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Abstract

Mapping of high-throughput sequencing (HTS) reads to a single arbitrary reference genome

is a frequently used approach in microbial genomics. However, the choice of a reference

may represent a source of errors that may affect subsequent analyses such as the detection

of single nucleotide polymorphisms (SNPs) and phylogenetic inference. In this work, we

evaluated the effect of reference choice on short-read sequence data from five clinically and

epidemiologically relevant bacteria (Klebsiella pneumoniae, Legionella pneumophila, Neis-

seria gonorrhoeae, Pseudomonas aeruginosa and Serratia marcescens). Publicly available

whole-genome assemblies encompassing the genomic diversity of these species were

selected as reference sequences, and read alignment statistics, SNP calling, recombination

rates, dN/dS ratios, and phylogenetic trees were evaluated depending on the mapping refer-

ence. The choice of different reference genomes proved to have an impact on almost all the

parameters considered in the five species. In addition, these biases had potential epidemio-

logical implications such as including/excluding isolates of particular clades and the estima-

tion of genetic distances. These findings suggest that the single reference approach might

introduce systematic errors during mapping that affect subsequent analyses, particularly

for data sets with isolates from genetically diverse backgrounds. In any case, exploring the

effects of different references on the final conclusions is highly recommended.

Author summary

Mapping consists in the alignment of reads (i.e., DNA fragments) obtained through high-

throughput genome sequencing to a previously assembled reference sequence. It is a com-

mon practice in genomic studies to use a single reference for mapping, usually the ‘refer-

ence genome’ of a species—a high-quality assembly. However, the selection of an optimal

reference is hindered by intrinsic intra-species genetic variability, particularly in bacteria.
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It is known that genetic differences between the reference genome and the read sequences

may produce incorrect alignments during mapping. Eventually, these errors could lead to

misidentification of variants and biased reconstruction of phylogenetic trees (which

reflect ancestry between different bacterial lineages). To our knowledge, this is the first

work to systematically examine the effect of different references for mapping on the infer-

ence of tree topology as well as the impact on recombination and natural selection infer-

ences. Furthermore, the novelty of this work relies on a procedure that guarantees that we

are evaluating only the effect of the reference. This effect has proved to be pervasive in the

five bacterial species that we have studied and, in some cases, alterations in phylogenetic

trees could lead to incorrect epidemiological inferences. Hence, the use of different refer-

ence genomes may be prescriptive to assess the potential biases of mapping.

Introduction

The development and increasing availability of high-throughput sequencing (HTS) technolo-

gies, along with bioinformatic tools to process large amounts of genomic data, has facilitated

the in depth study of evolutionary and epidemiological dynamics of microorganisms [1–3].

Whole-genome sequencing (WGS)-based approaches are useful to infer phylogenetic relation-

ships between large sets of clinical isolates [4–7], showing improved resolution for molecular

epidemiology [8–11] compared to traditional typing methods [12–14]. Short-read mapping

against a single reference sequence is a commonly used approach in bacterial genomics for

genome reconstruction of sequenced isolates and variant detection [4,6,15–17]. Nevertheless,

there are grounds for suspecting that this approach might introduce biases depending on the

reference used for mapping. Most of these errors originate in the genetic differences between

the reference and the read sequence data [18–21], and they can affect subsequent analyses [22–

28]. These include the identification of variants throughout the genome (mainly single nucleo-

tide polymorphisms [SNPs]) and phylogenetic tree construction, which are essential steps for

epidemiological and evolutionary inferences.

Sequencing status, completeness, assembly quality and annotation are relevant factors in

reference selection, which explain the widespread use of the NCBI-defined reference genome

of a species for mapping [26,28]. However, these criteria do not necessarily account for the

amount of genetic information shared between the reference and subject sequences [29], nei-

ther the intrinsic genomic variability of the different bacterial species, which is reflected in

their pangenomes (i.e., the total gene set within a species or within a particular sequence data

set) [30]. It has been suggested that the impact of reference selection in clonal bacteria such as

Mycobacterium tuberculosis [31] could be ameliorated by its limited variability at the intra-spe-

cies level [25,28], although its effects on epidemiological inferences have been described [32].

In contrast, we expect a greater impact of reference choice in species with open pangenomes

(e.g., Pseudomonas aeruginosa [33]) and/or highly recombinogenic bacteria (e.g., Neisseria
gonorrhoeae [34] or Legionella pneumophila [35]). In spite of the awareness of the problem of

reference selection considering the high genomic diversity of most bacterial species, systematic

studies on the effect of reference choice in bacterial data sets are still missing, particularly if we

are concerned with the consequences on epidemiological or evolutionary inferences. In addi-

tion, previous studies considering reference selection explicitly have been mainly focused on

biases in SNP calling [23,24,28] and have not addressed other possible implications.

De novo assembly of read sequence data dispenses with the need of using a reference

genome. However, this requires higher sequencing coverage and longer reads in order to
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obtain enough read overlap at each position of the genome. Therefore, obtaining unfinished or

fragmented assemblies is a major drawback, particularly when using short-reads (which still

are the most frequently used in HTS-based studies) [36]. Complementarily, de novo assembled

isolates could be used as reference genomes if previously assembled, high-quality references

are found to be suboptimal in terms of genetic relatedness to the newly sequenced isolates

[12,32,37]. However, this solution still has to deal with the additional costs of long-read

sequencing and mapping errors derived from using a low-quality or fragmented reference.

In this work, we have analyzed the effect of reference selection on the analysis of short-read

sequence data sets from five clinically and epidemiologically relevant bacteria (Klebsiella pneu-
moniae, Legionella pneumophila, Neisseria gonorrhoeae, Pseudomonas aeruginosa and Serratia
marcescens) with different core and pangenome sizes [38–41]. WGS data sets were mapped to

different complete and publicly available reference genomes, encompassing the currently

sequenced genomic diversity of each species. We have studied the effect of reference choice on

mapping statistics (mapped reads, reference genome coverage, average depth), SNP calling,

phylogenetic inference (tree congruence and topology) as well as parameters of interest from

an evolutionary perspective such as the inference of natural selection and recombination rates

(Fig 1). Particular emphasis has been given to the effects of reference selection that result in

misleading epidemiological inferences.

Results

Selection of reference genomes

Complete genome sequences of five pathogenic bacterial species were downloaded from Gen-

Bank. These included K. pneumoniae (270 genomes), L. pneumophila (91 genomes), N. gonor-
rhoeae (15 genomes), P. aeruginosa (150 genomes) and S. marcescens (39 genomes). Only one

strain from P. aeruginosa (KU, accession number CP014210.1) was discarded because of low

assembly quality (32% of ambiguous positions). We built a ML core genome tree showing the

phylogenetic relationships between the available assemblies for each species (S1 Fig). Based on

this phylogenetic information and the strains commonly used in the literature, we selected

8 reference genomes for K. pneumoniae, 7 for L. pneumophila, 3 for N. gonorrhoeae, 6 for P.

aeruginosa and 4 for S. marcescens (S1 Table), including the NCBI reference genome of each

species. The strains 342 and AR_0080 (K. pneumoniae), and U8W and Lansing 3 (two L. pneu-
mophila strains not included in subsp. pneumophila), and PA7 (a known ‘taxonomic outlier’ of

P. aeruginosa) showed ANI values <95% in pairwise comparisons with the remaining selected

references (S2 Table) and long branches separating them from the other references in their

corresponding phylogenies (S1 File).

In silico MLST typing was performed for all the reference genomes except those of S.

marcescens. The only cases of shared STs were found in strains HS09565, HS102438 and

NTUH-K2044 of K. pneumoniae (ST 23), and in strains 32867 and CAV1761 of N. gonorrhoeae
(ST 1901).

Mapping to different references

We randomly sampled 20 isolates from different whole-genome sequencing data sets of the

five bacterial species (S3 Table). Next, filtered and trimmed paired-end reads of each isolate

were mapped to each reference genome from the same species. We computed different param-

eters for each mapping (S4 Table). The proportion of mapped reads and coverage of the refer-

ence genome (i.e., the percentage of reference genome covered by the aligned reads) showed

variability depending on the reference used for mapping (Figs 2 and 3). Both parameters fol-

lowed a roughly similar trend, as they presumably depend on the genetic distance between
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Fig 1. Overview of the workflow used. For each species, we selected different (3–8) publicly available closed whole-genome sequences as

references and 20 sets of short-reads from whole-genome sequencing projects. Reads were mapped to each selected reference genome per

species and consensus sequences were obtained from quality SNPs of each mapping. Consensus sequences from the mappings to the same

reference genome were added to the MSA of all references of each species. For the analysis of each MSA, (a) we considered only those

genome regions present in the reference used for mapping and (b) we obtained a ‘core’ MSA by removing all the regions absent from any of

the reference sequences. Finally, we studied the impact of reference choice on the ML trees inferred from each MSA, recombination rates

calculated on ‘core’ MSAs and dN/dS ratios calculated considering only coding sequences.

https://doi.org/10.1371/journal.pcbi.1008678.g001
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Fig 2. Distribution of proportion of mapped reads depending on reference choice.

https://doi.org/10.1371/journal.pcbi.1008678.g002
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Fig 3. Distribution of coverage of the reference genome depending on reference choice.

https://doi.org/10.1371/journal.pcbi.1008678.g003
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isolates and reference genomes. Moreover, we observed overlaps between the values obtained

from mappings of the same isolates against different reference sequences in the five species. In

most cases, the lowest median values were obtained in the alignments against the most geneti-

cally distant reference genomes (see ‘Selected isolates and reference genomes’). However, the

largest gap between median values depending on reference choice was found in the S. marces-
cens data set: the alignments to the outbreak-related reference UMH9 showed a high propor-

tion of mapped reads (96.7%) and genome coverage (97.7%), whereas the alignment against

the remaining references resulted in median values lower than 89% for both parameters. This

was probably due to the high proportion of mapped reads and genome coverage resulting

from mappings of outbreak isolates against a very close reference genome. Differences in both

parameters were found to be significant (Kruskal-Wallis, P< 0.05) depending on the reference

used for mapping in all species but N. gonorrhoeae. In the case of genome coverage, most pair-

wise comparisons (50%-100% in the four species) were found to be significant (Wilcoxon,

P< 0.05), whereas the number of significant comparisons was lower for the proportion of

mapped reads (Table 1). For example, in the case of K. pneumoniae, only 2 (out of 28) compar-

isons, involving the most genetically divergent reference genomes, showed significant differ-

ences in the proportion of mapped reads.

The average coverage depth (i.e., mean number of reads covering each position of the refer-

ence genome) was only slightly affected by reference choice (Fig 4 and S4 Table). Its effect was

noticeable when reads were mapped to the most divergent reference genomes of the different

species, as in the previous parameters. However, the average depth seemed to be more depen-

dent on other factors such as the total number of reads (sequencing coverage) of the isolates

rather than on the genetic distance to the reference genome. One such example is isolate

NG-VH-50 (N. gonorrhoeae), which had a low total number of reads and also showed low

average depth values regardless the reference selected for mapping (S5 Table). Differences in

this parameter depending on the reference used for mapping were found to be non-significant

in all the species, according to Kruskal-Wallis tests.

SNP calling

SNPs were called and quality-filtered from the different mappings to each reference of the five

species. The number of quality SNPs showed high variability depending on the reference used.

Overlapping ranges of the number of called SNPs were found when comparing the results of

the same isolates aligned to different reference sequences (Fig 5). Thus, considering that the

number of SNPs between sequences is directly related to their genetic distance, SNP-calling

results reflect genetic heterogeneity among isolates selected from the same species, as individ-

ual isolates showed different genetic relatedness to the different references.

Table 1. Proportion of significant (P<0.05) comparisons depending on reference choice.

Proportion (%) of significant comparisons

Species Comparisons Mapped readsa Genome coveragea SNPsa ρb dN/dSa

K. pneumoniae 28 7.1 75.0 53.6 42.9 60.7

L. pneumophila 21 19.0 52.4 95.2 23.8 47.6

N. gonorrhoeae 3 0.0 0.0 66.7 0.0 66.7

P. aeruginosa 15 26.7 93.3 86.7 73.3 53.3

S. marcescens 6 50.0 100 83.3 83.3 83.3

a Pairwise Bonferroni-corrected Wilcoxon tests.
b Pairwise Kolmogorov-Smirnov tests.

https://doi.org/10.1371/journal.pcbi.1008678.t001
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Fig 4. Distribution of the average depth depending on reference choice.

https://doi.org/10.1371/journal.pcbi.1008678.g004
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Fig 5. Distribution of the number of SNPs depending on reference choice.

https://doi.org/10.1371/journal.pcbi.1008678.g005
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An overall inverse relationship between SNP count and the previously discussed alignment

parameters (mapped reads and genome coverage) was also observed (see Figs 2, 3 and 5). This

implies that, in most cases, more SNP calls were expected in alignments with a lower propor-

tion of mapped reads and genome coverage (which is roughly indicative of a worse perfor-

mance of the read mapping process).

A relationship between the genetic distance of isolates to the reference sequence and the

total number of SNPs called was clearly observed in the alignments against the most distant

reference genomes of K. pneumoniae, L. pneumoniae and P. aeruginosa. These sequences,

whose distances to all the isolates were expected to be high, showed SNP counts one order of

magnitude larger than to other reference sequences (S4 Table).

In the case of S. marcescens, the alignments to strain UMH9 resulted in significantly fewer

SNP calls when compared to mappings against the remaining reference sequences. This is

explained by the presence of nearly identical isolates (outbreak isolates) to strain UMH9

(<160 SNPs detected). A similar case was found in L. pneumophila isolates 28HGV and

91HGV, which appeared to be nearly identical to the reference strain Paris, as less than 100

SNPs were detected in their respective mappings to this sequence. In all the species, most com-

parisons (53%-95%) between called SNPs from mappings against different references were sig-

nificant (Wilcoxon, P< 0.05) (Table 1).

Phylogenetic analyses and tree comparisons

We obtained a collection of MSAs including the same isolates and reference sequences, but dif-

fering only in the reference used for mapping by removing the regions absent in each mapping

reference. We also obtained a ‘core’ genome MSA by removing simultaneously all the regions

absent from any of the reference genomes for each species. Then, ML trees were inferred from

each MSA. Due to methodology used to obtain the MSAs, the comparison between phyloge-

nies strictly implies assessing the impact of reference selection.

Firstly, we quantified the topological distances between phylogenetic trees from each spe-

cies with Robinson-Foulds clusters (RF) and matching clusters (MC) metrics. Tree distances

spanned a variable range of values depending on the species (Table 2 and S6 Table). The nor-

malized values of both metrics for the same tree comparisons were not equal (in most cases)

but followed a similar global trend (Fig 6).

The comparisons involving phylogenies that include sequences mapped to the most diver-

gent reference genomes of K. pneumoniae and P. aeruginosa showed the largest distance val-

ues. However, in most cases there was not a straightforward relationship between the genetic

distance to the reference genomes and the topological distance between the corresponding

trees (Fig 7). For example, K. pneumoniae trees using sequences from mappings to strains 342

and AR_0080 showed an identical topology (RF = 0, MC = 0), despite the ANI value between

these references was <94%.

Table 2. Descriptive statistics of topological distances per species.

Matching clusters Robinson-Foulds clusters

Species Mean Median SD Min Max Mean Median SD Min Max

K. pneumoniae 57.7 49 34.4 0 99 12.4 11 6.2 0 20

L. pneumophila 43.9 42 16.0 5 67 9.7 11 3.5 1 14

N. gonorrhoeae 40.0 44 13.5 25 51 8.7 10 3.2 5 11

P. aeruginosa 49.9 47 16.1 25 80 12.3 12 4.2 7 19

S. marcescens 31.3 29.5 7.9 21 43 6.5 6.5 2.9 3 10

https://doi.org/10.1371/journal.pcbi.1008678.t002
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The congruence between different tree topologies was rejected in most comparisons by

ELW tests (Table 3). The few cases in which congruence was not rejected could be explained

by the close phylogenetic relationship between the reference genomes involved.

Finally, in order to assess in detail the effects of reference selection on phylogenetic infer-

ence, trees from the same species were compared qualitatively. Changes in the phylogenetic

Fig 6. Comparison of Robinson-Foulds (RF) and matching clusters (MC) normalized distances calculated

between trees from the same species.

https://doi.org/10.1371/journal.pcbi.1008678.g006

Fig 7. Comparison of RF distances against ANI calculated between the reference genomes selected for each

species.

https://doi.org/10.1371/journal.pcbi.1008678.g007
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relationships were found when using different reference sequences in almost all cases except

for two identical topologies. In some cases, the changes only affected branches in clades includ-

ing closely related isolates (Fig 8A and 8B), while others implied more profound changes in

the resulting topologies. Moreover, the alignments against a single reference genome seemed

to underestimate the genetic distance between the consensus sequences of the isolates and the

Table 3. Congruent comparisons according to ELW test. All the other pairwise comparisons were not congruent (P<0.05).

Species Reference Congruent pair

K. pneumoniae HS09565 HS09565, NTUH-K2044

HS102438 HS102438, NTUH-K2044

NTUH-K2044 NTUH-K2044, HS09565

342 342, AR_0080

AR_0080 AR_0080, 342

L. pneumophila Lansing 3 Lansing 3, U8W

https://doi.org/10.1371/journal.pcbi.1008678.t003

Fig 8. Impact of reference choice on phylogenetic trees of L. pneumophila. ML trees included the selected reference sequences of L. pneumophila and

the consensus sequences obtained from mappings against strains (A) Philadelphia 1, (B) Paris, (C) Alcoy and (D) Lansing 3. Clusters of isolates related

with references Paris (red) and Alcoy (blue) are coloured in the first three phylogenies. Isolates 28HGV and 91HGV (highlighted in yellow) were placed

in different clades in the trees when using references Paris and Alcoy. Clade of references resulting from using Lansing 3 as reference genome is

coloured in red.

https://doi.org/10.1371/journal.pcbi.1008678.g008
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reference sequence. Branch lengths were thus shortened between the leaves involved. In some

extreme cases (when mapping to genetically distant genomes 342, AR_0080 [K. pneumoniae],
Lansing 3, U8W [L. pneumophila] and PA7 [P. aeruginosa]), this ‘attraction’ effect led to the

clustering of reference genomes not used as references for mapping in a single clade, regardless

their genetic distance to the isolates (Fig 8D). These differences were also observed when only

the core genome was used to obtain the phylogenetic tree (S2 File). Additional species-specific

differences are described next.

K. pneumoniae. The topologies inferred with KP1768, NTUH-K2044, HS09565 and

HS102438 as reference sequences revealed the same phylogenetic relationships between clus-

ters of isolates, although there were some differences within clusters depending on the refer-

ence used for the MSA. Isolates HGV2C-06 and HCV1-10 (not associated with any of these

clusters) changed their placement in the topologies with HS11286 and AR_0143 as reference

sequences (Fig 9). The tree topologies using 342 and AR_0080 as reference genomes were

identical and markedly different to the phylogenies derived with the other reference strains

(S3 File).

L. pneumophila. The tree topologies using Lansing 3 and U8W as reference genomes

were the most similar ones for this species (RF = 1, MC = 5) despite the large genetic distance

between these sequences (ANI < 94%). Their topology was markedly different from the

remaining topologies, where isolates grouped in three clades associated with reference

genomes Paris, Alcoy and Philadelphia 1, respectively (see Fig 8 and S3 File). Notably, because

of the epidemiological implications discussed below, isolates 28HGV and 91HGV were

included in the Alcoy clade only when mapped to this reference genome (Fig 8C), whereas in

all other cases (excluding U8W and Lansing 3) the isolates grouped with the Paris strain.

N. gonorrhoeae. The most similar topologies resulted from using FA 1090 and 32867 as

reference genomes, despite that 32867 and NCTC13798 had larger ANI values. Three clades of

isolates could be identified in all the phylogenies. However, those isolates not included in any

of these clusters changed their position in the tree when using NCTC13798 as reference

sequence in comparison with the two other trees. As an exception, isolate NG-VH-50 always

grouped close to the reference sequence it was mapped to (S3 File). This artifact was due to the

low total number of reads obtained in sequencing this strain.

Fig 9. Impact of reference choice on phylogenetic trees of K. pneumoniae. ML trees included the selected reference sequences from K. pneumoniae
and the consensus sequences obtained from mappings against strains (A) HS11286 and (B) NTUH-K2044. Isolates HGV2C-06 and HCV1-10 (yellow)

changed their placement depending on reference choice.

https://doi.org/10.1371/journal.pcbi.1008678.g009
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P. aeruginosa. Three clades were clearly identified in all the trees, with the exception of

the one inferred using PA7 as reference sequence. In this tree, PA7 was placed in a cluster of

isolates, whereas the remaining reference sequences clustered together (S3 File). The main

topological differences depending on the reference were: (a) the placement of reference

genome M18 and the isolate P5M1 in the tree, and (b) the phylogenetic relationships within

the clade of reference genomes and P6M6, where the sequence chosen as reference for map-

ping occupied a basal position in the clade (Fig 10).

S. marcescens. Outbreak isolates grouped with strain UMH9 in all the trees. Branch

lengths within this clade were practically null when UMH9 was used as the reference sequence,

but these lengths increased when other reference sequences were used (Fig 11). As expected,

the control isolate SMElx20 grouped with its closest reference (Db11) in all the cases. The phy-

logenetic relationships between reference genomes, isolates and clades changed depending on

the reference used. The reference genome WW4 grouped with isolate CNH62 in all the topolo-

gies except when this strain was used as reference (S3 File).

Fig 10. Impact of reference choice on phylogenetic trees of P. aeruginosa. ML trees included the selected reference sequences of P. aeruginosa and

the consensus sequences obtained from mappings against strains (A) M18 and (B) 12939. Reference M18 and isolate P5M1 (yellow) alter their

phylogenetic relationships depending on reference choice.

https://doi.org/10.1371/journal.pcbi.1008678.g010

Fig 11. Impact of reference choice on phylogenetic trees of S.marcescens. ML trees included the selected reference sequences from S. marcescens and

the consensus sequences calculated from alignments against strains (A) UMH9 and (B) WW4. Outbreak clade is shown in red.

https://doi.org/10.1371/journal.pcbi.1008678.g011
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Distribution of recombination rates

Population recombination rates (ρ) were computed for 1000 bp sliding windows of the MSAs

(S4 Table) and the corresponding distributions were compared. Those regions that were not

present in all the sequences of a species were removed from the alignments for these analyses.

Overall, the distributions of recombination rates were very similar regardless the reference

genome used in each case. However, relevant differences in some peaks were found in different

MSAs from the same species. For example, the MSAs built with 32867 or NCTC13798 (N.

gonorrhoeae) as reference sequences showed at least two clearly observable peaks that were

absent when FA 1090 was the reference (Fig 12).

The number of significant pairwise comparisons between distributions of recombination

rates (Kolmogorov-Smirnov, P< 0.05) differed widely depending on the species. While none

of the comparisons between distributions of N. gonorrhoeae sequences showed significant

results (although, as described previously, relevant differences were found), almost all S. mar-
cescens estimated distributions were found to be significantly different (83.3%) (Table 1). In

most cases, the significance of the comparisons between recombination rates could be

explained by the phylogenetic relationships among the reference genomes. For example, the

comparisons involving the most distant reference sequences of K. pneumoniae, L. pneumophila
and P. aeruginosa showed significant differences, with the exception of the mutual compari-

sons between U8W and Lansing 3 (L. pneumophila), as well as AR_0080 and 342 (K. pneumo-
niae). Moreover, the significant comparisons in P. aeruginosa roughly reflected genetic

distances between reference sequences, because using phylogenetically close reference

sequences (M18 and PAO1 or UCBPP-PA14, Pa124 and 12939) resulted in non-significant

differences between recombination rate distributions. In the case of S. marcescens, generalized

significant comparisons could reflect nearly homogeneous divergence among the four refer-

ence genomes (S1 File).

Fig 12. Recombination rate distribution depending on reference choice between ‘core’ MSAs including sequences

from N. gonorrhoeae.

https://doi.org/10.1371/journal.pcbi.1008678.g012
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Analysis of natural selection

Changes in the ratio ω (= dN/dS) due to reference choice could affect inferences on how natu-

ral selection has acted throughout the genome. This parameter was estimated in pairwise com-

parisons between concatenated CDS extracted from consensus sequences obtained from the

mappings (S4 Table).

In all cases, the dN/dS values computed for each gene were<1. Differences in dN/dS
depending on the reference used (Fig 13) were significant (Kruskal-Wallis, P < 0.05) for all the

species. The proportion of significant pairwise comparisons (Wilcoxon, P < 0.05) depended

on the species, ranging from 47.7% (L. pneumophila) to 83.3% (S. marcescens) (Table 1). In

contrast with the results obtained in the parameters discussed previously, some of the compar-

isons involving the most genetically distant reference genomes (e.g., 342 strain of K. pneumo-
niae) as mapping references were not significant. Therefore, in this case it is difficult to explain

the variability of ω based on the genetic distances between reference sequences for most spe-

cies. N. gonorrhoeae could be treated as an exception, because the comparisons involving the

reference strain FA 1090 (the most genetically distinct one) were the only significant ones.

These differences were also observed when only the core genome was used to compute ω.

Discussion

The impact of using different reference sequences for mapping NGS data sets has been studied

previously in clinically relevant bacteria such as Escherichia coli [22], Salmonella enterica [26],

Listeria monocytogenes [23,24,28,42] or Mycobacterium tuberculosis [25,28], as well as in

eukaryotes [21,43,44], including Homo sapiens [45]. However, a systematic analysis of the evo-

lutionary and epidemiological implications of reference choice, encompassing different bacte-

rial species and diverse reference genomes is still missing. This work has been aimed at filling

this gap. Indeed, in some cases, reference selection analysis is incidental, spanning a restricted

number of reference sequences [46]. Among the species included in this work, the influence

of reference diversity on SNP calling has been previously assessed in K. pneumoniae and N.

gonorrhoeae [28], whereas L. pneumophila, P. aeruginosa (both showing high genomic variabil-

ity [33,35]) and S. marcescens have not been studied under this perspective.

Statistics on raw mapping data such as the proportion of mapped reads and the coverage of

the reference genome can provide preliminary information on the effect of reference choice

and its effects on subsequent analyses, because these parameters reflect the performance of

read alignment. As suggested previously, the genetic distance between short-read data and the

reference genome is directly related to incorrect read alignment and unmapped reads due to

mismatches between the sequence of the reads and the homologous positions in the reference

[19,20,22]. This is also confirmed by our results on read alignment statistics. The percentage of

the reference genome covered by mapped reads may be affected not only by genetic differences

in homologous regions, but also by the presence of strain-specific genomic regions [21],

because genes absent in the reference genome are expected to be lost during the mapping and

in the subsequent multiple alignment. Moreover, as proposed by Lee and Behr [25], there

might exist a coverage threshold beyond which subsequent phylogenetic analyses would be

strongly affected, thus reducing the accuracy of evolutionary and epidemiological inferences

derived from such inaccurate mappings.

The effect of sequencing coverage of the isolates on mapping seems to be generally indepen-

dent of reference choice, as shown by the values of average coverage depth obtained in this

study. Similarly to Pightling et al. [23], we have not observed any relationship between

sequencing coverage and other variables during HTS data processing. However, as shown by

one N. gonorrhoeae isolate (NG-VH-50), the reference mapping approach could strongly
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Fig 13. Distribution of dN/dS depending on reference choice.

https://doi.org/10.1371/journal.pcbi.1008678.g013
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underestimate the genetic distance between the assembly of the genome of a particular isolate

and that of the reference genome below a certain threshold of total reads, thus affecting subse-

quent phylogenetic inferences.

Benchmarking of SNP calling performance for HTS data seems to be more common com-

pared to other steps of genomic analyses [27,47–54]. Although most of these works are focused

on assessing the effect of the selected pipeline (and its underlying algorithm), the use of differ-

ent reference sequences has also been identified as a potential source of biases that could

interact with other variables of the pipeline such as selection of the variant caller and read

alignment software [23,24,28]. The number of SNPs is often used as a criterion for defining

clusters of epidemiologically related isolates [55]. Our results confirm the existence of a sys-

tematic and significant influence of reference choice on the number of identified SNPs in all

the species analyzed. They also reflect the correlation between genetic distance of isolates to

the reference genome and the number of called variants which, as highlighted in previous

studies, could be associated with the increase of false positives when the precision of SNP call-

ing decreases [23,28,42]. However, the increase in false positive rates in variant detection may

be affected not only by distance between query and reference genomes (measured as SNP dis-

tance), but also by genomic architecture or assembly quality [56]. This suggests that multiple

aspects should be considered when choosing a reference for mapping, aside from SNP distance

between reads and reference genome. Furthermore, SNPs could also provide information

about genomic heterogeneity of the data sets, as overlapping ranges in the number of SNPs

called depending on the reference reflects that different isolates are closely related to different

mapping references.

Recovering phylogenetic relationships between organisms or strains within a species repre-

sents an essential procedure in evolutionary and epidemiological studies. Biases in how and

how many SNPs are called as well as in the gene content of the final assemblies due to reference

choice could affect phylogenetic inferences [47]. The overall negative results obtained in con-

gruence tests also reflect the existence of a systematic effect of reference choice on tree topolo-

gies: the only statistically concordant comparisons (6 out of 73) between topologies of the

same species were found when references chosen for mapping were (a) closely related

sequences (K. pneumoniae ST 23 strains), or (b) extremely distant sequences, showing ANI

values close to the boundaries for species delimitation. The topologies resulting from using

phylogenetically unrelated, extremely divergent genomes were mutually similar while, in con-

trast, generally showed high topological distance values when compared to trees built using

non-extreme references. This kind of loss in tree resolution has already been observed

(although limited to clonal bacteria [25]). In our case, it may be originated from a reduced pro-

portion of shared gene content between isolates and extremely divergent sequences, along

with the existence of barriers to recombination between populations, as the ability for recom-

bination and its frequency is expected to decrease with genetic distance [57]. However, these

differences were also observed when considering only the core genome. This suggests that the

effect of the reference on phylogenetic inference is not only due to the presence/absence of

genes in the accessory genome. It might be due also to differences in core genome sequences

arising from biased/erroneous identification of variants.

The effect of reference choice on phylogenetic inferences is pervasive in these five species.

However, despite the differences between topologies and even lack of congruence, these

changes might not be necessarily associated with altered epidemiological inferences. A similar

situation was studied by Usongo et al. [26] on a S. enterica epidemiological data set, in which

two different topologies (RF = 24) were resolutive enough to distinguish different outbreak

clusters. In the same way, Kaas et al. [58] built phylogenies with the same clusters regardless

using a close or distant reference. In contrast, Abdelbary et al. [59] showed that overestimation
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of the number of SNPs due to mapping against a distant reference in outbreak investigations

could potentially affect phylogenetic reconstruction and lead to misinterpretation of the

results, thus suggesting that using a de novo assembled outbreak-related sequence as reference

(if a closer reference genome is not available) would improve mapping statistics and decrease

SNPs false positive rates. Through the systematic analysis of mapping in different species and

using a genetically diverse set of reference sequences, we have showed that both observations

are compatible, and that the effects on phylogenies and epidemiological inferences depend on

the references compared: the use of different reference sequences affects phylogenetic relation-

ships between clades and even to the association of specific isolates to transmission clusters,

thus potentially affecting epidemiological inferences. These alterations have been observed not

only when using a distant reference, but even when mapping to phylogenetically related strains

from the same non-clonal species as a reference, in contrast with previous studies in clonal

bacteria [25] where differences in phylogenetic inference appeared when using reference

genomes from close but different species. This is most obvious in the L. pneumophila data set,

in which two isolates changed their positions and were placed in the same cluster of the refer-

ence sequence used for mapping, while the overall topology remained practically unchanged.

Differences between trees were quantified by topological distance metrics, reflecting, in

most cases, lack of correlation between tree distances and genetic distances of the correspond-

ing reference genomes. As suggested previously [22,27], when working with a genetically

diverse set of isolates, it is impossible to select a single reference close to all of them, and sin-

gle-reference mapping biases are expected to increase with genomic divergence. Therefore,

these differences in tree topologies could be partially explained by the use of genetically hetero-

geneous data sets. Moreover, its impact on tree reconstruction may be alleviated by using mul-

tiple references simultaneously or a reference pangenome instead [22,60–64]. If data sets of

isolates were homogenous (i.e., the isolates are equally close to the same reference) as the one

employed by Lee and Behr [25], we would expect that read alignment performance and tree

resolution would decrease as we select progressively distant reference genomes [23,24,28].

However, we could not ignore that the presence of recombination (particularly in highly

recombinogenic species such as K. pneumoniae and L. pneumophila) could reduce accuracy in

phylogenetic reconstruction [22], thus explaining to some extent the topological incongruence

or the differences in branch lengths [65].

Selecting one reference or another for mapping can also affect the estimates of phylogenetic

distance between isolates [22,26], which is reflected in the branch lengths of the trees. This is

clearly illustrated by the phylogenetic analysis of the S. marcescens data set, which reveals that

tree branches connecting outbreak isolates increased their lengths when consensus sequences

were calculated from alignments using reference genomes that were phylogenetically unrelated

to the isolates (different from strain UMH9). Similar findings were observed for Listeria mono-
cytogenes sequences by Pightling et al. [23].

The development and increasing availability of high-throughput, whole-genome sequenc-

ing technologies have allowed assessing evolutionary rates and dynamics at the genome level

which, in turn, contribute to a better understanding of emerging diseases and transmission

patterns [66]. Therefore, the study of natural selection and recombination, frequent processes

in bacteria [67], is relevant not only from an evolutionary point of view but also in its applica-

tion to molecular epidemiology [68]. To our knowledge, the impact of reference selection on

the inference of evolutionary parameters such as substitution and recombination rates at the

genome level has not been explored previously. In this work, variations in dN/dS and ρ have

been detected in all the species depending on the reference sequence used for mapping.

This might have an effect in subsequent inferences on the action of natural selection and the

detection of recombination events. Significant differences in ρ seemed to be more strongly
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correlated with the genetic distance between the genomes used as reference for mapping than

dN/dS.

Short-read mapping of HTS data against a reference genome is a common approach in bac-

terial genomics. Our results show that the impact of selecting a single reference is pervasive

in the genomic analyses of five different bacterial species, and likely in many others. All the

parameters evaluated were affected by the usage of different reference sequences for mapping

and, notably, alterations in phylogenetic trees modified in some cases the epidemiological

inferences. Furthermore, working with heterogeneous sets of isolates seems to be a particularly

challenging scenario for the selection of a single reference genome. Mapping simultaneously

to multiple references or against a reference pangenome may alleviate the effect of reference

choice. Moreover, when studying particular lineages or outbreaks, using de novo assembled,

closely related references (i.e., sequences from the same clade) may also reduce this effect.

However, the aim of this work is not to provide a solution on the reference selection bias

on mapping but to make clear how deeply reference choice can affect subsequent analyses.

Exploring the effects of different references is highly recommended, since it is difficult to

unequivocally determine an optimal reference when working with non-simulated reads, fur-

ther considering that available, high-quality reference genomes may not encompass the com-

plete genomic diversity of a species. Besides, the diversity and uniqueness of each biological

dataset impedes the elaboration of a generalizable guideline. Ultimately, inspecting the vari-

ability of the results of mapping against different references is an essential step to assess if con-

clusions are robust to reference choice and which of them are particularly sensitive to the use

of specific references.

Methods

The workflow used in this study is summarized in Fig 1.

Selection of reference genomes

Closed whole-genome sequences of K. pneumoniae, L. pneumophila, N. gonorrhoeae, P. aerugi-
nosa and S. marcescens available in June, 2018 were downloaded from NCBI GenBank [69] in

fasta format. Plasmids were removed with seqtk v1.0 (https://github.com/lh3/seqtk) (subseq

command). Genome sequences were annotated using Prokka v1.12 [70] (with default settings)

and the set of intra-species co-orthologous genes was inferred using Proteinortho v5.11 [71]

(option -p = blastn+). Coding sequences (CDS) of orthologous genes in each species were

aligned with MAFFT v7.402 [72] (with default settings) and concatenated to obtain a CDS-

coding core genome multiple sequence alignment (MSA) for each species.

A maximum-likelihood (ML) tree was inferred from each MSA with IQ-TREE v1.6.6 [73]

using the GTR substitution model and 1000 fast bootstrap replicates [74]. After consideration

of the core genome phylogenies (distance between strains and clusters) and the usage of differ-

ent references in the literature, we selected a set of genomes to be employed as reference

genomes for each species. The number of reference sequences selected was roughly propor-

tional (�10%) to the initial number of publicly available sequences from each species. In brief,

we included (a) the NCBI reference genome of the species, (b) relevant or commonly used ref-

erences for mapping, and (c) representative sequences of different lineages. Detailed informa-

tion about the selected reference genomes is provided in S1 Table.

The selected reference genomes of each species were aligned with progressiveMauve

v2.4 [75] and gaps were added to regions where homologous sequences were absent in any
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genome in the alignment. The XMFA output alignment was converted into fasta format with

xmfa2fasta.pl (https://github.com/kjolley/seq_scripts/blob/master/xmfa2fasta.pl).

To evaluate the genetic divergence between the selected reference sequences, we used three

different procedures: (a) we built ML trees with IQ-TREE, as above, (b) we computed Average

Nucleotide Identities [76] (ANIs) using FastANI v1.1 [77], and (c) we performed an in silico
multi-locus sequence typing (MLST) using mlst v1.15.1 (https://github.com/tseemann/mlst)

for K. pneumoniae, N. gonorrhoeae and P. aeruginosa; and using BLAST+ [78] and the EWGLI

[79] database for L. pneumophila. This procedure was not used with S. marcescens.

Selection of isolates for analysis

20 sets of short-reads from whole genome sequencing projects of the five species (S3 Table)

were randomly selected (with the R [80] function sample_n) among those obtained in our

laboratory and/or deposited at the SRA as detailed next. Sequences in our laboratory were

obtained with Illumina MiSeq 300x2 paired-ends (P. aeruginosa) or NextSeq 150x2 paired-

ends (the remaining species). The K. pneumoniae data set included isolates of 9 different

STs obtained in a surveillance study of ESBL-producing strains in the Comunitat Valenci-

ana (Spain). The L. pneumophila data set comprised isolates obtained from environmental

surveillance at 2 hospitals of the Comunitat Valenciana. The N. gonorrhoeae data set

includes isolates obtained in a surveillance study in different regions of Spain (Comunitat

Valenciana, Madrid and Barcelona). The P. aeruginosa data set included isolates from 2

outbreaks detected in the Comunitat Valenciana. Finally, the S. marcescens data set included

9 almost identical outbreak isolates genetically close to strain UMH9, one isolate close to

the reference of the species, Db11, and 10 unrelated isolates downloaded from the SRA

repository.

Quality control analysis and sequence read processing

The quality of the reads (before and after trimming and filtering) was assessed using FastQC

v0.11.8 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and quality reports

were merged with MultiQC v1.7 [81]. Illumina, Truseq and Nextera adapters were removed

with cutadapt v1.18 [82]. Reads were trimmed and filtered using Prinseq-lite v0.20.4 [83]. 3’-

end read positions with quality <20 were trimmed and reads with overall quality <20, >10%

ambiguity content and total length <50 bp were removed.

Mapping, variant calling and consensus sequences

Reads passing the above filters were mapped to each selected reference of each species using

BWA MEM v0.7.17 [84] (with default settings). SAM files were converted to binary format

(BAM), sorted and indexed with samtools v1.6 [85] (commands sort and index). Mapping sta-

tistics were obtained using samtools (commands flagstats and depth).

SNPs were identified in each alignment with samtools and bcftools v1.6 [86] (commands

mpileup and call, respectively). Indels were excluded from the analysis (option—skip-variants

indels). Remaining SNPs after filtering (quality >40, mapping quality [MQ] >30, depth>10

and under twice the average depth and distance of>10 pb to any indel) were counted with

bcftools (command stats).

Consensus sequences were obtained from quality-filtered SNPs and the appropriate refer-

ence sequence using bcftools (command consensus) for every possible combination of isolates

and reference genomes from the same species.
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Multiple sequence alignment of reference genomes and consensus

sequences

The MSAs of the reference sequences from each species were used as ‘backbones’ on which the

consensus sequences from the mappings to the same reference genome were added using a

custom Python script. XMFA-formatted MSAs were converted to fasta format as described

previously. Finally, for the analysis of each MSA we considered only those genome regions

present in the reference genome, using a custom Python script to mask the absent regions

from the global MSA. This procedure (see Fig 1) allowed us to obtain a collection of MSAs

(one per each reference sequence) including the same isolates and reference genomes (per spe-

cies), differing only in the reference sequence used for mapping. In addition, we also obtained

a ‘core’ genome MSA by removing all the regions absent from any of the reference sequences.

Analysis of natural selection

We explored the effect of reference choice on the inference of natural selection at the whole

genome level by computing pairwise dN/dS ratios with the PAML package 4.9i [87] between

concatenated CDSs of consensus sequences that were built using the same reference. CDSs

were extracted using coordinates of the corresponding reference obtained with Prokka (see

‘Selection of reference genomes’). A custom Python script and the emboss package v6.6.0 [88]

were used. We also computed pairwise dN/dS values between consensus sequences consider-

ing only the core genome CDSs (i.e., shared by all the selected references from each species).

Distribution of recombination rates

Population recombination rates (ρ = 4Ner; where Ne is the effective population size and r is the

recombination rate per base pair and generation) were estimated using LDJump [89] (with a

window of 1000 pb) from the ‘core’ genome MSAs. The distributions of recombination rates

along MSAs were compared for the different reference genomes of each species and were rep-

resented graphically with the R package ggplot2 [90].

Comparisons of phylogenetic trees

ML trees were inferred from each MSA with IQ-TREE as described above, and visualized with

iTOL v4 [91].

Congruence tests. We used expected likelihood weight (ELW) tests [92], as implemented

in IQ-TREE, to assess the congruence between phylogenies that differed only in the genome

chosen as mapping reference. The ELW test computes weights for each topology based on its

likelihood given a MSA, with the total sum of weights being equal to 1 and higher weights

assumed to be those best supported by the data. Decreasing weights are progressively collected

to build a confidence set until their cumulative sum is equal to or higher than 0.95. At this

point, the trees included in the confidence set are accepted as congruent.

Topological distances. Pairwise distances between tree topologies obtained with the dif-

ferent mapping references were assessed using TreeCmp v2.0 [93]. Robinson-Foulds [94] clus-

ters (RF) and matching clusters [93] (MC) metrics were calculated for each comparison. The

RF distance reflects the number of bipartitions differing between topologies, whereas the MC

distance computes the minimal number of moves needed to convert a topology into another.

Therefore, two identical topologies will receive a value equal to 0 with both metrics. Con-

versely, distance values will increase as the compared trees become more different.

Qualitative comparison of trees. Finally, a qualitative assessment of trees was performed

in order to identify specific changes in the phylogenetic relationships between isolates due to
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the choice of different reference genomes. Particularly, we focused on clustering of isolates

and alterations that could affect epidemiological inferences (e.g., including/excluding one par-

ticular sample in an outbreak).

Statistical analyses. To study the effect of using different reference genomes on mapping

statistics (proportion of mapped reads, genome coverage, average depth), number of called

SNPs, and dN/dS values, non-parametric Kruskal-Wallis [95] tests were performed with R 3.5

(function kruskal.test). If a Kruskal-Wallis test showed significant differences between groups

(reference sequence), we performed pairwise Wilcoxon [96] tests with Bonferroni-corrected

p-value for multiple comparisons (with the R function pairwise.wilcox.test) in order to identify

significant differences between specific reference sequences.

Pairwise Kolmogorov-Smirnov [97] tests (R function pairwise_ks_test [https://github.com/

netlify/NetlifyDS]), which compare observed distributions of data, were performed in order to

identify significant differences in the distributions of recombination rates depending on the

mapping reference.

Supporting information

S1 Fig. Core genome trees of the complete whole-genome sequences downloaded from

GenBank. The circles at the tips denote the sequence type (ST) of the different strains in the

trees of the species with an MLST scheme available for in-silico typing. The black triangles

denote the branches with bootstrap support values <70. (A) K. pneumoniae, (B) L. pneumo-
phila and (C) P. aeruginosa trees were rooted on their corresponding longest branches.

As all the branches connecting the different clades of (D) S. marcescens and (E) N. gonor-
rhoeae trees were approximately the equal length, they were rooted arbitrarily for a better

visualization.
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S2 Table. ANI (%) calculated between the selected reference genomes.
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values are shown.
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S6 Table. RF and MC distances.
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S1 File. Phylogenetic trees of the reference genomes selected for each species.
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S2 File. Core genome phylogenetic trees per reference and species. Strain selected as refer-
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