For the 17 QTL 
regions found in both within-and multi-breed analyses, 
the −log10(P) value of the most significant (top) variant 
was almost always higher in multi-than in within-breed 
analyses; this was true even for most of the regions that 
had significant effects in only one within-breed analysis. 
For these QTL, the mean −log10(P) value of the most sig-
nificant (top) variant was 64 in multi-breed analyses ver-
sus 49, 46, and 42 in MON, NOR and HOL within-breed 
analyses, respectively. In addition, the QTL confidence 
intervals generated by multi-breed analyses contained 
a smaller number of variants than those produced by 
within-breed analyses. For the 17 QTL regions, an aver-
age of 134 variants (2–374) were found in multi-breed 
analyses versus 189 (39–335), 287 (61–872), and 308 
(9–1236) in MON, NOR, and HOL within-breed analy-
ses, respectively. However, in some QTL regions, spe-
cifically those located on BTA2 (131.8 Mbp), 6 (38 Mbp), 
and 19 (61 Mbp), the number of significant variants was 
smaller in within-breed analyses than in the multi-breed 
analysis.

Table 3 Accuracies of  imputations on  whole-genome 
sequences in  Holstein (HOL) and  Montbéliarde (MON) 
breeds

Breed HOL MON

Number of cows 168 2142

EuroG10k chip version V1 V4

Number of markers in the custom part 721 3082

Number of markers after quality control and MAF ≥ 0.02 221 1108

R2 (%) 83.7 76.1

Genotypic concordance rate (%) 93.7 89.7

Allelic concordance rate (%) 96.5 94.0
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Fig. 1 Precision of imputations at the whole‑genome sequence level 
in a Holstein and b Montbéliarde breeds, according to MAF. The 2% 
limit corresponds to the MAF threshold for markers used in GWAS
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Manhattan plots of three of the most significant QTL 
regions are in Fig.  3 for the three densities of mark-
ers (50  K SNP, HD SNP, or sequence). In each of these 
regions, several peaks are detected with the WGS data, 
whereas with the 50  K SNP density and in some cases 
with the HD SNP density, only one peak was observed.

All variants included within confidence intervals 
(+100  kb on each side) were functionally annotated 
(Table 5) and (see Additional file 5: Table S5). The percent-
age of variants that were located within genes ranged from 
60.5% in HOL to 73.4% in NOR within-breed analyses, 
and it was intermediate in multi-breed analyses (65.8%). 
The vast majority of the genic variants were located 
within introns and in upstream or downstream regions. A 
total of 25, 82, 72, and 56 missense variants were found 
in MON, NOR, HOL, and multi-breed analyses, respec-
tively; among these, we detected the previously reported 
missense mutations in the PAEP (103,303,475  bp) and 
DGAT1 (1,802,266 bp) genes.

In 29 QTL regions, annotation led to the identifica-
tion of candidate genes for milk protein composition. 
In total, 47, 72, and 82 candidate genes were identified 
in MON, NOR, and HOL within-breed analyses (109 in 
multi-breed analyses). Some of these were shared across 
breeds: 12 were found in both MON and NOR, 15 in 
MON and HOL, 39 in HOL and NOR, among which 10 
were common to the three breeds (Fig.  2c). However, 
within a given region, the top variant was always different 
among the different breeds. The top variant was located 
in a gene in 21 of these regions, while in the remaining 
eight regions, the top variant was intergenic. However, 
these eight regions contained other variants located 
within confidence intervals that were annotated in genes, 
and of these, the most significant one was denoted the 
top genic variant. Genic variants with the most signifi-
cant results were located within intron regions for 15 
QTL and mainly upstream or downstream regulatory 
regions for 14 QTL. In total, 22 genes were identified as 

Table 4 Number of variants with genome-wide significant effects (−log10(P) > 8.4) for milk composition traits in within-
and multi-breed analyses

a Montbéliarde (MON), Normande (NOR), and Holstein (HOL) cows

Trait Within‑breed analyses Multi‑breed analyses

MONa NORa HOLa Shared among three breeds

PC 1905 1201 2394 0 2350

α‑LA 4590 6490 8248 213 7224

β‑LG 19,952 16,048 15,517 2266 18,612

αs1‑CN 2232 708 629 182 2280

αs2‑CN 866 193 636 1 1947

β‑CN 665 734 524 96 1652

κ‑CN 4110 5878 6532 553 7012

Σ‑CN 13,920 8716 11,833 961 12,698

Σ‑WP 16,583 13,126 15,327 1916 16,546

Total number of distinct variants 29,722 27,787 30,988 3080 34,248

Fig. 2 Number of overlapping a variants with genome‑wide significant effects (−log10(P) ≥ 8.4), b QTL regions, and c genes containing variants 
with genome‑wide significant effects among Montbéliarde, Normande, and Holstein breeds



Page 7 of 16Sanchez et al. Genet Sel Evol  (2017) 49:68 

the best candidates to explain the majority of the variabil-
ity of milk protein composition in MON, NOR, and HOL 
cows. They were located on BTA1 (SLC37A1), BTA2 
(ALPL), BTA5 (MGST1), BTA6 (ABCG2, MEPE, PKD2, 
HERC3, SEPSECS, SEL1L3, DHX15, CSN1S1, CSN2, 
CSN1S2, and CSN3), BTA11 (PAEP), BTA14 (DGAT1, 
RECQL4, MROH1, and BOP1), BTA20 (ANKH), BTA27 
(AGPAT6), and BTA29 (PICALM).

Protein–protein interactions (PPI), as well as GO 
enrichment, were investigated for the 22 most plau-
sible candidate genes of our study. Network proteins 
encoded by these genes had significantly more interac-
tions than expected (10 edges identified; PPI enrich-
ment P value = 3.4 × 10−9; Fig. 4), while GO terms for 

12 biological processes, seven cellular components, and 
one molecular function were significantly (FDR  <  0.05) 
enriched with two to nine of these genes for milk protein 
composition (Table 6).

Discussion
In this paper, we report the results of a whole-genome 
sequence scan for milk protein composition predicted 
from MIR spectra. We conducted within-and multi-
breed analyses using imputed WGS of 7907 cows from 
three French dairy breeds. This approach led to the 
detection of 34 distinct regions that affect the protein 
composition of milk. The use of imputed WGS enabled 
us to confirm 22 of the 39 QTL that were previously 
detected from 50 K SNP genotypes [8] and to identify 12 
novel QTL. In addition to genetic parameter results [4] 
and QTL detection results with the 50 K chip [8], these 
results confirm that MIR predictions are sufficiently 
accurate for genetic investigations. Repeated test-day 
records compensated for the moderate MIR prediction 
accuracy of some proteins.

Seventeen QTL that had been detected with 50 K SNP 
genotype data were not found with imputed WGS, pos-
sibly because different methods were used in the two 
studies (linkage disequilibrium and linkage analysis in the 
50  K SNP study versus GWAS in the current imputed-
WGS study) and also possibly because of the more strin-
gent significance thresholds applied here. For GWAS 
on WGS data, the very stringent threshold that we used 
(with Bonferroni correction considering all variants as 
independent) probably reduced the detection power but 
minimized the number of false positive QTL.

Instead, the better resolution of the WGS data, 
combined with the power of the multi-breed GWAS 
approach, led to the detection of 12 QTL that were not 
previously found in the 50 K SNP study. To evaluate the 

Fig. 3 −log10(P) plotted against the position of variants on BTA2, 6, and 20 using three SNP densities: 50 K, HD, and whole‑genome sequence SNPs

Table 5 Functional annotations of  variants included 
within confidence intervals (±100 kb) of the 34 QTL in the 
three within-and multi-breed analyses

a Montbéliarde (MON), Normande (NOR), and Holstein (HOL) cows

Functional annotation Within‑breed 
analyses

Multi‑breed analyses

MONa NORa HOLa

Intergenic 1514 1465 2676 1971

Intronic 1079 1804 1937 1737

3′ UTR 11 14 69 35

5′ UTR 14 27 16 18

Downstream 710 988 1276 1159

Inframe insertion 0 0 1 0

Missense 25 82 72 56

Splice acceptor 0 0 3 0

Synonymous 30 114 118 91

Upstream 509 1009 612 685

% genic 61.1 73.4 60.5 65.8

% genic non intronic 33.4 40.6 32.0 35.5
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impact of marker density on GWAS results, we extracted 
50  K and HD GWAS results from the WGS results. 
In several genomic regions, for example the regions 
on BTA2, 6, and 20 (Fig.  3), the increased resolution of 
the WGS data clearly makes it possible to identify two 

or more peaks whereas analysis of the 50  K SNP data 
detected only one peak.

Furthermore, the WGS resolution enables the use 
of a multi-breed approach, which is expected to bet-
ter estimate the effects of rare variants and to reduce 

Fig. 4 Protein network of the 22 most probable candidate genes detected, according to STRING v10.0 action view
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LD between neighboring variants. With the multi-breed 
analysis, we detected 14 QTL that were not detected 
in any of our within-breed analyses (see, for example, 
regions of the MGST1 and AGPAT6 genes described 
below). For QTL that were detected in both within-and 
multi-breed analyses, the multi-breed approach provided 
smaller confidence intervals of the QTL than within-
breed analyses. The three French breeds used in our 
study are not strongly related. Based on 50 K SNP data, 
Gautier et al. [24] reported a partitioning of the genetic 
diversity of cattle into distinct groups of breeds with high 
geographical consistency. The three breeds were classi-
fied into three distinct groups: from Eastern France and 
Alps for MON, from Northern European for HOL and 
from the Channel Islands and Northwestern France for 
NOR. Thus, our results illustrate the extent to which a 
multi-breed approach can complement and enhance the 
information gained from within-breed analyses even 
if breeds pooled in multi-breed analyses have different 
genetic origins.

In a previous study [25], the imputation from 50 K to 
HD SNP densities was found to be very accurate in all 
three breeds with the number of HD genotypes used here 

(>500) in calibration. For the second imputation step, 
from HD SNPs to WGS, we used the Run 4 reference 
population of the 1000 Bull Genomes consortium, which 
contained 1147 bulls, of which 288 were HOL, 28 were 
MON, and 24 were NOR. Due to the larger number of 
sequenced HOL bulls compared to the two other breeds, 
imputation is more accurate with HOL data than with 
MON data. In NOR, we anticipate that imputation accu-
racy is close to that obtained in MON due to similar pop-
ulation structures and similar numbers of whole-genome 
sequences for major ancestors in both breeds. These 
results are in agreement with or are better than those 
already published in cattle. Daetwyler et  al. [9] showed 
that the use of the 1000 Bull Genome multi-breed pop-
ulation (Run 2, 234 bulls) led to a similar imputation 
accuracy among data obtained from Holstein–Friesian, 
Fleckvieh, and Jersey cattle (near 80% of correlation) in 
spite of differences in the number of bulls in the reference 
population (129 Holstein–Friesian, 43 Fleckvieh, and 15 
Jersey). Among the PhénoFinlait cows genotyped with 
the 50 K SNP Beadchip and then imputed to WGS, 1077 
MON, 238 NOR, and 498 HOL originated from nine 
MON, five NOR and eight HOL bulls with WGS available 

Table 6 Gene Ontology (GO) functional enrichment with false discovery rate (FDR) < 0.05

Pathway ID Pathway description Gene count FDR Genes

Biological process GO.1903494 Response to dehydroepiandrosterone 4 1.73e–08 CSN1S1, CSN1S2, CSN2, CSN3

GO.1903496 Response to 11‑deoxycorticosterone 4 1.73e–08 CSN1S1, CSN1S2, CSN2, CSN3

GO.0032570 Response to progesterone 4 1.81e–07 CSN1S1, CSN1S2, CSN2, CSN3

GO.0097305 Response to alcohol 5 3.69e–07 ALPL, CSN1S1, CSN1S2, CSN2, CSN3

GO.0032355 Response to estradiol 4 2.34e–06 CSN1S1, CSN1S2, CSN2, CSN3

GO.1901700 Response to oxygen‑containing com‑
pound

6 9.04e–05 ALPL, CSN1S1, CSN1S2, CSN2, CSN3, PKD2

GO.0014070 Response to organic cyclic compound 5 0.000176 ALPL, CSN1S1, CSN1S2, CSN2, CSN3

GO.0033993 Response to lipid 5 0.000181 ALPL, CSN1S1, CSN1S2, CSN2, CSN3

GO.0009719 Response to endogenous stimulus 5 0.00205 CSN1S1, CSN1S2, CSN2, CSN3, PKD2

GO.0048732 Gland development 3 0.0281 CSN2, CSN3, PKD2

GO.0060416 Response to growth hormone 2 0.0281 CSN1S1, CSN1S2

GO.0007595 Lactation 2 0.0298 CSN2, CSN3

Cellular component GO.0005796 Golgi lumen 4 1.97e–08 CSN1S1, CSN1S2, CSN2, CSN3

GO.0012505 Endomembrane system 8 0.00253 AGPAT6, CSN1S1, CSN1S2, CSN2, CSN3, DGAT1, 
MGST1, PKD2

GO.0005576 Extracellular region 7 0.0372 ALPL, CSN1S1, CSN1S2, CSN2, CSN3, PAEP, 
PKD2

GO.0005789 Endoplasmic reticulum membrane 4 0.0372 AGPAT6, DGAT1, MGST1, PKD2

GO.0042175 Nuclear outer membrane‑endoplasmic 
reticulum membrane network

4 0.0372 AGPAT6, DGAT1, MGST1, PKD2

GO.0044444 Cytoplasmic part 9 0.0372 ABCG2, AGPAT6, CSN1S1, CSN1S2, CSN2, CSN3, 
DGAT1, MGST1, PKD2

GO.0044446 Intracellular organelle part 9 0.0372 ABCG2, AGPAT6, CSN1S1, CSN1S2, CSN2, CSN3, 
DGAT1, MGST1, PKD2

Molecular function GO.0035375 Zymogen binding 2 0.0177 CSN1S2, CSN3
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in the Run4 reference population, i.e. 36, 9 and 22% of 
the PhénoFinlait cows, respectively. As expected, impu-
tation accuracy dropped for variants with a low MAF. 
In order to limit the impact of imputation errors on the 
GWAS results, variants with a MAF lower than 2% were 
discarded from the analyses and almost all the genetic 
variants proposed as candidate variants in this study have 
moderate to high MAF.

Combining within-breed, multi-breed, and conditional 
GWAS analyses with functional annotations appears 
to be a good strategy for the differentiation of shared 
and breed-specific QTL. This approach also enables the 
direct identification of candidate genes with a very small 
number of candidate variants, or even in some cases, one 
unique variant which appears to be the best candidate to 
explain the observed effects.

On average, depending on the breed, between 60 and 
73% of the QTL variants that we detected in the GWAS 
were located in genes; this is about twice as high as the 
percentage of genic variants at the whole-genome scale 
(35%; [15]). The most significant variants were located in 
49 distinct genes, of which 22 were of particular interest, 
either because they were found in more than one breed 
or associated with several traits, or because they were 
previously described as influencing milk composition. 
These 22 genes, which are located in 11 distinct genomic 
regions and present significant protein–protein enrich-
ment, are the most plausible candidates to explain a large 
part of the variation in milk protein composition among 
MON, NOR, and HOL cows. In four genomic regions (on 
BTA1, 2, 11, and 27), we identified one unique candidate 
variant (or a few candidate variants in LD) shared by all 
three breeds (in the SLC37A1, ALPL, PAEP, and AGPAT6 
genes, respectively). In three other genes, we suggest the 
presence of a breed-specific candidate variant (MGST1 on 
BTA5 and PICALM on BTA29) or several candidate caus-
ative variants (ANKH on BTA20). Finally, four regions, 
including the DGAT1 region on BTA14 and three regions 
on BTA6 (ABCG2 region, a region at about 46 Mbp, and 
the casein gene cluster), were more complex, because they 
contained several candidate genes, each with several can-
didate variants. Eight of these candidate genes (SLC37A1, 
MGST1, CSN1S1, CSN2, CSN1S2, CSN3, PAEP, and 
ANKH) are known to be overexpressed in the mammary 
gland compared to other 17 tissues [26] and between 
two and nine of them are associated with one of the 20 
GO terms in our study. The next sections describe these 
regions in more detail.

SLC37A1 (BTA1) and αs1‑CN/ α‑LA
The SLC37A1 (solute carrier family 37, member A1) gene, 
which encodes a glucose-6-phosphate transporter that is 
involved in the homeostasis of blood glucose, is highly 

expressed in the mammary gland [27]. It could be a good 
candidate gene to explain the effects of the QTL identi-
fied on BTA1 on αs1-CN in both MON and multi-breed 
analyses and on the α-LA phenotype in the multi-breed 
analysis. In total, 138 distinct variants of this gene were 
located within the confidence intervals of the QTL, of 
which 133 were intronic, two were synonymous, and 
three were downstream (see Additional file 6: Figure S1a). 
For the αs1-CN/MON, αs1-CN/multi, and α-LA/multi 
results, the 80, 81, and 74 most significant variants in the 
peaks, respectively, were in intronic regions of SLC37A1. 
One downstream variant was detected for αs1-CN in 
the MON analysis, which ranked 104th among the sig-
nificant variants, while multi-breed analyses revealed 
three downstream variants that ranked 81st, 87th, and 
103rd. All intronic variants that are located at the top of 
the peaks are in strong LD but only one variant (indel), 
located at 144,397,274  bp, was common to all three 
TOP10 lists; it was 1st in the αs1-CN/MON ranking, 9th 
in the αs1-CN/multi-breed ranking, and 4th in the α-LA/
multi-breed ranking. The top1 intronic variant detected 
in the αs1-CN/multi-breeds analysis, at 144,398,814  bp, 
ranked 75th in the αs1-CN/MON peak and 76th in the 
α-LA/multi-breed peak.

Two previous studies described the effects of SLC37A1 
gene variants on milk production traits. In an analysis of 
HD SNP genotypes, Kemper et al. [27] described six vari-
ants that are located between 144.325 and 144.525 Mbp in 
this region; the variant with the most significant effect was 
located in an intronic region of the gene (144,414,936 bp). 
In our study, this variant was included within the confi-
dence interval of the QTL detected by the multi-breed 
analysis (−log10(P) = 10.2), but it ranked 101st. Two other 
intronic variants in strong LD in the SLC37A1 gene, at 
144,367,474 and 144,377,960 bp, were previously proposed 
as the best candidate mutations for changes in phosphorus 
concentration and milk production traits [28]. However, 
in our study in spite of relatively high MAF values (from 
0.30 to 0.41 depending on the breed), these variants had 
a −log10(P) value lower than 6 for all analyzed traits. In 
another study of targeted QTL regions after imputation 
to WGS level, the variant with the most significant effects 
was located at 144,381,564 bp [29]. This variant is close to 
the candidate variant identified in our analysis, but it can 
be excluded as the causal variant in our populations since 
it is monomorphic in the MON, NOR, and HOL individu-
als analyzed here.

The conditional analyses that we performed included 
the two best candidate variants as well as the candidate 
variant described by Kemper et  al. [27]. These revealed 
that including the variant located at 144,398,814  bp in 
the model completely removed the original signal while 
with each of the two other variants, a less significant peak 
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persisted (see Additional file 6: Figure S1a). This variant, 
which has contrasting effects on αs1-CN and α-LA phe-
notypes, but with a more marked effect on the former, 
therefore constitutes the most probable candidate variant 
for the effects detected in our study.

ALPL (BTA2) and αs2‑CN
The QTL identified on BTA2 at 131.8  Mbp had signifi-
cant effects on several traits (αs2-CN, β-CN, and κ-CN). 
In particular, although the αs2-CN-associated peaks 
were detected in all within-and multi-breed analyses, 
even if in the MON and HOL analyses, the maximal −
log10(P) values did not reach the stringent threshold of 
8.4 that we applied in this study (7 and 6.9, respectively; 
see Additional file 6: Figure S1b). In all analyses, the most 
significant variants were located in intronic regions of 
the ALPL (alkaline phosphatase) gene, which encodes a 
member of the alkaline phosphatase family of proteins. 
The most significant variant differed among the three 
within-breed analyses: it was located at 131,806,882  bp 
in NOR, 131,850,456 bp in MON, and 131,808,301 bp in 
HOL sequences. Instead, the top-ranked variant in the 
peak detected in the multi-breed GWAS was located at 
131,806,882 bp. All three single-breed conditional analy-
ses that included each of these variants as fixed effects 
lacked peaks (see Additional file  6: Figure S1b). These 
results suggest that all three intronic variants are in strong 
LD in the three breeds and that the causal mutation could 
be shared among breeds. Among all the variants at the 
top of the peaks, the intronic variant at 131,806,882  bp 
appears to be the most probable candidate variant in the 
ALPL gene for the observed effects on αs2-CN content; it 
ranked 1st, 6th, 26th, and 1st in the NOR, MON, HOL, 
and multi-breed peaks, respectively.

MGST1 (BTA5) and milk protein content (PC)
One region on BTA5 that contains 63 variants affected 
PC in the multi-breed analysis. The MON and NOR 
within-breed analyses revealed no peaks (−log10(P) < 6), 
whereas the HOL analysis detected a single peak with 
a −log10(P)  =  8, which was close to the significance 
threshold of 8.4. Only one gene, MGST1 (microsomal 
glutathione S-transferase 1), was present within the con-
fidence interval obtained in the multi-breed analysis. 
Fifty-one variants were located in intronic (29), exonic 
(1 synonymous), 5′-UTR (2), or regulatory (19 in the 
upstream region) regions of the gene. The variant with 
the most significant effects was located at 93,950,211 bp 
in the upstream region and its −log10(P) value was 9.3, 
versus a value of 8.0 for the variants that ranked 2nd 
(93,950,116  bp and 93,950,288  bp), which were located, 
respectively, in the 5′-UTR and upstream regions of the 
gene. The MAF value for these variants was low in the 

MON population (0.006;  <MAF threshold of 0.02) and 
ranged from 0.08 to 0.12 in NOR, from 0.37 to 0.42 in 
HOL, and from 0.19 to 0.22 in the multi-breed popula-
tion. Thus, the fact that peaks were detected only in 
HOL (close to significance) and multi-breed (significant) 
analyses could be due to the relatively low MAF for these 
variants in MON and NOR. The most significant variants 
in our study are located near a variant that was reported 
by Raven et  al. [29] to be responsible for changes in fat 
percentage in Holstein cows (at 93,951,731 bp (upstream) 
and ranked 23rd in our study) and also near variants 
previously linked to fat yield by Iso-Touru et al. [30] and 
Van den Berg et  al. [31] (93,945,694 and 93,945,738  bp, 
respectively; both were intronic variants and were not 
significant here). Conditional analyses including each 
of the six variants as a fixed effect showed that all vari-
ants except those reported by Iso-Touru et  al. [30] and 
Van den Berg et  al. [31] explained the effects observed 
in our study (see Additional file 6: Figure S1c). Thus, the 
effects observed on fat content by Raven et  al. [29] and 
on protein content in our study could be explained by 
the same causative variant. Recently, Littlejohn et al. [32] 
confirmed that MGST1 has causative pleiotropic effects 
on milk composition (percentage and yield of fat, pro-
tein, and lactose). These authors failed to identify causa-
tive variants in the gene but they pointed to a cluster of 
17 variants that were grouped in a 10-kbp segment of 
the MGST1 gene (93,944,937–93,954,751). Only one 
of these 17 variants is located in the confidence inter-
val of the QTL that we detected and this is an intronic 
variant (93,949,810  bp) that ranked 7th in the peak in 
spite of having a higher MAF (0.32) than the most sig-
nificant variants (MAF  =  0.19–0.22). Thus, our study 
highlights three new candidate mutations in the MGST1 
gene, which are located very close to each other, in the 
5′-UTR region (93,950,116 bp) or in the upstream region 
(93,950,211 and 93,950,288 bp) of the gene.

ABCG2, MEPE, PKD2, and HERC3 (BTA6) and αs1‑CN
Several QTL were found on BTA6. The first one, detected 
in HOL and multi-breed analyses, was located in the 
37.6–38.4  Mbp region, which contains the Y581S poly-
morphism of the ABCG2 gene (38,027,010 bp) that was 
described by Cohen-Zinder et  al. [33] as a causative 
mutation for changes in milk yield and composition. This 
missense variant had MAF values of 0.0029 and 0.0018 
in HOL and multi-breed populations, respectively, and 
therefore did not pass the MAF filter in both analyses. 
In spite of a low MAF, the Y581S polymorphism had a 
highly significant effect on the αs1-CN phenotype in 
both HOL and multi-breed analyses, with −log10(P) val-
ues of 31 and 21, respectively; these values were higher 
than those of the top variant in the peaks after filtering 
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for MAF (20 and 15, respectively). However, among the 
sires of the HOL cows, six bulls were previously found to 
be heterozygous for the QTL detected in this region, but 
homozygous for this mutation [8]. Thus, we suggest that 
other mutations could be responsible for the QTL that 
affects milk protein composition.

In the HOL analysis, nine variants with MAF rang-
ing from 0.022 to 0.041 were located within the confi-
dence interval of the QTL. The most significant variants 
were located in intronic regions of the ABCG2 gene, at 
38,015,146 and 38,020,110  bp. Other variants, which 
are located in three other genes, i.e. MEPE (one down-
stream), PKD2 (one intronic), and HERC3 (two intronic), 
also had highly significant effects on αs1-CN. Due to the 
relatively low MAF of the candidate variants located in 
this region, these results require further analyses, includ-
ing a larger number of animals and more accurate impu-
tation or direct genotyping.

SEL1L3, SEPSECS, and DHX15 (BTA6) and αs1‑CN
In all within-breed and multi-breed analyses, the αs1-CN 
phenotype was affected by another region of BTA6 at 
45.8–46.9  Mbp. However, the most likely candidate 
genes differed among breeds. In MON, the nine variants 
with the most significant effects were located in intronic 
regions of the SEL1L3 gene (max. at 46,874,151  bp). 
In NOR, the top 116 variants in the peak were inter-
genic, while the genic variant with the most significant 
effects was located in an intron of the SEPSECS gene 
(46,277,697  bp). In HOL, the most significant genic 
variants (DHX15) ranked 16th in the peak (45,639,181 
and 45,640,564  bp). Finally, among the top 80 vari-
ants detected by the multi-breed analysis, only one was 
genic, which was located in an intron of the SEL1L3 gene 
(46,874,514 bp, ranked 3rd in the MON analysis). There 
is insufficient concordance among these results to pro-
pose a single set of candidate variants.

Pleiotropic effects of the casein gene region (BTA6)
On BTA6, we found a QTL that affected both the overall 
protein content of milk and the content of all four indi-
vidual caseins in all three breeds. Variants with the most 
significant effects were located in an 840-kb interval that 
contains the 250-kb casein gene cluster (87,062,878–
87,903,002 bp); other variants with effects on αs1-CN and 
β-CN in MON were located at 85.2 Mbp. In all within-
and multi-breed analyses, the most significant effects 
were detected for the κ-CN phenotype, followed by αs1, 
αs2, or β-CN depending on the breed. In each analysis, 
the variant with the most significant effects on κ-CN 
was located within or in the immediate vicinity of the 
CSN3 gene, which encodes the κ casein: at 87,376,747 bp 
(upstream) in NOR, 87,392,592 bp (5′-UTR) in MON and 

multi-breed, and 87,394,293  bp (downstream) in HOL. 
Each of these variants, as well as the κ casein A/B vari-
ant (87,390,576 bp, missense), was therefore included as 
a fixed effect in the conditional analyses. The results were 
breed-specific: in MON, the κ-CN-associated peak dis-
appeared after fixing the upstream, missense, or 5′-UTR 
variant; in HOL, the peak disappeared after fixing the 
upstream, 3′-UTR, or downstream variant; but in NOR, 
the peak remained with the inclusion in the model of any 
of the four variants. Thus, none of the four candidate var-
iants succeeded in explaining all the effects observed on 
κ-CN in the three breeds.

Instead, the peaks associated with the αs2-CN and 
β-CN phenotypes in NOR and the PC and αs2-CN phe-
notypes in MON could be explained by two distinct 
groups of six SNPs in complete LD, which were respec-
tively located in the CSN2 gene (three downstream and 
three intronic) and in the upstream region of the ODAM 
(odontogenic ameloblast-associated) gene (between the 
CSN1S2 and CSN3 genes).

Finally, the A1/B and A2 variants of CSN2, which 
ranked 147th and 86th, respectively, for their effects 
on PC and αs2-CN in NOR, were responsible for the 
αs2-CN phenotype in NOR but not for any other effect 
on the other traits or in the other breeds.

These results illustrate the complexity that is inher-
ent with the analysis of the casein gene cluster, which 
contains the four genes CSN1S1-CSN2-CSN1S2-CSN3 
(encoding, respectively, αs1, β, αs2, and κ caseins). The 
polymorphisms of the amino-acid sequences of caseins 
are well known, and the effects on milk composition 
and cheese-making abilities have been well described 
(reviewed in Grosclaude et al. [34] and Caroli et al. [35]). 
Nevertheless, the effects of known polymorphisms are 
not always consistent between studies, likely because var-
iations in the content of individual caseins are caused by 
several linked polymorphisms in the casein genes. Thus, 
it is likely that the most significant variants highlighted 
in our study are those that better explain haplotype 
effects. A multi-marker approach could facilitate efforts 
to distinguish the effects of all the causal polymorphisms 
located in this region.

Pleiotropic effects of the PAEP gene region (BTA11)
The most significant effects on protein composition were 
found for variants that are located on BTA11. Contents 
of each individual protein in milk, with the exception of 
αs2-CN, were affected by this region in all three breeds. 
Effects were most significant for β-LG and, to a lesser 
extent, for κ-CN in all within-and multi-breed analyses. 
All of the most significant variants were located in or 
close to the PAEP (progestagen-associated endometrial 
protein) gene, also named LGB gene, which encodes the 
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β-LG protein. The β-LG protein variants A and B, which 
are common in most cattle breeds, are associated with 
different β-LG levels in milk [34]. They differ by two 
amino-acid substitutions, caused by two missense muta-
tions at 103,303,475 and 103,304,757  bp [36]. Interest-
ingly, although these two variants had highly significant 
effects on β-LG in our study, they did not rank high in 
the peaks. In the MON and NOR analyses, both muta-
tions were in complete LD and ranked 85th and 213rd, 
respectively, while in HOL, the two mutations ranked 
48th and 109th, respectively (116th and 120th in multi-
breed analysis). As suggested by Ganai et al. [36], differ-
ences in β-LG content may be caused by different levels 
of expression of the A and B alleles rather than by the 
direct effect of amino-acid substitutions. Among the top 
30 variants in the within-and multi-breed analyses, only 
one, located at 103,298,431 bp in the upstream region of 
the PAEP gene, was shared by the four analyses. More-
over, this variant is one of the most significant in each 
analysis, ranking 6th, 4th, 1st, and 3rd, respectively, in 
the MON, NOR, HOL, and multi-breed analyses. The 
inclusion in conditional analyses of one of the causal mis-
sense variants or the most probable upstream variant 
identified in our study led to similar results in MON and 
HOL but not in NOR (see Additional file 6: Figure S1d). 
A peak remained in the conditional NOR analysis when 
missense mutations were fixed, but disappeared with 
the inclusion of the upstream variant at 103,298,431 bp. 
Thus, these results indicate that the missense mutations 
that cause the A and B variant protein polymorphisms do 
not explain all the variation associated with this region. 
Another variant, which is located in a regulatory region 
of PAEP, is more or less linked to the missense variants 
depending on the breed and appears to be a good candi-
date to explain different levels of expression of β-LG pro-
tein variants.

Pleiotropic effects of the DGAT1 gene region (BTA14)
Very significant effects on different protein composition 
traits were associated with the region of the DGAT1 gene 
in NOR and HOL but not in MON. This region affected 
PC and κ-CN in both NOR and HOL; αs1-CN, β-CN, and 
α-LA only in NOR, and αs2-CN only in HOL. Moreover, 
individual proteins with the lowest P value were κ-CN in 
NOR and αs2-CN in HOL. The A allele of the DGAT1 
K232A polymorphism, which decreases fat and protein 
percentages as well as fat yield, and increases milk and 
protein yields [37], was present at a frequency of 9.4% in 
NOR, 15.8% in HOL, and only 0.6% in MON. However, 
our study confirmed that this causative variant was not 
the most significant for all traits analyzed. It ranked 18th 
to 72th among variants in the NOR analysis, depend-
ing on the trait, and outside the confidence interval for 

all traits in HOL. These results suggest, first, that not all 
variations observed in this region are associated with the 
K232A polymorphism and, second, that other specific 
causative mutations could explain the effects detected in 
NOR and HOL.

A large number of genes are annotated in the 1-Mbp 
region between 1.5 and 2.5 Mbp on BTA14 and, depend-
ing on the trait and the breed, between 66 and 494 vari-
ants located within the confidence intervals of this QTL 
are located in 17  to  30 of those genes. Among the top 
50 variants for all traits, six were missense variants, of 
which two were found in NOR (DGAT1 and BOP1) and 
four in HOL (three in RECQL4 and one in MROH1). In 
this region, no variant remained significant in the con-
ditional analyses for NOR when the DGAT1 (K232A) or 
BOP1 (1,842,678 bp) variants were included, and for HOL 
when the variants in RECQL4 (one of the three variants 
in complete LD: 1,617,841, 1,618,978 and 1,619,555  bp) 
or MROH1 (1,878,165  bp) were included. In contrast, a 
less significant peak persisted when the DGAT1 or BOP1 
variant was included in the HOL analyses and when the 
RECQL4 or MROH1 variant was included in the NOR 
analyses (see Additional file  6: Figure S1e). Among 
the six missense variants, only the RECQL4 variant at 
1,617,841  bp has a predicted deleterious effect, with a 
SIFT score of zero. Therefore, in addition to the DGAT1 
K232A polymorphism previously identified as having 
effects on milk composition, we report additional candi-
date missense mutations in BOP1, MROH1, and RECQL4 
genes, which could be partly responsible for the effects 
associated with the centromeric end of BTA14.

ANKH (BTA20) and α‑LA
The GWAS on WGS data detected a QTL with very 
significant effects on the α-LA phenotype in all three 
within-breed analyses and in the multi-breed analysis; 
this confirmed our previous report based on a GWAS 
using 50  K SNP data [8]. Confidence intervals of the 
QTL included between one and four genes depend-
ing on the within-  or multi-breed analysis, and ANKH 
was the only gene to be highlighted in all four analyses. 
ANKH encodes an inorganic pyrophosphate transport 
regulator that helps to prevent the deposition of miner-
als (calcium and phosphorous) in bones and α-LA exhib-
its a high affinity to metal ions, calcium in particular. In 
addition, ANKH is highly expressed in mammary tissue 
in Holstein and Jersey cows [27] and we observed a sig-
nificant interaction between ANKH and ALPL (candidate 
gene on BTA2 for effects on αs2-CN), which suggests a 
functional link between these two genes (Fig.  4). Thus, 
ANKH constitutes a good functional candidate for effects 
on α-LA in HOL, MON, and NOR. However, none of 
the top 50 variants in this QTL were shared among the 
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three breeds. In each breed, the most significant vari-
ant was located either in intronic regions of the ANKH 
gene (at 58,422,697  bp in NOR and at 58,450,656  bp 
in multi-breed analyses) or in an intergenic region. In 
MON and HOL, for which the most significant variants 
were intergenic, ANKH intronic variants ranked 2nd 
(at 58,446,560  bp) and 13th (at 58,491,204  bp), respec-
tively. After fixing the most significant variant from each 
within-breed analysis, a peak remained in all conditional 
analyses (see Additional file 6: Figure S1f ), which suggests 
that several causative mutations in the ANKH gene could 
be responsible for the variation of the amount of α-LA in 
milk. The most significant variants could be those that 
are most tightly linked to the causative mutations in each 
breed, which could explain why they were breed-specific.

AGPAT6 (BTA27) and κ‑CN
The multi-breed analysis detected a QTL for κ-CN con-
tent located at about 36.2 Mbp on BTA27, while in within-
breed analyses, peaks were present in MON and NOR 
but they did not reach significance (−log10(P) < 8.4), and 
no peak was observed in HOL (see Additional file 6: Fig-
ure S1g). In the multi-breed analysis, the four most sig-
nificant variants were located in an intergenic region but 
the variants that ranked 5th to 17th were located in the 
AGPAT6 gene, which was previously described as a func-
tional gene for milk fat content with pleiotropic effects 
on other milk components, in particular protein content 
[38]. The five most significant variants in the gene were 
in complete LD and located in the upstream region (at 
36,209,319, 36,211,252, 36,211,258, and 36,211,708 bp) or 
in the 5′-UTR region (at 36,212,352 bp) of the AGPAT6 
gene. For the five linked variants, MAF were equal to 
0.46 in MON, 0.47 in NOR, and 0.39 in HOL (0.44 in 
multi-breed population). When the κ-CN phenotype was 
conditioned on the effect of any of these mutations, the 
association signals completely disappeared in the MON, 
NOR, and multi-breed analyses (see Additional file  6: 
Figure S1g). The four variants located in the upstream 
region were previously identified as candidate causal 
polymorphisms in both Holstein and Fleckvieh cows by 
Daetwyler et  al. [9]. These authors pointed to the poly-
morphism at 36,211,252 bp as the most plausible causa-
tive mutation because it presented a high probability of 
being within a transcription binding site. In addition, Lit-
tlejohn et al. [38] described strong associations between 
milk composition traits (fat, protein, and lactose) and 10 
variants in the AGPAT6 gene. Three of these 10 variants 
were among the most significant variants in our study, 
located at 36,209,319, 36,211,708, and 36,212,352  bp. 
Thus, we identified five putative causative variants in the 
AGPAT6 gene for milk protein composition; of these, the 

variant at 36,212,352  bp appears to be the most plausi-
ble causative mutation because it is located in the 5′-UTR 
region of the AGPAT6 gene. However, the lack of a signif-
icant effect in the HOL analyses, in spite of the high MAF 
of the candidate variants, probably reflects additional 
effects yet to be explained.

PICALM (BTA29) and αs1‑CN
The αs1-CN phenotype was influenced by a genomic 
region that is located at about 9.5 Mbp on BTA29. Signif-
icant associations were found in MON, HOL, and multi-
breed analyses, and a peak close to significance was found 
in NOR (−log10(P) =  7.9) (see Additional file  6: Figure 
S1h). In the MON and HOL analyses, the most significant 
variants were intergenic and, likewise, in the multi-breed 
analysis, all nine variants located within the confidence 
interval were intergenic. The most significant non-inter-
genic variants were located in the PICALM gene in MON 
and HOL. Two intronic variants ranked 11th in the peak 
detected in MON (9,651,065 and 9,656,439 bp) and one 
variant that ranked 10th in the HOL analysis, is located 
in the upstream region of the gene (9,611,304 bp). When 
conditional GWAS analyses were performed, the inclu-
sion of the intronic variants removed the peak in MON 
but not in HOL analyses, and conversely, inclusion of the 
upstream variant removed the peak in HOL but not in 
MON analyses. In NOR, the peak in question persisted 
when either intronic or upstream variants were fixed (see 
Additional file 6: Figure S1h). These results suggest that 
either the causative variant is different between breeds or 
that several linked causative variants explain the signifi-
cant effects observed in this region. The PICALM gene 
encodes a phosphatidylinositol-binding clathrin assem-
bly protein, and polymorphisms in this gene are associ-
ated with the risk of Alzheimer’s disease [39] in humans. 
However, to date, no link was reported between poly-
morphisms in this gene and bovine milk composition

Conclusions
Our study provides evidence that a GWAS-based 
approach applied to fine-scale phenotypes, whole-
genome sequences, and multiple breeds provides enough 
resolution to identify candidate genes and directly pin-
point a limited number of candidate variants in most 
of these genes. Several variants, some shared among 
breeds, were identified as plausible candidate muta-
tions for changes in milk protein composition in the 
three main French dairy cattle breeds. They were located 
both in genes that had previously been found to affect 
milk composition (SLC37A1, MGST1, ABCG2, CSN1S1, 
CSN2, CSN1S2, CSN3, PAEP, DGAT1, AGPAT6) and in 
genes for which no such relationship was known (ALPL, 
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ANKH, PICALM). In the future, functional analyses 
will enable the establishment of causative links between 
these candidate variants and milk protein phenotypes. 
However, even before such studies are completed, our 
results offer the opportunity to improve cheese-making 
properties through the identification of genetic variants 
associated with changes in milk composition. Direct 
consequences of these results on practical selection are 
not obvious and depend on potential premiums on pro-
tein composition and on incentives proposed by the milk 
processing industry. Nevertheless, it would be desirable 
to favour caseins against whey proteins at least for milk 
collected for cheese production. Such an option could be 
implemented by including variants that affect individual 
proteins in genomic evaluation models.
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