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Chronic low back pain (LBP) is one of the leading causes of disability worldwide.

While LBP research has largely focused on the spine, many studies have demonstrated

a restructuring of human brain architecture accompanying LBP and other chronic

pain states. Brain imaging presents a promising source for discovering noninvasive

biomarkers that can improve diagnostic and prognostication outcomes for chronic LBP.

This study evaluated graph theory measures derived from brain resting-state functional

connectivity (rsFC) as prospective noninvasive biomarkers of LBP. We also proposed and

tested a hybrid feature selection method (Enet-subset) that combines Elastic Net and

an optimal subset selection method. We collected resting-state functional MRI scans

from 24 LBP patients and 27 age-matched healthy controls (HC). We then derived

graph-theoretical features and trained a support vector machine (SVM) to classify patient

group. The degree centrality (DC), clustering coefficient (CC), and betweenness centrality

(BC) were found to be significant predictors of patient group. We achieved an average

classification accuracy of 83.1% (p < 0.004) and AUC of 0.937 (p < 0.002), respectively.

Similarly, we achieved a sensitivity and specificity of 87.0 and 79.7%. The classification

results from this study suggest that graph matrices derived from rsFC can be used as

biomarkers of LBP. In addition, our findings suggest that the proposed feature selection

method, Enet-subset, might act as a better technique to remove redundant variables

and improve the performance of the machine learning classifier.

Keywords: chronic low back pain, graph theory, support vector machine, feature selection, elastic net

INTRODUCTION

Chronic low back pain (LBP) is a leading contributor to disability globally. In the United States, LBP
is linked to higher healthcare and socioeconomic costs, including reduced employee productivity
(1) and lost wages estimated at $100 billion in 2006 (2). Despite advancements in diagnostic and
therapeutic technology, researchers and clinicians have found the clinical management of LBP
challenging due to its complex pathophysiology (3). This could be attributed to the absence of
significant abnormalities in modern spinal imaging of LBP patients (4). These findings have given
impetus to the identification of noninvasive biomarkers that have the potential to facilitate early
diagnoses, guide treatment plans, and improve our understanding of LBP progression and severity.
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In the past, several putative non-imaging biomarkers have
been investigated in LBP (5–7). However, these biomarkers are
often invasive and do not assess the impact of LBP on the
brain. Contrastingly, a neuroimaging biomarker for pain uses
different imaging modalities to reveal underlying information
about the anatomical circuity and functional pathways that form
a signature for chronic pain (8). Functional magnetic resonance
imaging (fMRI) is a popular imaging modality used to study
functional interactions between brain regions based on the
performance of a task (task-fMRI) (9, 10) or while at rest (11, 12).
However, task-fMRI can present physical challenges for some
LBP patients who are unable to perform the required tasks.
Resting-state fMRI (rs-fMRI) is a suitable alternative modality in
which spontaneous changes in the blood-oxygen level dependent
(BOLD) signal are recorded to identify patterns of functional
connectivity while the patient is at rest (13). In fact, rs-fMRI
can be used to gain a better understanding of the organization
of the brain’s cognitive function (14) and overcome some of the
limitations of task-fMRI (15).

Resting-state functional connectivity (rsFC) is commonly
used as a noninvasive biomarker for various neurological
conditions (16). Functional connectivity refers to the temporal
dependence of patterns of neural activity in spatially distant
regions of the brain (17–20). Past studies have shown that
aberrant functional processing within certain brain regions can
cause sustained, and sometimes amplified perception of pain
(21). This is supported by a growing body of evidence across
many chronic pain disorders (22–24) including LBP (25–28).
Using novel methods when analyzing brain activity can reveal
unique insights (for example, reorganization of hub activity)
into chronic pain conditions (29–32). Graph theory measures
can be used to model patterns of rsFC as nodes (cortical
regions) and edges (functional connections between cortical
regions), which can help outline the organization of brain
networks. This approach enables us to analyze the topology of
networks, revealing underlying information about the higher-
order organization of brain networks (33). Many studies have
investigated graph measures across chronic pain conditions
such as knee pain (34), fibromyalgia (35), and neck pain
(24). However, this approach has only rarely been used in
practice for LBP (36).

It can be difficult to identify disruptions in functional
connectivity, especially in chronic pain, as rsFC matrices tend to
be multivariate in nature (37, 38). This problem can be addressed
by using a machine learning classifier (39, 40). Classification
learning algorithms can accurately predict an unseen test dataset
by using a set of essential training features. However, redundant
features need to be removed from the dataset by using an
appropriate feature selection method to improve classification
accuracy (41). Elastic Net (Enet) is a widely used feature selection
method that eliminates redundant variables that affect prediction
accuracy (42). Enet is especially favorable when the number of
predictors is higher than the sample size or when there are
many correlated predictor variables. However, certain feature sets
selected by Enet may not always constitute a best performing
subset of features, as removing additional redundant variables
could increase the classifier’s performance. Thus, there is an

TABLE 1 | Participants’ demographic information.

Variable Healthy controls LBP

Participants (n) 27 24

Sex (M/F) 15/12 9/15

Age (in years) 46.9 ± 17.3 (25–75) 53.5 ± 10.2 (29–67)

unmet need for an optimal feature selection method. To address
this need, we proposed and tested a new hybrid feature selection
approach which sorted features according to the magnitude
of their Enet coefficients. The best subset of predictors to be
retained in the final model was then determined by themaximum
cross validated AUC of the feature set. This feature selection
approach is the combination of Enet with an optimal subset
selection extension which we refer to as Elastic Net-subset
(or Enet-subset).

In summary, our group (36) and other researchers have
shown that LBP patients present with disruptions in cortical
functional connectivity. We have also shown that an SVM is
capable of using variations in cortical thickness to classify LBP
from HC (36). To further expand on our previous work, we (1)
extracted local graphmeasures from functional connectomes and
determined their ability to predict LBP by (2) testing a new hybrid
feature selection technique (Enet-subset). We hypothesized that
LBP patients would show differences in functional connectivity
in previously implicated pain processing regions, which a
machine learning classifier could use to predict patient group.
We also examined if an Enet-subset feature selection approach
could improve classifier performance by removing additional
redundant variables. We collected high-resolution resting-state
scans and parcellated the processed data using a multi-modal
parcellation (MMP) developed by the Human Connectome
Project (HCP) (43). We also collected self-reported clinical data
for the Oswestry Disability Index (ODI) outcome measure.

METHODS AND MATERIALS

Participants
The subjects who participated in this study included 27 healthy
controls (HC) and 24 LBP subjects (age matched; p = 0.21).
This study received approval from the Washington University
in Saint Louis Institutional Review Board. All LBP subjects
recruited for this study had been diagnosed with chronic LBP
due to lumbar spondyloarthropathy with a history of 6 months
without lower extremity symptoms. All LBP patients had not
received lumbar spine surgery at the time of scanning. All
HCs had no history of neurological injury or disease prior to
their scan. Table 1 summarizes the participant information (refer
Supplementary Material for inclusion and exclusion criteria).

All participants were recruited through the Washington
University School of Medicine Research Participant Registry
(Volunteer for Health) and direct patient contact during clinical
visits at the Barnes Jewish Hospital, Washington University
School of Medicine, and Barnes Jewish West County Hospital.
All participants were screened by a physician prior to enrollment
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in the study, and written informed consent was obtained prior
to scanning.

Clinical Data Acquisition
Data for the Oswestry Disability Index (ODI) questionnaire (44,
45) was collected from each participant. The ODI is considered
the clinical “gold standard” for assessing functional disability in
individuals with LBP (46). The ODI is a self-administered, 10-
item questionnaire related to impairments like pain, and abilities
such as standing, walking, traveling, lifting, socializing, sitting,
personal care, sleeping, and sex life (45). Each item is scored from
0 to 5, and the total of the ten items is expressed as a percentage
of the maximum score ranging from 0 (no disability) to 100
(maximum disability).

fMRI Data Acquisition and Pre-processing
A 3T Siemens Prisma with a 32-channel head coil was used
to collect 0.8mm isotropic T1-weighted and T2-weighted scans
from all participants. Resting state fMRI images were acquired
on the same day using multi-band gradient echo EPI (multi-
band accel. factor = 6). The scans had high spatial (2.4mm
× 2.4mm × 2.4mm) and temporal (TR = 800ms) resolution
[repetition time (TR)= 800ms, echo time (TE)= 33ms and flip
angle = 52◦]. A 2.4mm isotropic spin echo field map was also
collected during fMRI acquisition to correct for any distortion in
the fMRI data.

We collected six resting-state fMRI scans that were 5min
long, with AP/PA phase encoding directions (60 axial slices
each). Volumetric navigator sequences were used to collect T1-
and T2-weighted sequences that were corrected for motion by
repeating scans (47). During the resting scans, subjects focused
their attention on a visual crosshair.

The imaging data was preprocessed using the HCP’s
preprocessing pipelines (v4.0.0) (43, 48–51). The structural
preprocessing pipelines were used to generate subcortical
segmentations and cortical surfaces. Following structural pre-
processing, the functional pre-processing pipelines corrected for
EPI distortion, registered the fMRI data to structural MRI, and
then brought the cortical time series from the volume dimension
to the surface. The denoising pipelines then registered the fMRI
data to the structural MRI data and corrected for motion and
distortions within fMRI data by mapping it onto a CIFTI
grayordinate space and removing spatially specific noise. The
MSMAll areal-feature-based cross-subject surface registration
pipeline was then applied to align the individual subject’s cortical
regions to the HCP’s multi-modal parcellation. This process
is more accurate than using cortical folding alone. Finally,
temporal ICA (50, 52) was used to clean global noise from
the MSMAll aligned rs-fMRI data. For this process, weighted
regression (43) of group spatial ICA components from a much
larger HCP-Young Adult 1,071-subject dataset with an existing
temporal ICA decomposition was applied and the resulting
concatenated individual subject time series were unmixed using
the previously computed temporal ICA unmixing matrix. The
noise temporal ICA individual subject component timeseries
from this larger dataset were then non-aggressively regressed
out from the subject’s timeseries (see Supplementary Methods

for more information on pre-processing methods). DVARS
excursions were used to quantify patient movement (53) and
revealed no statistically significant difference between the two
patient groups.

Graph Theory Analyses
Nodes of the functional network were defined as one of 360
non-overlapping parcels from the HCP’s MMP. We constructed
functional connectivity matrices for each subject by taking
the average timeseries of each of the 360 cortical regions
from the pre-processed fMRI data. We then computed the
Pearson’s correlation coefficient for each pair of cortical regions
before applying a Fisher-z transformation (Figure 1A). We
then thresholded all graphs at the same network densities
and binarized them to avoid biased graph metric comparisons
between patient populations (54–56). Binarization is a very
effective method of preserving the most probable functional
connections (57, 58). Since there is no universally accepted
threshold for functional connectivity strength, we decided to
threshold connections within the top 15% by network density
for each individual, in steps of 2.5% up to 30% density, to create
binary undirected graphs for each density. The graph theory
metrics were then averaged across these thresholds for each node
(35, 36, 59).

We used the Brain Connectivity Toolbox (60) to calculate
the following local graph measures for each patient: clustering
coefficient, local efficiency, degree centrality, and betweenness
centrality (Figure 1B). The clustering coefficient (the fraction
of connected triangles in a network) measures the degree to
which a node’s neighbors are connected to each other (60).
The degree centrality (the number of edges for a specific node)
assumes that the importance of a node is related to the number
of nodes that it is directly connected to Barabási and Albert
(61). The betweenness centrality (a centrality measure based on
shortest paths) is a measure of how influential a node is as
information passes through it to other nodes (62). The local
efficiency measures the efficiency of information transfer within
the local neighborhood of a node (63). These metrics investigate
network properties within the local neighborhood of a node and
have been the subject of many studies across various chronic
pain conditions (25, 34, 59).

Machine Learning Classification
We used a support vector machine (SVM) with a linear kernel as
a classifier in this study. The pool of subject data was randomly
separated into training and testing sets in a 70/30 ratio, keeping
the ratio of patients in each group constant (i.e., the ratio of HC
to LBP). The training dataset was used for the feature selection
(Figure 1C) and model training (Figure 1D) phases. The model’s
performance was tested using the testing dataset (Figure 1E). We
used the caret and glmnet packages available in RStudio (64, 65)
for our machine learning analysis.

Feature Selection
Each cortical parcel was modeled as a node such that 360 features
were extracted for each graph theory measure. These features
were then used in two different feature selection approaches
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FIGURE 1 | Diagrammatic representation of the data processing pipeline. (A) First, resting-state functional connectivity (rsFC) matrices are computed for each

subject. (B) Graph theory features are then extracted from the connectivity matrices. (C) Features were selected using an (i) Elastic Net feature selection method, and

(ii) proposed Elastic Net-subset (Elastic Net + optimal subset selection) approach to identify predictive features while reducing feature redundancy. (D) Two SVM

models were constructed for each of the feature selection approaches. (E) Each model’s performance (accuracy, AUC, sensitivity, specificity, and the total number of

features used in the final model) were computed and then compared between both models. A significance test was performed using a permutation test approach.

The whole process was repeated for each feature set and their combinations (for example, BC+CC+DC). BC, Betweenness Centrality; CC, Clustering Coefficient;

DC, Degree Centrality; LE, Local Efficiency.

that aimed to remove any redundant features to increase the
classifier’s performance and lead to better generalization of
independent datasets. The first feature selection approach, Elastic
Net (Enet), shrinks the coefficients of the input features to zero
if they are not positively contributing. Parameter optimization
was done by using a grid approach on the predefined penalty
parameter λ= seq (0.1, 0.9, by=0.1] and α= seq ([0.0001, 0.005,
by=0.001).Wewere constrained to a small alpha value due to the
small number of features that survived (non-zero coefficients). In
addition, we chose a small alpha value as increasing it would have
led to underfitting the SVM classifier with this dataset. Following
this, all the features with non-zero coefficients that form the Enet
were used as the input to the SVM classifier (SVM model #1
in Figure 1D).

The second feature selection approach, Enet-subset, uses
the coefficients estimated by Enet. The features were sorted in
descending order based on the absolute values of the coefficients
(Step #1). The sorted features were then used to build an SVM
classifier (model #2, Figure 1D). We trained the classifier using
a subset starting with the top 25 features, ranked by feature
coefficient, with a step size of 25 (Step #2). The best subset
of predictors retained in the final model was then determined
by the maximum cross-validated AUC. The procedure for the
Enet-subset method is summarized below:

Step #1: Sort the absolute value of Enet coefficients in
descending order.

Step #2: In a loop,
for, each subset= range [25: the total number of features, step

size= 25].
AUC was computed for each subset using an SVM linear

classifier and nested 4-fold cross-validation approach.
end
Step #3 The AUC was determined for all subsets, and the best

performing subset (out of the subsets tested) was used in the final
SVM (model #2, Figure 1D).

Model Training and Classification
In the model training phase, features selected using the Enet
and Enet-subset methods were used to train two separate

SVM models (SVM model #1 and SVM model #2, Figure 1D).
As before, the features were normalized, and optimal model
parameters were fed into each final SVM model. We used a grid-
search algorithm to optimize the cost (C) of each SVM classifier.
The search scale was set to C= 1:10, and the cost with the highest
performance was used in each final model. To generalize the
training process and obtain a more accurate model, we used a
K-fold (K = 4) cross-validation, which was repeated five times.
This technique divides data into equal disjointed subsets of size
four. The model was then trained on all folds except one. The
remaining subset was reserved for testing purposes. This process
was then repeated three (K−1) times, selecting each fold to be
used for testing once. We repeated this process five times to
ensure that our trained model acquired most of the patterns from
the training dataset.

We evaluated the performance of each SVM model
using the test dataset where HCs were classified as positive
and LBP as negative for the true positive (TP), false
positive (FP), true negative (TN), and false negative (FN)
calculations. We determined the corresponding accuracy,
sensitivity, and specificity of each model. The accuracy (%)
is defined as the fraction of correctly classified subjects
{(TP+TN)/(TP+TN+FP+FN)}. Sensitivity is defined as the
fraction of correctly classified positive samples from all positive
samples {TP/(TP+FN)}. Specificity is defined as the fraction of
correctly classified negative samples from all negative samples
{TN/(TN+FP)}. We then determined the area under the receiver
operating characteristics curve (AUC) to evaluate each model’s
overall performance.

Statistical Tests
We used an unpaired two-sample Wilcoxon rank-sum test to
determine any statistically significant (p < 0.05) relationships in
graph measures between both patient groups. We corrected for
multiple comparisons by using False Discovery Rate Correction
with q < 0.05.

During the model training phase, the data was randomly
divided into testing and training datasets which may produce
slightly different models depending on the division. To address
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TABLE 2 | ODI scores for each patient group.

Patient group Mean Median Standard deviation

Low back pain 33.3 34.0 15.3

Healthy controls 5.63 6.00 5.60

this, the SVM was run 100 times (Figures 1C–E) and the results
were averaged to calculate final performance measures. The
arithmetic mean of the accuracy, sensitivity, specificity, and AUC
of the 100 repetitions was computed for the final analysis.

Statistical significance of the classification accuracy and AUC
were tested using permutation testing with 1,000 permutations.
For this step, the subject’s class (group) was randomly
assigned. The resulting accuracy produced a null-hypothesis
distribution that was then used to calculate the p-value of the
corresponding accuracy (i.e., the fraction of permutations that
produced a greater accuracy than the accuracy found for the
classification models) (66).

RESULTS

Clinical Survey Data
We used a Wilcoxon rank-sum test to compare the total ODI
outcome scores from LBP patients to those from HC (Table 2).
There was a significant difference (p = 7.21e-9; z = 5.79) in the
total ODI scores of LBP and HCs. Patients with chronic LBP
had a higher total ODI score which was indicative of higher
functional disability.

Differences in Graph Metrics Between LBP
and HC
Our analysis showed no significant differences in the local
efficiency (LE), clustering coefficient (CC), degree centrality
(DC), and betweenness centrality (BC) of individual nodes from
the reconstructed brain networks between LBP patients and HCs
after FDR correction (all p > 0.05, see Supplementary Table 1).
While this may be unexpected, some studies have shown
that chronic pain states show no univariate associations
with local graph measures (67). A non-significant group
difference in a univariate analysis does not necessarily imply
a weak feature in a multivariate machine learning analysis
approach (68). In fact, a univariate analysis is often less
comprehensive than a multivariate model and is unable to show
relationships between multiple variables (or parcels) (69, 70).
We demonstrate (Supplementary Figures 1, 2) that, while not
significant, multiple parcels show differences in graph metrics
between LBP and HCs. A multivariate approach can use these
differences to chart meaningful relationships. In addition, we
use feature selection to discard noisy features and reduce the
number of features. For these reasons, we used a multivariate
approach with an SVM to overcome the shortcomings of
univariate analyses.

Machine Learning to Predict LBP
We used the BC, CC, DC, and LE of all 360 parcels to train
an SVM to correctly predict each subject’s patient group (see
section Graph Theory Analyses) and determine the matrix of
best performing features for each graph measure. Of the four
graph theory matrices used, BC, CC, and DC had very high
classification accuracies when used on their own with both
feature selection approaches. However, LE proved to have a low
classification accuracy with both feature selection approaches.
We repeated our analyses to determine if a combination of
graph measures led to a higher classification accuracy than
a single measure. We then combined the BC, CC, and DC
datasets, and compared their predictive power between the two
feature selection methods. In all iterations, the performance of
the classifier increased when using Enet-subset features (except
for LE). We achieved a maximum (mean of 100 iterations)
classification accuracy of 83.1% (p < 0.004), AUC of 0.94 (p
< 0.002), sensitivity of 87 % (p < 0.076), and a specificity
of 79.7% (p < 0.054) when using BC, CC, and DC with an
Enet-subset feature selection approach. Table 3 summarizes the
overall classification results (see Supplementary Table 2 for the
sensitivity and specificity of each model using each feature
selection method).

We saw that the Enet-subset feature selection method was
successful in reducing the total number of selected features used
in the final models. As a result, the prediction accuracy of the
proposed Enet-subset feature selection approach is higher in all
instances when compared to using Enet as a baseline (except for
LE). This supports our hypothesis that the Enet-subset method
performs better at removing redundant features (i.e., fewer noisy
features results in a higher model accuracy). This effect is most
noticeable when the total number of features used is relatively
large (for example, using 360 features from BC vs. using 1,080
features by combining features from BC+CC+DC) while also
having the best classifier performance of all the models tested.

Frequently Selected Features
In order to further understand the role of individual parcels
in the classification, we identified the top 60 cortical
regions (ranked by frequency) of the best performing
SVM classifier in which BC, CC, and DC were used as
features and Enet-subset was used for feature selection
during each iteration. We then sorted the cortical regions
according to their frequency of repetition. The top 60
frequently selected cortical regions that contributed to
the classification were plotted on a brain mesh surface
based on a scale corresponding to their frequency values
(Figure 2, see Supplementary Table 3 details on individual
areas). In addition, we plotted the top 60 frequently selected
cortical regions that contributed to the classification of each
individual graph measure (see Supplementary Figures 3–5

and Supplementary Tables 4–6 for more details on
individual parcels).

We also conducted a Pearson’s correlation to determine
any correlations between the graph measures of the
top 60 frequently selected cortical parcels (Figure 2 and
Supplementary Table 3) and the patient’s corresponding total
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TABLE 3 | A summary (mean of 100 iterations) of the classification accuracy and AUC using the Enet and proposed Enet-subset feature selection methods.

Biomarker(s) Using all Enet selected features Using Enet-subset selected features

ACC (%), AUC

(mean)

Features

(mean/total #)

ACC (%), AUC

(mean)

Features

(mean/total #)

BC 81.7, 0.919 349/360 82.6, 0.920 326/360

CC 81.0, 0.92 349/360 82.3, 0.925 328/360

DC 80.9, 0.898 348/360 81.2, 0.895 324/360

LE 50.8, 0.598 348/360 50.4, 0.590 155/360

BC+CC 81.0, 0.923 679/720 82.5, 0.92 634/720

BC+DC 81.2, 0.907 680/720 83.2, 0.924 636/720

CC+DC 80.8, 0.913 680/720 81.8, 0.921 640/720

BC+CC+DC 80.9, 0.916 1,006/1,080 83.1, 0.937 945/1,080

ACC, Accuracy; AUC, Area under curve; BC, Betweenness centrality; CC, Clustering coefficient; DC, Degree centrality; LE, Local efficiency.

FIGURE 2 | Frequently selected features. The frequency of selection for each cortical feature used to train the SVM model using BC+CC+DC and proposed

Enet-subset feature selection method was plotted onto a cortical mesh surface. The top 60 features were selected in all 100 iterations and sorted according to the

frequency of its selection during the 100 iterations. Cortical regions outlined in green are bilateral while those outlined in black are unilateral.

ODI scores. However, we did not find any significant correlations
between these graph measures and the calculated total
ODI scores.

DISCUSSION

The literature has shown that a high level of functional
interaction between cortical regions is necessary to cope
with the demand of cognitive activities (71–73). We used
noninvasive imaging in this study to model these functional
interactions and measure network properties. This study builds
on our previous work (36) by using graph theory metrics
in the classification process to understand a complementary

component of cortical changes in the LBP syndrome. The
results from this study (1) validate our hypothesis that the
use of certain graph measures as a biomarker may lead to
the integration of more effective information on pain states
like LBP and (2) support the Enet-subset method as a more
effective feature selection algorithm for removing redundant
variables and improving the classifier’s performance. In addition,
we found graph measures to be very accurate predictors of
patient group irrespective of the feature selection technique
used. The success we have seen with the machine learning
models supports the notion that groups of cortical regions
are more predictive of the patient group than individual
cortical regions.
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FIGURE 3 | Bilateral frequently selected features. Bilateral cortical regions from the 60 most frequently selected parcels used to train the SVM model using

BC+CC+DC and an Enet-subset feature selection method are highlighted on a cortical mesh surface of the left hemisphere. Right hemisphere is not shown. Cortical

regions are outlined in green and labeled according to the abbreviations in Table 4. Frequency of selection is indicated in red.

TABLE 4 | A summary of the bilateral regions from the top 60 cortical regions,

selected for by frequency, that contributed to the classification accuracy of the

Enet-subset model when trained using the betweenness centrality, degree

centrality, and clustering coefficient graph measures.

Area name Area description

PCV Precuneus visual area

SCEF Supplementary and cingulate eye field

6d Dorsal area 6

a24 Area a24

10pp Polar 10p (Orbitofrontal cortex)

52 Area 52 (Parainsular area)

Pir Pirform cortex (Olfactory)

PeEc Perirhinal ectorhinal cortex

STGa Area STGa (auditory)

PHA1 Parahippocampal area 1

TE2p Area TE2 posterior

TPOJ1 Area TemporoParietoOccipital Junction 1

Predictive Cortical Regions Are Involved in
Spatio-Temporal Processing and Its
Associated Visual and Motor Coordination
The temporal-parietal-occipital junction (TPOJ), precuneus
visual area, supplementary and cingulate eye field (SCEF),
parahippocampal area (PHA), and perirhinal cortex are
some key bilateral cortical regions (Figure 3; Table 4;
Supplementary Figure 6) that were frequently selected as
predictive features and are involved in spatial navigation.
Spatial navigation is a resource-demanding process that involves
determining and maintaining an optimal trajectory to a
target based on incoming sensory stimuli from surrounding
spatial references (74).

The TPOJ has been implicated in numerous functions (75,
76) such as attentional reorienting between spatial locations
(77), timing of visual events (78), visual awareness (79), and
the integration of these different sensory inputs (80, 81).
The precuneus visual area plays an important role in spatial
navigation (82) and spatial processing (83). Previous studies have
shown that damage to this part of the parietal cortex leads to

deficits in spatial representational (84), simultagnosia (85), and
oculomotor apraxia (86), all of which are related to visuospatial
processing. These findings suggest that the precuneus may likely
be involved with how we interpret external events as painful but
not directly involved in the cortical representation of pain (87).

The SCEF is a part of the supplementary motor complex
that is associated with the regulation of eye movement (88).
The SCEF has anatomical connections to the frontal eye field,
superior colliculus, and lateral intraparietal cortex, which puts it
in a unique position to regulate goal-directed behavior (89, 90).
Dorsal area 6 is a part of the dorsal premotor cortex (DPC),
which is also implicated in goal-directed actions involving target
object, hand, and eye positioning (91). Inhibiting activity of
the DPC using transcranial magnetic stimulation in human
patients increases reaction times which supports its role in motor
planning (92). These findings are bolstered by the significant
increase in functional disability in LBP patients as shown by the
differences in ODI scores between both patient groups.

The PHA is a subregion of the ParaHippocampal cortex

(PHC) reported to be involved in visuospatial processing (93),
including place perception (94), and spatial representation

(95, 96). Individuals with lesions to the PHC show impaired

visuospatial processing and difficulties with spatial orientation,
navigation, and landmark identification (97, 98). Area a24, a part

of the anterior cingulate cortex (ACC), has been reported to show
vestibular activations (99, 100). In addition, there is growing

evidence that spatial memories may become supported by certain

extrahippocampal structures over time. The ACC is believed to be
one of these structures that stores past spatial memories (101).

The perirhinal cortex adds semantic knowledge to aid in

item identification (102). In addition, the perirhinal cortex

integrates item information with spatio-temporal information

and transmits this data to the hippocampus via the entorhinal

cortex (103). The temporal area 2 posterior (TE2p) is a newly
identified cortical area that lies on the inferior temporal gyrus
(43) and may play a role in visual pathways, specifically
object recognition.

These bilaterally affected regions are engaged in the
coordination of motor control and other sensory processes that
facilitate spatial navigation. Studies have shown that physical
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self-awareness and perception of one’s relative position is
impaired in patients with severe chronic LBP (104, 105). Our
previous work on this LBP population also found several
cortical regions involved in spatial navigation to be predictive of
patient group when trained using variations in cortical thickness
(36). This evidence compounded by the downstream hand and
shoulder motor deficits, as shown by differences in patient ODI
scores, further supports the predictive features selected by our
model. The identified regions could therefore serve as putative
therapeutic biomarkers of functional motor disability.

Feature Selection Using Enet-Subset
Embedded feature selection is a popular feature selection
technique, as it incorporates feature selection into the machine
learning algorithm (106). The Least Absolute Shrinkage and
Selection Operator (LASSO) (107) is a common embedded
method used to identify a small number of informative features
(108). This is because of its ability to zero the coefficients of non-
informative features and assign positive or negative coefficients
to more informative features. However, the maximum number of
features that LASSO can select is less than the total sample size. As
a result, LASSO is an ineffective option when many features are
required to train the classifier.We encountered this problemwith
our dataset when applying LASSO. In many of its iterations (out
of 100), LASSO selected very few features even after optimizing
the penalty parameter (λ). This led to the underfitting of our
models resulting in a poor model performance. For this reason,
we did not use LASSO in our final analysis.

We then applied Enet (42), an embedded feature selection
method based on a relatively sparse model, to select for
significant variables within each graph measure. However, it was
apparent that Enet still selected redundant variables. Therefore,
the performance of the model could be further improved by
removing such variables. This was clearly seen when models
trained using features selected by the Enet-subset feature
selection method performed better with fewer features than
when using Enet. These redundant variables need to be removed
to increase the accuracy of the classifier. Redundant variables
also lead to overfitting and an increase in calculation load
which is computationally expensive. The proposed Enet-subset
method further selects for significant variables using the optimal
subset selection extension based on the feature’s coefficient
following Enet. As a result, the Enet-subset method is capable
of reducing additional non-informative features. Therefore, the
Enet-subset method is effective in reducing model complexity
and calculation load with complex neuroimaging data. By using
fewer features with the Enet-subset method, we improved the
accuracy, AUC, sensitivity, and specificity of all models (see
Table 3 and Supplementary Table 2). This would be another
useful feature for large neuroimaging datasets.

LIMITATIONS

There are several limitations in this study. We did not explore
the cerebellum or subcortical regions, as the HCP’s MMP does
not parcellate these regions. The subcortical regions of the brain
and cerebellum have been shown to play an important role
in the coordination and control of movement and balance.

Future studies should include these regions of the brain in their
analysis for a more comprehensive outlook. In addition, these
studies should also investigate the classification accuracy of lesser
researched graph metrics such as K-coreness, flow coefficient,
and participation coefficient.

Although our study shows that graph measures are of
promising clinical value in predicting pain, there are some
limitations mainly due to sample size. Therefore, our results
should be considered with due caution. A suitable next step
would include testing these models with a large sample and using
regression models instead of classificationmodels (for example—
prediction of clinical pain and emotional measures which would
help understand the progression and severity of the pain). It
is also important to note that the validation of a biomarker
would require testing its efficacy in identifying a disease state
in the presence of other disease states. Therefore, future studies
should replicate this approach with a sample population that
includes other chronic pain states in addition to LBP. It is also
important to note that pain is a multidimensional process which
involves multiple brain networks interacting with each other.
This can present challenges when interpreting the functional role
of cortical regions and should be considered with care.

Chronic LBP is a syndrome that presents with numerous
etiologies and varying symptomatology. Therefore, our attempts
to recruit a homogenous population of subjects without a history
of spine surgery were met with difficulty. Finally, some potential
pitfalls that could arise from the machine learning methods
include incomplete, biased data or noisy datasets and overfitting.
These drawbacks could be addressed by recruiting largermatched
samples and testing the models on more unseen data.

CONCLUSION

In conclusion, the highly predictive graph theory network
approach used to train the classifiers support the notion of
brain function alteration in LBP. Our results demonstrate that
machine-assisted classification algorithms can accurately classify
patients into their respective cohort using graph theory metrics.
This supports our hypothesis that these graph measures can be
used as a biomarker of LBP. Our results also show that an Enet-
subset feature selectionmethod is more effective when improving
a model’s performance.
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